首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pacific marine biota, particularly species with long planktonic larval stages, are thought to disperse widely throughout the Pacific via ocean currents. The little genetic data available to date has supported this view in that little or no significant regional differentiation of populations has been found over large geographical distances. However, recent data from giant clams has demonstrated not only significant regional differentiation of populations, but routes of gene flow that run perpendicular to the main present-day ocean currents. Extensive surveys of genetic variation at eight polymorphic loci in 19 populations of the giant clam Tridacna maxima, sampled throughout the West and Central Pacific, confirmed that the patterns of variation seen so far in T. gigas were not unique to that species, and may reflect a fundamental genetic structuring of shallow-water marine taxa. Populations of T. maxima within highly connected reef systems like the Great Barrier Reef were panmictic (average FST < 0.003), but highly significant genetic differences between reef groups on different archipelagos (average FST = 0.084) and between West and Central Pacific regions (average FST = 0.156) were found. Inferred gene flow was high (Nem usually > 5) between the Philippines and the Great Barrier Reef, between the Philippines and Melanesia (the Solomon Islands and Fiji), and between the Philippines and the Central Pacific island groups (Marshall Islands, Kiribati, Tuvalu and Cook Islands). Gene flow was low between these three sets of island chains (Nem < 2). These routes of gene flow are perpendicular to present-day ocean currents. It is suggested that the spatial patterns of gene frequencies reflect past episodes of dispersal at times of lower sea levels which have not been erased by subsequent dispersal by present-day circulation. The patterns are consistent with extensive dispersal of marine species in the Pacific, and with traditional views of dispersal from the Indo-Malay region. However, they demonstrate that dispersal along present-day ocean surface currents cannot be assumed, that other mechanisms may operate today or that major dispersal events are intermittent (perhaps separated by several thousands of years), and that the nature and timing of dispersal of Pacific marine species is more complex than has been thought.  相似文献   

2.
Spatial variation in allelic frequencies at nine allozyme loci were assayed in 20 populations of the crown-of-thorns starfish, Acanthaster planci, collected throughout the Pacific and Indian Oceans. These data were analyzed together with published data, for the same loci, from an additional 19 populations, giving a total sample size of approximately 1800 individuals. There was a marked discontinuity between the Indian and Pacific Ocean populations, but those off Western Australia and from the Southeast Asian region had a strong Pacific affinity. The genetic groups were congruent with the distributions of two color morph groups: gray-green to red-brown forms in the Pacific and a blue to pale red form in the Indian Ocean. These patterns of genetic structure are similar to those described for the starfish Linckia laevigata, which has similar life-history characteristics. Vicariant events may have influenced some populations within the Pacific, but the allozyme data cannot resolve the effects of these events clearly. Patterns of variation within regions were consistent with isolation by distance, but, at larger scales, were obscured by regional vicariance and some outliers, particularly by apparently high levels of gene flow between Japan and the Great Barrier Reef, Australia. Apparent gene flow between population pairs was not closely related to present-day ocean currents. The results demonstrate a strong influence of allopatric separation on genetic divergence at large geographic scales, but also show evidence of slow rates of change in gene frequencies consistent with the large population sizes of this species. Low levels of divergence between groups demonstrate the genetic structure is recent (Pleistocene) and are likely responses to changes in climate and sea level.  相似文献   

3.
One of the most significant biological disturbances on a tropical coral reef is a population outbreak of the fecund, corallivorous crown-of-thorns sea star, Acanthaster planci. Although the factors that trigger an initial outbreak may vary, successive outbreaks within and across regions are assumed to spread via the planktonic larvae released from a primary outbreak. This secondary outbreak hypothesis is predominantly based on the high dispersal potential of A. planci and the assertion that outbreak populations (a rogue subset of the larger population) are genetically more similar to each other than they are to low-density non-outbreak populations. Here we use molecular techniques to evaluate the spatial scale at which A. planci outbreaks can propagate via larval dispersal in the central Pacific Ocean by inferring the location and severity of gene flow restrictions from the analysis of mtDNA control region sequence (656 specimens, 17 non-outbreak and six outbreak locations, six archipelagos, and three regions). Substantial regional, archipelagic, and subarchipelagic-scale genetic structuring of A. planci populations indicate that larvae rarely realize their dispersal potential and outbreaks in the central Pacific do not spread across the expanses of open ocean. On a finer scale, genetic partitioning was detected within two of three islands with multiple sampling sites. The finest spatial structure was detected at Pearl & Hermes Atoll, between the lagoon and forereef habitats (<10 km). Despite using a genetic marker capable of revealing subtle partitioning, we found no evidence that outbreaks were a rogue genetic subset of a greater population. Overall, outbreaks that occur at similar times across population partitions are genetically independent and likely due to nutrient inputs and similar climatic and ecological conditions that conspire to fuel plankton blooms.  相似文献   

