首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
B Michel  B Niaudet    S D Ehrlich 《The EMBO journal》1982,1(12):1565-1571
We have constructed plasmids carrying direct internal repeats 260-2000 bp long. Monomers of such plasmids transformed Bacillus subtilis competent cells. The efficiency of transformation varied with the square of the length of repeats. The transformed clones harbored either the entire transforming plasmid and the plasmid arising by recombination between the repeats, or only the latter plasmid. Internally-repeated plasmids linearized by in vitro cleavage with restriction endonuclease could transform, yielding clones which exclusively harbored a plasmid resulting from recombination between the repeats. When the transforming plasmid carried repeats which differed slightly, conversion of one repeat into the other could occur. The following model of plasmid transformation accounts for these data: (1) plasmid DNA is cleaved and rendered linear in contact with competent cells; (2) a linear, at least partially double-stranded plasmid molecule is introduced or formed by repair within the cell; (3) a circular viable plasmid is produced by recombination between repeats carried on this molecule; (4) alternatively, a viable plasmid is produced by repairing the cut within one of the repeats by DNA synthesis which uses the other repeat as a template.  相似文献   

2.
Two integrative transforming plasmids of Neurospora crassa that differed only by the presence of almost all of a ribosomal DNA repeat unit on one plasmid were constructed. The plasmids were used to test the target concentration hypothesis which states that the transformation frequency is proportional to the number of genomic copies of a homologous sequence located on the transforming plasmid. Since there are approx. 200 copies of the rDNA sequences in the genome, the target concentration hypothesis would have been proved if the transformation frequency was 200-fold higher for the rDNA-containing plasmid compared with the plasmid without rDNA. The results indicated no difference in the transformation for the two plasmids, thereby providing no support for the hypothesis. The target concentration hypothesis has been proved for yeast, and thus mechanisms different from that responsible for integrative transformation in yeast must operate in N. crassa, perhaps including non-homologous recombination events.  相似文献   

3.
S. Kunes  D. Botstein    M. S. Fox 《Genetics》1990,124(1):67-80
When yeast (Saccharomyces cerevisiae) is transformed with linearized plasmid DNA and the ends of the plasmid do not share homology with the yeast genome, circular inverted (head-to-head) dimer plasmids are the principal product of repair. By measurements of the DNA concentration dependence of transformation with a linearized plasmid, and by transformation with mixtures of genetically marked plasmids, we show that two plasmid molecules are required to form an inverted dimer plasmid. Several observations suggest that homologous pairing accounts for the head-to-head joining of the two plasmid molecules. First, an enhanced frequency of homologous recombination is detected when genetically marked plasmids undergo end-to-end fusion. Second, when a plasmid is linearized within an inverted repeat, such that its ends could undergo head-to-tail homologous pairing, it is repaired by intramolecular head-to-tail joining. Last, in the joining of homologous linearized plasmids of different length, a shorter molecule can acquire a longer plasmid end by homologous recombination. The formation of inverted dimer plasmids may be related to some forms of chromosomal rearrangement. These might include the fusion of broken sister chromatids in the bridge-breakage-fusion cycle and the head-to-head duplication of genomic DNA at the sites of gene amplifications.  相似文献   

4.
We examined unequal homologous DNA recombination between human repetitive DNA elements located on a yeast artificial chromosome (YAC) and transforming plasmid molecules. A plasmid vector containing an Alu element, as well as a sequence identical to a unique site on a YAC, was introduced into yeast and double recombinant clones analyzed. Recombination occurs between vector and YAC Alu elements sharing as little as 74% identity. The physical proximity of an Alu element to the unique DNA segment appears to play a significant role in determining the frequency with which that element serves as a recombination substrate. In addition, cross-over points of the recombination reaction are largely confined to the ends of the repetitive element. Since a similar distribution of crossover sites occurs during unequal homologous recombination in human germ and somatic tissue, we propose that similar enzymatic processes may be responsible for the events observed in our system and in human cells. This suggests that further examination of the enzymology of unequal homologous recombination of human DNA within yeast may yield a greater understanding of the molecular events which control this process in higher eukaryotes.  相似文献   

