首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Reaction of [WVIS4]2− with ethane-1,2-dithiol edtH2 in the presence of the sulfide scavenger Cd2+ yielded the dinuclear tungstate syn-[{(edt)WV(O/S)}2(μ-S)2]2− (1), with the terminal S/O disordered over the two tungsten sites in the ratio 0.8:02. In the presence of thiocyanate, phosphine and CuI, the anionic cuboidal clusters of composition [{(SCN)3WV}2{CuI(PPh3)}23-S)4]2− (2) and (3, diphos = 1,2-bis(o-diphenylphosphinophenyl)ethane), and possibly via an intermediate [{(SCN)3WVS}2(μ-S)2]4−. The crystal and molecular structures of [Et4N]21, [Et4N]22 · H2O and [Et4N]23 · H2O have been determined.  相似文献   

2.
Two novel tetranuclear compounds with an unprecedented mode of a hydrogenphosphato bridge, [Cu4(dpyam)443-HPO4)2(μ-X)2]2+ (in which dpyam = di-2-pyridylamine and X = Cl (1), Br (2)) have been synthesised and characterised structurally and magnetically. The Cu(II) ions in the structures each display a square-pyramidal geometry, with two tridentate hydrogenphosphato groups bridging four copper atoms in a μ43 coordination mode which is rarely found in hydrogenphosphate metal compounds. Each (different) pair of Cu(II) ions is additionally bridged by halide ions, with relatively long Cu-X distances (2.551(3)-2.604(3) Å for 1 and 2.707(1)-2.766(2) Å for 2) and subsequently also a small Cu-X-Cu angle (65.7(1)° and 65.1(1)° for 1 and 61.6(1)° and 62.4(1) for 2) and a large Cu-X-Cu angle (95.5(1)° and 96.5(1)° for 1 and 91.1(1)° and 92.6(1)° for 2). Cu?Cu distances in the tetranuclear units varies from 2.802(3) to 5.232(3) Å for 1 and from 2.834(1) to5.233(1) Å in 2. The lattice structures are stabilised by extensive intermolecular hydrogen bonds. The magnetic susceptibility measurements down to 5 K revealed a weak ferromagnetic interaction between the outer pairs of Cu(II) ions which vary from 22 to 46 cm−1 in 1 and 12 to 33 cm−1 in 2 and a moderately strong antiferromagnetic interaction between the inner Cu(II) ions of −79 cm−1 in 1 and −83 cm−1 in 2, via the Cu-O-P-O-Cu pathway.  相似文献   

3.
A new polynuclear copper (II) complex, derived from the azido-bridging ligand and 2-aminopyrimidine, has been synthesized and its 3-D structure has been determined by X-ray diffraction methods at two different temperatures. The compound crystallizes in the triclinic system space group, with the central copper atom lying on an inversion centre. The crystal structure is built up by trinuclear units (each of them contains two double end-on azido bridges) linked through two azide ions in an end-to-end (EE) fashion, to yield the polymer chain [Cu3(ampym)21,1-N3)41,3-N3)2(dmf)2]n. Magnetic susceptibility measurement shows a ferromagnetic interaction above 30 K, whereas a weak anti-ferromagnetic interaction prevails in the range of 30-2 K.  相似文献   

4.
The reactions of [Pt2(μ-E)2(PPh3)4] (E = S, Se) with cis-1,4-dichlorobut-2-ene (cis-ClCH2CHCHCH2Cl) give the dichalcogenolate complexes [Pt2(μ-ECH2CHCHCH2E)(PPh3)4]2+; an X-ray structure determination on the thiolate complex was carried out. The complexes give the expected dications in ESI mass spectra recorded at very low cone voltages, but at moderate cone voltages undergo facile fragmentation via a retro-Diels-Alder reaction and loss of 1,3-butadiene, giving the dichalcogenide species [Pt2(μ-E2)(PPh3)4]2+. Analogous species containing bidentate phosphine or arsine ligands have been previously generated electrochemically, and studied theoretically.  相似文献   