4.
In the central region of the Great Barrier Reef, Acanthaster planci eats its own disk area of coral each day. At the southern end of the reef lagoon populations of A. planci eat substantially less than this amount of coral per day. Branching and plate corals are preferred food species and massive and encrusting forms are rejected while the preferred food species are available. Only when branching and plate forms on a reef have been consumed will A. planci attack massive and encrusting species. On Australian reefs preferred food species form between 70–99% of the coral cover.
On the Great Barrier Reef A. planci spawns in January and juveniles settle in the top 3 m of water on the windward edge of reefs or on isolated patch reefs behind the main reef. Intolerance of wave attack forces the growing starfish to migrate into deeper water. Lateral movements, probably induced by shortage of living coral in deep water, bring the starfish around the ends of the reef to the leeward side. Here they destroy most of the living coral.
It is suggested that the visual impact of A. planci on reefs of the Indo-Pacific region is related to the composition of the coral fauna. Reefs with a high proportion of preferred food species will be severely damaged while those with faunas composed mainly of massive and encrusting forms will not be altered greatly by starfish predation.
Work on larval development of A. planci carried out by Henderson & Lucas, 1971 showed that metamorphosis took place only at water temperatures of 28o -29o C. This suggests that the A. planci plague on the Great Barrier Reef will not spread south of latitude 20o S (29o C isotherm in January).  相似文献   

5.
Genetic variation in four natural populations of the starfish Linckia laevigata from the Indo-West Pacific was examined using restriction fragment analysis of a portion of the mtDNA including the control region. Digestion with seven restriction enzymes identified 47 haplotypes in a sample of 326 individuals. Samples collected from reef sites within each location were not significantly differentiated based on ΦST or spatial distribution of haplotypes, indicating that dispersal is high over short to moderate distances. Evidence of gene flow is further supported by the low divergence among haplotypes and the lack of any clear geographical structuring among different haplotypes in the gene phylogeny. However, analysis of molecular variance ( AMOVA ), ΦST and contingency χ2 analyses of the spatial distribution of haplotypes demonstrate the presence of significant broad scale population genetic structure among the four widespread locations examined. RFLP data are consistent with high gene flow between the Philippines and Western Australia and moderate gene flow between the Great Barrier Reef (GBR) and Fiji, but only limited gene flow between either the Philippines or Western Australia and either the GBR or Fiji. The presence of mtDNA structure contrasts with previous allozyme data which suggest that dispersal among widely separated locations is equivalent to dispersal among populations within the highly connected GBR studies. This discordance between patterns of gene flow inferred from these two markers cannot be fully accounted for by differences in effective population size for mtDNA. This might suggest that while mtDNA variation may represent contemporary patterns of gene flow, allozyme variation among populations is yet to reach equilibrium between drift and migration over the range surveyed.  相似文献   

6.
Climate change, genotypic diversity and gene flow in reef-building corals   总被引:10,自引:0,他引:10  
In the ocean, large‐scale dispersal and replenishment by larvae is a key process underlying biological changes associated with global warming. On tropical reefs, coral bleaching, degradation of habitat and declining adult stocks are also likely to change contemporary patterns of dispersal and gene flow and may lead to range contractions or expansions. On the Great Barrier Reef, where adjacent reefs form a highly interconnected system, we use allozyme surveys of c. 3000 coral colonies to show that populations are genetically diverse, and rates of gene flow for a suite of five species range from modest to high among reefs up to 1200 km apart. In contrast, 700 km further south on Lord Howe Island, genetic diversity is markedly lower and populations are genetically isolated. The virtual absence of long‐distance dispersal of corals to geographically isolated, oceanic reefs renders them extremely vulnerable to global warming, even where local threats are minimal.  相似文献   