5.
The molecular products of DNA double strand break repair were investigated after transformation of yeast (Saccharomyces cerevisiae) with linearized plasmid DNA. DNA of an autonomous yeast plasmid cleaved to generate free ends lacking homology with the yeast genome, when used in transformation along with sonicated non-homologous carrier DNA, gave rise to transformants with high frequency. Most of these transformants were found to harbor a head-to-head (inverted) dimer of the linearized plasmid. This outcome of transformation contrasts with that observed when the carrier DNA is not present. Transformants occur at a much reduced frequency and harbor either the parent plasmid or a plasmid with deletion at the site of the cleavage. When the linearized plasmid is introduced along with sonicated carrier DNA and a homologous DNA restriction fragment that spans the site of plasmid cleavage, homologous recombination restores the plasmid to its original circular form. Inverted dimer plasmids are not detected. This relationship between homologous recombination and a novel DNA transaction that yields rearrangement could be important to the cell, as the latter could lead to a loss of gene function and lethality.  相似文献   

6.
We asked if single-stranded vector DNA molecules could be used to reintroduce cloned DNA sequences into a eukaryotic cell and cause genetic transformation typical of that observed using double-stranded DNA vectors. DNA was presented to Saccharomyces cerevisiae following a standard transformation protocol, genetic transformants were isolated, and the physical state of the transforming DNA sequence was determined. We found that single-stranded DNA molecules transformed yeast cells 10- to 30-fold more efficiently than double-stranded molecules of identical sequence. More cells were competent for transformation by the single-stranded molecules. Single-stranded circular (ssc) DNA molecules carrying the yeast 2 μ plasmid-replicator sequence were converted to autonomously replicating double-stranded circular (dsc) molecules, suggesting their efficient utilization as templates for DNA synthesis in the cell. Single-stranded DNA molecules carrying 2 μ plasmid non-replicator sequences recombined with the endogenous multicopy 2 μ plasmid DNA. This recombination yielded either the simple molecular adduct expected from homologous recombination (40% of the transformants examined) or aberrant recombination products carrying incomplete transforming DNA sequences, endogenous 2 μ plasmid DNA sequences, or both (60% of the transformants examined). These aberrant recombination products suggest the frequent use of a recombination pathway that trims one or both of the substrate DNA molecules. Similar aberrant recombination products were detected in 30% of the transformants in cotransformation experiments employing single-stranded and double-stranded DNA molecules, one carrying the 2 μ plasmid replicator sequence and the other the selectable genetic marker. We conclude that single-stranded DNA molecules are useful vectors for the genetic transformation of a eukaryotic cell. They offer the advantage of high transformation efficiency, and yield the same intracellular DNA species obtained upon transformation with double-stranded DNA molecules. In addition, single-stranded DNA molecules can participate in a recombination pathway that trims one or both DNA recombination substrates, a pathway not detected, at least at the same frequency, when transforming with double-stranded DNA molecules  相似文献   

7.
N. Ke  D. F. Voytas 《Genetics》1997,147(2):545-556
Retroelement cDNA can integrate into the genome using the element-encoded integrase, or it can recombine with preexisting elements using the recombination system of the host. Recombination is a particularly important pathway for the yeast retrotransposon Ty5 and accounts for ~30% of the putative transposition events when a homologous substrate is carried on a plasmid and ~7% when the substrate is located at the chromosomal URA3 locus. Characterization of recombinants revealed that they are either simple replacements of the marker gene or tandem elements. Using an assay system in which the donor element and recombination substrates are separated, we found that the long terminal repeats (LTRs) are critical for tandem element formation. LTR-containing substrates generate tandem elements at frequencies more than 10-fold higher than similarly sized internal Ty5 sequences. Internal sequences, however, facilitate tandem element formation when associated with an LTR, and there is a linear relationship between frequencies of tandem element formation and the length of LTR-containing substrates. We propose that recombination is initiated between the LTRs of the cDNA and substrate and that internal sequences promote tandem element formation by facilitating sequence alignment. Because of its location in subtelomeric regions, recombinational amplification of Ty5 may contribute to the organization of chromosome ends.  相似文献   

8.
Plasmid construction by homologous recombination in yeast   总被引:82,自引:0,他引:82  
H Ma  S Kunes  P J Schatz  D Botstein 《Gene》1987,58(2-3):201-216
We describe a convenient method for constructing new plasmids that relies on interchanging parts of plasmids by homologous recombination in Saccharomyces cerevisiae. A circular recombinant plasmid of a desired structure is regenerated after transformation of yeast with a linearized plasmid and a DNA restriction fragment containing appropriate homology to serve as a substrate for recombinational repair. The free ends of the input DNA molecules need not be homologous in order for efficient recombination between internal homologous regions to occur. The method is particularly useful for incorporating into or removing from plasmids selectable markers, centromere or replication elements, or particular alleles of a gene of interest. Plasmids constructed in yeast can subsequently be recovered in an Escherichia coli host. Using this method, we have constructed an extended series of new yeast centromere, episomal and replicating (YCp, YEp, and YRp) plasmids containing, in various combinations, the selectable yeast markers LEU2, HIS3, LYS2, URA3 and TRP1.  相似文献   