5.
Two new dicyanamide (dicyanamide=[N(CN)2], dca) bridged complexes, [Cu(μ1,5-dca)2(phen)]n (1) and [Cd(μ1,5-dca)2(py)2]n (2) have been synthesized and their structures have been determined by X-ray crystallography diffraction. Complex 1 crystallizes in the monoclinic space group P2(1)/c with a=10.1502(3), b=10.9815(4), c=14.5839(4) Å and Z=4. The adjacent copper atoms are connected by single end-to-end dca bridges to form a chain structure along the b axis. The chains are linked via Cu?N weak interactions to give rise to a 2D layer structure, which furthermore into a 3D structure by the π-π interaction between aromatic rings of adjacent layers. Complex 2 crystallizes in the monoclinic space group C2/m with a=6.6849(10), b=17.476(2), c=13.231(2) Å and Z=4. The cadmium(II) center is six-coordinated with a distorted octahedral geometry, bounded to four N atoms of four dca ligands and two N atoms of two-chelated py ligands. Neighbor Cd(II) atoms are linked by the double end-to-end dca bridges to generate a chain structure, which result in a 2D layer structure through the π-π interactions between the adjacent chains with distances 3.641 Å. EPR and magnetic results of 1 suggest that the complex exhibits a weak ferromagnetic interaction through CuNCNCNCu pathways.  相似文献   

6.
Reaction of [Pt2(μ-S)2(PPh3)4] with a range of zinc(II) and cobalt(II) complexes ML2, where L is a β-diketonate ligand CH3COCHCOCH3, PhCOCHCOPh, CF3COCHCOTh (Th = 2-thienyl)] permits the synthesis of adducts [Pt2(μ-S)2(PPh3)4M(diketonate)]+, isolated as their salts in moderate yields. The cobalt and zinc acetylacetonate complexes were characterised by single-crystal X-ray diffraction studies, which reveal isomorphous structures, with tetrahedral heterometal centres.  相似文献   

7.
Photolysis of M2(CO)4(μ-S-t-Bu)2, where M = Rh or Ir, in Nujol matrices at ca. 90 K results in simple CO loss to form a tricarbonyl intermediate analogous to that observed for Rh2(CO)4(μ-Cl)2. Photolysis of the anions, [M(CO)2Cl2]1−, where M = Rh or Ir, in inert ionic matrices at ca. 90 K, results in CO-loss to form an intermediate analogous to that formed by Rh(CO)2(i-Pr2HN)Cl. Finally, photolysis of trans-Ir(CO)(PMe3)2Cl in a Nujol matrix at ca. 90 K gives rise to a new species whose carbonyl band is shifted slightly down in energy as has been observed for trans-Rh(CO)(PMe3)2Cl. In all cases the iridium compounds behave similarly to the rhodium species although the photon energy for iridium photochemistry is typically above that of the rhodium compounds.  相似文献   

8.
Novel two iridium terphenyl complexes were prepared and their structures were characterized crystallographically. The reaction of [Ir(cod)2]BF4 with p-terphenyl (p-tp) in CH2Cl2 was carried out to afford dinuclear Ir(I) complex {[Ir2(p-tp)(cod)2](BF4)2 · 2CH2Cl2}3 (cod=1,5-cyclooctadiene) (1 · 2CH2Cl2), whereas the reaction of the intermediate [Ir(η5-C5Me5)(Me2CO)3]3+ in Me2CO with m-terphenyl (m-tp) was done to provide mononuclear Ir(III) complex [Ir(m-tp)(η5-C5Me5)](BF4)2 (2). In complex 1 · 2CH2Cl2, two Ir atoms are η6-coordinated to both sides of terminal benzene rings from the upper and lower sides in the p-tp ligand, while one Ir atom is η6-coordinated to one side of the terminal benzene ring in the m-tp ligand in complex 2. Each crystal structure describes the first coordination mode found in metal complexes with the m- and p-tp ligands.  相似文献   

9.
Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50?% inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.  相似文献   

10.
Reactions of [Pt2(μ-S)2(PPh3)4] with the diarylthallium(III) bromides Ar2TlBr [Ar = Ph and p-ClC6H4] in methanol gave good yields of the thallium(III) adducts [Pt2(μ-S)2(PPh3)4TlAr2]+, isolated as their salts. The corresponding selenide complex [Pt2(μ-Se)2(PPh3)4TlPh2]BPh4 was similarly synthesised from [Pt2(μ-Se)2(PPh3)4], Ph2TlBr and NaBPh4. The reaction of [Pt2(μ-S)2(PPh3)4] with PhTlBr2 gave [Pt2(μ-S)2(PPh3)4TlBrPh]+, while reaction with TlBr3 gave the dibromothallium(III) adduct [Pt2(μ-S)2(PPh3)4TlBr2]+[TlBr4]. The latter complex is a rare example of a thallium(III) dihalide complex stabilised solely by sulfur donor ligands. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4TlPh2]BPh4, [Pt2(μ-S)2(PPh3)4TlBrPh]BPh4 and [Pt2(μ-S)2(PPh3)4TlBr2][TlBr4] reveal a greater interaction between the thallium(III) centre and the two sulfide ligands on stepwise replacement of Ph by Br, as indicated by shorter Tl-S and Pt?Tl distances, and an increasing S-Tl-S bond angle. Investigations of the ESI MS fragmentation behaviour of the thallium(III) complexes are reported.  相似文献   

11.
The binuclear complex {Cu(μ-CCPh)(triphos)}2 [triphos = (PPh2CH2)3CMe] has been obtained from a reaction between {Cu(CCPh)}n and triphos. The two copper atoms are bridged unsymmetrically by two CCPh groups, each attached through one carbon only [Cu-C, 2.016(4) Å], the separation between the two coppers being 2.4663(8) Å. Only two of the three phosphorus atoms in each ligand are coordinated to copper [Cu-P(1,2) 2.281, 2.273(1) Å]. The observed structure may be rationalised using a recent theoretical study [C. Mealli, S.S.M.C. Godinho, M.J. Calhorda, Organometallics 20 (2001) 1734] and differs from that assumed for the rationalisation of its luminescence properties [V. Pawlowski, G. Knör, C. Lennartz, A. Vogler, Eur. J. Inorg. Chem. (2005) 3167].  相似文献   

12.
The dicarbonyl and diphosphine complexes of the type (η5-C5H5)Fe(L)2ER3 (L2 = (CO)2 (a), (Ph2P)2CH2 (b); ER3 = CH3 (1a/b); SiMe3 (2a/b), GeMe3 (3a/b), SnMe3 (4a/b)) were synthesized and studied electrochemically. Cyclic voltammetric studies on the dicarbonyl complexes 1a-4a revealed one electron irreversible oxidation processes whereas the same processes for the chelating phosphine series 1b-4b were reversible. The Eox values found for the series 1a-4a were in the narrow range 1.3-1.5 V and in the order Si > Sn ≈ Ge > C; those for 1b-4b (involving replacement of the excellent retrodative π-accepting CO ligands by the superior σ-donor and poorer π-accepting phosphines) have much lower oxidation potentials in the sequence Sn > Si ≈ Ge > C. This latter oxidation potential pattern relates directly to the solution 31P NMR chemical shift data illustrating that stronger donation lowers the Eox for the complexes; however, simple understanding of the trend must await the results of a current DFT analysis of the systems.  相似文献   

13.
Treatment of the six-coordinate trimethylstannyl complex, Os(SnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (1) with SnMe2Cl2 produces Os(SnMe2Cl)(κ2-S2CNMe2)(CO)(PPh3)2 (2), which in turn reacts readily with hydroxide ion to give, Os(SnMe2OH)(κ2-S2CNMe2)(CO)(PPh3)2 (3). The osmastannol complex 3 undergoes a reaction with 2 equivalents of tBuLi, in which one of the phenyl rings of a triphenylphosphine ligand is “ortho-stannylated”, without cleavage of the Os-Sn bond, to give the cyclic complex, Os(κ2(Sn,P)-SnMe2C6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (4). This novel cyclic complex is selectively functionalised at the tin atom by reaction with SnMe2Cl2 which exchanges one methyl group for chloride giving the diastereomeric mixture, Os(κ2(Sn,P)-SnMeClC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (5a/5b). Crystal structure determination reveals that both diastereomers occur in the unit cell. The mixture, 5a/5b, undergoes reaction with hydroxide ion to give the diastereomeric osmastannol complexes, Os(κ2(Sn,P)-SnMeOHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (6a/6b) and with sodium borohydride to give the corresponding tin-hydride mixture, Os(κ2(Sn,P)-SnMeHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (7a/7b). Crystal structure determinations for 2, 4, and 5a/5b have been obtained.  相似文献   

14.
Reaction of [Pt2(μ-S)2(PPh3)4] with a number of transition metal-iodo complexes leads to the formation of the cationic iodo analogue [Pt2(μ-S)(μ-I)(PPh3)4]+, identified using electrospray ionisation mass spectrometry (ESI MS). Synthetic routes to this complex were developed, using the reaction of [Pt2(μ-S)2(PPh3)4] with either [PtI2(PPh3)2] or elemental iodine. The complex was characterised by NMR spectroscopy, ESI MS and an X-ray structure determination, which reveals the presence of a planar, disordered {Pt2SI}+ core. Monitoring the iodine reaction by ESI MS allows the identification of various iodine species, including the short-lived intermediate [Pt2(μ-S)2(PPh3)4I]+, which allows a mechanism for the reaction to be proposed.  相似文献   