9.
Several members of a repetitive DNA family in the nematode Caenorhabditis elegans have been shown to express ARS and centromeric function in Saccharomyces cerevisiae. The repetitive family, denoted CeRep3, consists of dispersed repeated elements about 1 kilobase in length, present 50 to 100 times in the nematode genome. Three elements were sequenced and found to contain DNA sequences homologous to yeast ARS and CEN consensus sequences. Nematode DNA segments containing these repeats were tested for ARS and CEN (or SEG) function after ligation to shuttle vectors and introduction into yeast cells. Such nematode segments conferred ARS function to the plasmid, as judged by an increased frequency of transformation compared with control plasmids without ARS function. Some, but not all, also conferred to the plasmid increased mitotic stability, increased frequency of 2+:2- segregation in meiosis, and decreased plasmid copy number. These effects are similar to those of yeast centromeric DNA. In view of these results, we suggest that the CeRep3 repetitive family may have replication and centromeric functions in C. elegans.  相似文献   

10.
The molecular processes involved in the transduction of small staphylococcal plasmids by a generalized transducing phage, phi 11, have been analysed. The plasmids are transduced in the form of linear concatemers containing only plasmid DNA; plasmid-initiated replication is required for their generation but additive interplasmid recombination is not. Concatemers are probably generated by the interaction of one or more phage functions with replicating plasmid DNA. Insertion of any restriction fragment of the phage into the plasmid causes an approximately 10(5)-fold increase in transduction frequency, regardless of the size or genetic content of the fragment. The resulting transducing particles (Hft particles) contain mostly pure linear concatemers composed of tandem repeats of the plasmid::phage chimera, and their production requires active plasmid-initiated replication. The high frequency of transduction is a consequence of homologous recombination between the linear chimeric and phage concatemers, which has the effect of introducing an efficient pac site into the former. Following introduction into lysogenic recipient bacteria, the transducing DNA is first converted to the supercoiled form, then processed to monomers by a mechanism that requires the active participation of the plasmid replication system.  相似文献   

11.
A slow and a fast growth phenotype were observed after transformation of the phytopathogenic fungus Ashbya gossypii using a plasmid carrying homologous DNA and as selectable marker the Tn903 aminoglycoside resistance gene expressed from a strong A. gossypii promoter. Transformations with circular plasmids yielded slowly and irregularly growing geneticin-resistant mycelia in which 1% of nuclei contained plasmid sequences. Occasionally, fast growing sectors appeared which were shown to be initiated by homologous integration of the transforming DNA. Transformants obtained with plasmids linearized within the homology region immediately exhibited fast radial growth. In all 28 transformants analyzed plasmid DNA was integrated homologously. Such apparent lack of nonhomologous recombination has so far not been observed in filamentous ascomycetes. In 14 transformants two to four tandemly integrated plasmid copies were found. They underwent several types of genetic changes, mainly in the older mycelium: excision of whole plasmid copies and rearrangements within the integrated DNA (inversions and deletions). These internal rearrangements involved 360-bp inverted repeats, remnants of IS-elements flanking the resistance gene, and 156-bp direct repeats, originating from the strong A. gossypii promoter. Improved vectors lacking sequence repetitions were constructed and used for stable one-step gene replacement in A. gossypii.  相似文献   

12.
13.
As a model system for studying the properties of mitotic recombination in the yeast Saccharomyces cerevisiae, we have examined recombination between a recombinant plasmid (introduced into the S. cerevisiae cell by transformation) and homologous chromosomal loci. The recombinant plasmids used in these experiments contained S. cerevisiae rRNA genes. We found that the frequency of integrative recombination is sensitive to small amounts of sequence heterogeneity. In addition, the frequency and specificity of these recombination events are affected by the lengths of the interacting homologous DNA sequences.  相似文献   