15.
Reactions of orthometallated binuclear palladium complexes with NaER, obtained by NaBH4 reduction of R2E2 in methanol, gave complexes, [Pd2(μ-ER)2(CY)2] (HCY = N,N-dimethylbenzylamine (C6H5CH2NMe2), N,N-dimethylnaphthylamine (C10H7NMe2), tri-o-tolylphosphine {P(tol-o)3}; ER=SePh, SeMes, TePh, TeMes (Mes = 2,4,6-Me3C6H2). Similar reactions of [Pd2(μ-Cl)2(C10H6NMe2-C,N)2] with Pb(SMes)2 or MesSH in the presence of NaHCO3 gave chloro/thiolato-bridged complex [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2]. The newly synthesized complexes were characterized by elemental analysis, UV-Vis, IR, NMR (1H, 13C, 31P, 77Se, 125Te) spectroscopy. These complexes crystallized out preferentially in sym-cis configuration. A low energy charge transfer transition has been identified from chalcogenolate centers to an emptyπ orbital of cyclometallated ligand in absorption spectroscopy in these complexes. The structures of [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2] (1) and [Pd2(μ-SePh)2(C10H6NMe2-C,N) 2] (3) have been established by single crystal X-ray diffraction analyses. In the former, the two palladium atoms are held together by chloro and thiolato bridges whereas in the latter, the two phenylselenolato ligands bridge two palladium atoms. The pyrolysis of [Pd(μ-TeMes)(C10H6NMe2-C,N)]2 (10) in a furnace gave Pd7Te3 whereas thermolysis in TOPO afforded primarily PdTe2.  相似文献   

16.
The reactions of the fluorovinyl-substituted phosphines PPh2(CFCF2) and PPh2(CClCF2), with K2PtX4 (X = Br, I) have been investigated. The resulting complexes have been characterized by a combination of 19F and 31P{1H} NMR, IR and Raman spectroscopy. The reactions of these phosphines with K2PtBr4 yield the monomeric complexes cis-[PtBr2{PPh2(CFCF2)}2] (1) and trans-[PtBr2{PPh2(CClCF2)}2] (2), respectively, whilst the reactions with K2PtI4 yield both the monomeric species trans-[PtI2{PPh2(CXCF2)}2], {X = F (3), Cl (4)}, and the dimeric species [PtI(μ-I){PPh2(CXCF2)}]2, {X = F (5), Cl (6)}. The dimers 5 and 6 represent the first crystallographically characterised platinum(II) iodide-bridged phosphine complexes, and both adopt the symmetric-trans structure.  相似文献   

17.
Three doubly-bridged, trinuclear copper(II) compounds with hydroxo and carboxylato bridges, 1[Cu3(L1)2(μ-OH)2(μ-propionato)2](1), [Cu3(L2)2(μ-OH)2(μ-propionato)2(DMF)2] (2) and 1{[Cu3(L3)2(μ-OH)2(μ-propionato)2]} [Cu3(L3)2(μ-OH)2(μ-propionato)2(DMF)2]} (3) [HL1 = N-(pyrid-2-ylmethyl)benzenesulfonylamide, HL2 = N-(pyrid-2-ylmethyl)toluenesulfonylamide, HL3 = N-(pyrid-2-ylmethyl)naphthalenesulfonylamide], have been synthesized and characterized. 1 is built from [Cu3(L1)2(μ-OH)2(μ-propionato)2] clusters. Each unit contains three copper(II) with two different coordination environments: the terminal centers are square-base pyramidal whereas the central copper is square planar. 2 presents a similar square-base pyramidal geometry in the terminal centers, but the central copper is six-coordinate. 3 shows an unusual 1D coordination polymer comprised of two distinct building blocks: one similar to that found in 1 and the other similar to that found in 2. The magnetic susceptibility measurements (2-300 K) reveal a ferromagnetic interaction between the Cu(II) ions with J values of 76.0, 55.0, and 48.0 cm−1 for 1, 2, and 3, respectively. Emission spectroscopy, thermal denaturation, viscosimetry and cyclic voltammetry show an interaction of the complexes with DNA through the sugar-phosphate backbone. All three Cu(II) complexes were found to be very efficient agents of plasmid DNA cleavage in the presence of ascorbato or mercaptopropionic acid. Both the kinetics and the mechanism of the cleavage reaction have also been examined.  相似文献   