14.
FLP-mediated recombination in the vector mosquito, Aedes aegypti.   总被引:5,自引:2,他引:3       下载免费PDF全文
The activity of a yeast recombinase, FLP, on specific target DNA sequences, FRT, has been demonstrated in embryos of the vector mosquito, Aedes aegypti. In a series of experiments, plasmids containing the FLP recombinase under control of a heterologous heat-shock gene promoter were co-injected with target plasmids containing FRT sites into preblastoderm stage mosquito embryos. FLP-mediated recombination was detected between (i) tandem repeats of FRT sites leading to the excision of specific DNA sequences and (ii) FRT sites located on separate plasmids resulting in the formation of heterodimeric or higher order multimeric plasmids. In addition to FRT sites originally isolated from the yeast 2 microns plasmid, a number of synthetic FRT sites were also used. The synthetic sites were fully functional as target sites for recombination and gave results similar to those derived from the yeast 2 microns plasmid. This successful demonstration of yeast FLP recombinase activity in the mosquito embryo suggests a possible future application of this system in establishing transformed lines of mosquitoes for use in vector control strategies and basic studies.  相似文献   

15.
Homologous recombination between transfected DNAs.   总被引:12,自引:8,他引:4       下载免费PDF全文
An extensive analysis of the fate and structure of polyomavirus-plasmid recombinant molecules transfected into Rat-1 cells has revealed that the DNA often becomes integrated within transformed cell DNA in a head-to-tail tandem arrangement. This occurs independently of the replicative capacity of the transforming DNA and is facilitated by the use of large quantities of DNA during transfection. These observations have led us to suggest that head-to-tail tandems are formed by homologous recombination between transfected DNAs either before or after integration within cellular DNA. To test this hypothesis, we have measured the transforming activity of pairs of mutant, nontransforming, recombinant plasmid DNAs that carry different lesions in the transforming gene of polyomavirus. The results show that, although the individual mutant DNAs are incapable of transformation, transfection with pairs of mutant DNAs leads to the formation of transformed cells at high frequency. Moreover, there is a direct relationship between the distance between the lesions in pairs of mutant DNAs and their transforming activity. Finally, analyses of the structures of integrated recombinant plasmid DNAs and the viral proteins within independent transformed cells prove that recombination occurs between the mutant genomes to generate a wild-type transforming gene.  相似文献   

16.
Mieczkowski PA  Lemoine FJ  Petes TD 《DNA Repair》2006,5(9-10):1010-1020
Homologous recombination between dispersed repeated genetic elements is an important source of genetic variation. In this review, we discuss chromosome rearrangements that are a consequence of homologous recombination between transposable elements in the yeast Saccharomyces cerevisiae. The review will be divided into five sections: (1) Introduction (mechanisms of homologous recombination involving ectopic repeats), (2) Spontaneous chromosome rearrangements in wild-type yeast cells, (3) Chromosome rearrangements induced by low DNA polymerase, mutagenic agents or mutations in genes affecting genome stability, (4) Recombination between retrotransposons as a mechanism of genome evolution, and (5) Important unanswered questions about homologous recombination between retrotransposons. This review complements several others [S. Liebman, S. Picologlou, Recombination associated with yeast retrotransposons, in: Y. Koltin, M.J. Leibowitz (Eds.), Viruses of Fungi and Simple Eukaryotes, Marcel Dekker Inc., New York, 1988, pp. 63-89; P. Lesage, A.L. Todeschini, Happy together: the life and times of Ty retrotransposons and their hosts, Cytogenet. Genome Res. 110 (2005) 70-90; D.J. Garfinkel, Genome evolution mediated by Ty elements in Saccharomyces, Cytogenet. Genome Res. 110 (2005) 63-69] that discuss genomic rearrangements involving Ty elements.  相似文献   

17.
Double-strand gap repair in a mammalian gene targeting reaction.   总被引:25,自引:9,他引:16       下载免费PDF全文
To better understand the mechanism of homologous recombination in mammalian cells that facilitates gene targeting, we have analyzed the recombination reaction that inserts a plasmid into a homologous chromosomal locus in mouse embryonic stem cells. A partially deleted HPRT gene was targeted with various plasmids capable of correcting the mutation at this locus, and HPRT+ recombinants were directly selected in HAT medium. The structures of the recombinant loci were then determined by genomic Southern blot hybridizations. We demonstrate that plasmid gaps of 200, 600, and 2,500 bp are efficiently repaired during the integrative recombination reaction. Targeting plasmids that carry a double-strand break or gap in the region of DNA homologous to the target locus produce 33- to 140-fold more hypoxanthine-aminopterin-thymidine-resistant recombinants than did these same plasmids introduced in their uncut (supercoiled) forms. Our data suggest that double-strand gaps and breaks may be enlarged prior to the repair reaction since sequence heterologies carried by the incoming plasmids located close to them are often lost. These results extend the known similarities between mammalian and yeast recombination mechanisms and suggest several features of the insertional (O-type) gene targeting reaction that should be considered when one is designing mammalian gene targeting experiments.  相似文献   