18.
Further studies have been carried out into the reactivity of [Pt2(μ-S)2(PPh3)4] towards a range of activated alkylating agents of the type RC(O)CH2X (R = organic moiety, e.g. phenyl, pyrenyl; X = Cl, Br). Alkylation of both sulfide centers is observed for PhC(O)CH2Br, 3-(bromoacetyl)coumarin [CouC(O)CH2Br], and 1-(bromoacetyl)pyrene [PyrC(O)CH2Br], giving dications [Pt2{μ-SCH2C(O)R}2(PPh3)4]2+, isolated as their PF6 salts. The X-ray structure of [Pt2{μ-SCH2C(O)Ph}2(PPh3)4](PF6)2 shows the presence of short Pt?O contacts. In contrast, the corresponding chloro compounds [typified by PhC(O)CH2Cl] and imino analogues [e.g. PhC(NOH)CH2Br] do not dialkylate [Pt2(μ-S)2(PPh3)4]. The ability of PhC(O)CH2Br to dialkylate [Pt2(μ-S)2(PPh3)4] allows the synthesis of new mixed-alkyl dithiolate derivatives of the type [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)4]2+ (R = Et or n-Bu), through alkylation of in situ-generated monoalkylated compounds [Pt2(μ-S)(μ-SR)(PPh3)4]+ (from [Pt2(μ-S)2(PPh3)4] and excess RBr). In these heterodialkylated systems ligand replacement of PPh3 occurs by the bromide ions in the reaction mixture forming monocations [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+. This ligand substitution can be easily suppressed by addition of PPh3 to the reaction mixture. The complex [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ was crystallographically characterized. X-ray crystal structures of the bromide-containing complexes [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+ (R = Et, Bu) are also reported. In both structures the coordinated bromide is trans to the SCH2C(O)Ph ligand, which adopts an axial position, while the ethyl and butyl substituents adopt equatorial positions, in contrast to the structures of the dialkylated complexes [Pt2{μ-SCH2C(O)Ph}2(PPh3)4]2+ and [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ (and many other known analogues) where both alkyl groups adopt axial positions.  相似文献   

19.
Two trinuclear NiFe2 complexes Fe2(CO)63-S)2[Ni(Ph2PCH2)2NR] (R = n-Bu, 1; Ph, 2) containing an internal base were prepared as biomimetic models for the active sites of FeFe and NiFe hydrogenases. Treatment of complex Fe2(CO)63-S)2[Ni(Ph2PCH2)2N(n-Bu)] (1) with HOTf gave an N-protonated complex [Fe2(CO)63-S)2{Ni(Ph2PCH2)2NH(n-Bu)}][OTf] ([1H][OTf]). The structures of complexes 1, 2 and [1H][OTf] were determined by X-ray crystallography, which shows that the proton held by the N atom of [1H][OTf] lies in an equatorial position. Cyclic voltammograms of complexes 1 and [1H][OTf] were studied and compared with that of Fe2(CO)63-S)2[Ni(dppe)].  相似文献   

20.
Pt(II) complexes of the types cis- and trans-Pt(amine)2I2 with amines containing a phenyl group were synthesized and studied mainly by IR and multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopies. The compounds are not very soluble. In 195Pt NMR spectroscopy, the cis isomers were observed at slightly lower fields than the trans analogues (average Δδ = 11 ppm) in acetone. In 1H NMR, the NH groups were also found at slightly lower fields in the cis isomers. The coupling constants 2J(195Pt-1HN) varied from 53 to 85 Hz and seem slightly smaller in the trans configuration. The 13C NMR spectra of most of the complexes were measured. No coupling constants J(195Pt-13C) were detected due to the low solubility of the compounds. The cis isomers containing a phenyl group on the N atom could not be isolated except for Ph-NH2 which was shown to be a mixture of isomers in acetone. The tetrasubstituted ionic compounds [Pt(amine)4]I2 for the less crowded ligands were also studied mainly by NMR spectroscopy in aqueous solution. The 195Pt chemical shifts vary between −2855 and −2909 ppm. The coupling constants 3J(195Pt-1H) are about 40 Hz. The iodo-bridged dinuclear species I(amine)Pt(μ-I)2Pt(amine)I were also synthesized and characterized. Two isomers are present in acetone solution for most of the compounds. Their δ(Pt) signals were observed at about −4000 ppm and their coupling constants 2J(195Pt-1HN) are around 69 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号