18.
We examined the fate of DNA microinjected into nuclei of cultured mammalian cells. The sequence composition and the physical form of the vector carrying the selectable gene affected the efficiency of DNA-mediated transformation. Introduction of sequences near the simian virus 40 origin of DNA replication or in the long terminal repeat of avian sarcoma provirus into a recombinant plasmid containing the herpes simplex virus thymidine kinase gene. (pBR322/HSV-tk) enhanced the frequency of transformation of LMtk- and RAT-2tk- cells to the TK+ phenotype 20- to 40-fold. In cells receiving injections of only a few plasmid DNA molecules, the transformation frequency was 40-fold higher after injection of linear molecules than after injection of supercoiled molecules. By controlling the number of gene copies injected into a recipient cell, we could obtain transformants containing a single copy or as many as 50 to 100 copies of the selectable gene. Multiple copies of the transforming gene were not scattered throughout the host genome but were integrated as a concatemer at one or a very few sites in the host chromosome. Independent transformants contained the donated genes in different chromosomes. The orientation of the gene copies within the concatemer was not random; rather, the copies were organized as tandem head-to-tail arrays. By analyzing transformants obtained by coinjecting two vectors which were identical except that in one a portion of the vector was inverted, we were able to conclude that the head-to-tail concatemers were generated predominantly by homologous recombination. Surprisingly, these head-to-tail concatemers were found in transformants obtained by injecting either supercoiled or linear plasmid DNA. Even though we demonstrated that cultured mammalian cells contain the enzymes for ligating two DNA molecules very efficiently irrespective of the sequences or topology at their ends, we found that even linear plasmid DNA was recruited into the concatemer by homologous recombination.  相似文献   

19.
Multimeric arrays of the yeast retrotransposon Ty.   总被引:8,自引:3,他引:5       下载免费PDF全文
We have identified a novel integrated form of the yeast retrotransposon Ty consisting of multiple elements joined into large arrays. These arrays were first identified among Ty-induced alpha-pheromone-resistant mutants of MATa cells of Saccharomyces cerevisiae which contain Ty insertions at HML alpha that result in the expression of that normally silent cassette. These insertions are multimeric arrays of both the induced genetically marked Ty element and unmarked Ty elements. Structural analysis of the mutations indicated that the arrays include tandem direct repeats of Ty elements separated by only a single long terminal repeat. The Ty-HML junction fragments of one mutant were cloned and shown to contain a 5-base-pair duplication of the target sequence that is characteristic of a Ty transpositional insertion. In addition, the arrays include rearranged Ty elements that do not have normal long terminal repeat junctions. We have also identified multimeric Ty insertions at other chromosomal sites and as insertions that allow expression of a promoterless his3 gene on a plasmid. The results suggest that Ty transposition includes an intermediate that can undergo recombination to produce multimers.  相似文献   

20.
We describe the molecular cloning of a 6-kilobase (kb) fragment of yeast chromosomal DNA containing the RAD3 gene of Saccharomyces cerevisiae. When present in the autonomously replicating yeast cloning vector YEp24, this fragment transformed two different UV-sensitive, excision repair-defective rad3 mutants of S. cerevisiae to UV resistance. The same result was obtained with a variety of other plasmids containing a 4.5-kb subclone of the 6-kb fragment. The UV sensitivity of mutants defective in the RAD1, RAD2, RAD4, and RAD14 loci was not affected by transformation with these plasmids. The 4.5-kb fragment was subcloned into the integrating yeast vector YIp5, and the resultant plasmid was used to transform the rad3-1 mutant to UV resistance. Both genetic and physical studies showed that this plasmid integrated by homologous recombination into the rad3 site uniquely. We conclude from these studies that the cloned DNA that transforms the rad3-1 mutant to UV resistance contains the yeast chromosomal RAD3 gene. The 4.5-kb fragment was mapped by restriction analysis, and studies on some of the subclones generated from this fragment indicate that the RAD3 gene is at least 1.5 kb in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号