7.
Viviparous, branching corals such as Seriatopora hystrix are expected to generate most recruits through asexual reproduction (fission or fragmentation) but are expected to use sexual reproduction to produce widely dispersed colonists. In this study, allozyme electrophoresis was used to test for variation in the relative contributions of sexual and asexual reproduction to recruitment and to assess the apparent scale of larval dispersal (gene flow) in the central Great Barrier Reef. Fifty-seven collections (within ≤ 25 m2) of fragments from sets of approximately 40 colonies were made (where possible) within each of five habitats on each of 12 reefs. These reefs, within the central region of the Great Barrier Reef, were separated by up to 90 km and included one inner-shelf continental island and groups of seven midshelf reefs and four outer-shelf reefs. Most collections contained a high level of multilocus genotypic diversity and hence showed little evidence of recruitment through fragmentation, although the majority of collections displayed large and consistent deficits of heterozygotes. Allele frequencies varied greatly among collections (FST = 0.43), and this variation was sufficient to explain two-thirds of observed deficiencies of heterozygotes via a Wahlund effect. A hierarchical assessment of FST values revealed that 45% of allelic variation occurred among reefs (FST = 0.20), and only 16% of variation within reefs was explained by variation among five major habitat types (FST = 0.05). A relatively small component of the total variation among samples was attributable to across-shelf variation among the groups of middle- and outer-shelf reefs (FST = 0.03); however, the outer-shelf reefs form a single UPGMA cluster separate from all but 4 of the other 43 collections. These data imply that widespread dispersal does occur but that the direction or magnitude of gene flow may be influenced by the along-shelf movement of major ocean currents and weather-dependent currents on or near reefs. Each reef, therefore, forms a partially isolated and highly subdivided population.  相似文献   

8.
Aim Most reef fishes are site‐attached, but can maintain a broad distribution through their highly dispersive larval stage. The whitetip reef shark (Triaenodon obesus) is site‐attached, yet maintains the largest Indo‐Pacific distribution of any reef shark while lacking the larval stage of bony (teleost) fishes. Here we use mitochondrial DNA (mtDNA) sequence data to evaluate the enigma of the sedentary reef shark that maintains a distribution across two‐thirds of the planet. Location Tropical Pacific and Indian Oceans. Methods We analysed 1025 base pairs of the mtDNA control region in 310 individuals from 25 locations across the Indian and Pacific Oceans. Phylogeographic and population genetic analyses were used to reveal the dispersal and recent evolutionary history of the species. Results We resolved 15 mtDNA control region haplotypes, but two comprised 87% of the specimens and were detected at nearly every location. Similar to other sharks, genetic diversity was low (h = 0.550 ± 0.0254 and π = 0.00213 ± 0.00131). Spatial analyses of genetic variation demonstrated strong isolation across the Indo‐Pacific Barrier and between western and central Pacific locations. Pairwise ΦST comparisons indicated high connectivity among archipelagos of the central Pacific but isolation across short distances of contiguous habitat (Great Barrier Reef) and intermittent habitat (Hawaiian Archipelago). In the eastern Pacific only a single haplotype (the most common one in the central Pacific) was observed, indicating recent dispersal (or colonization) across the East Pacific Barrier. Main conclusions The shallow haplotype network indicates recent expansion of modern populations within the last half million years from a common ancestor. Based on the distribution of mtDNA diversity, this began with an Indo‐West Pacific centre of origin, with subsequent dispersal to the Central Pacific and East Pacific. Genetic differences between Indian and Pacific Ocean populations are consistent with Pleistocene closures of the Indo‐Pacific Barrier associated with glacial cycles. Pairwise population comparisons reveal weak but significant isolation by distance, and notably do not indicate the high coastal connectivity observed in other shark species. The finding of population structure among semi‐contiguous habitats, but population connectivity among archipelagos, may indicate a previously unsuspected oceanic dispersal behaviour in whitetip reef sharks.  相似文献   

9.
Marine organisms exhibit great variation in reproductive modes, larval types, and other life-history traits that may have major evolutionary consequences. We measured local and regional patterns of genetic variation in corals along Australia's Great Barrier Reef to determine the relative contributions of sexual and asexual reproduction to recruitment and to infer levels of gene flow both locally (among adjacent sites, < 5 km apart) and regionally (among reefs separated by 500-1,200 km). We selected five common brooding species (Acropora cuneata, A. palifera, Pocillopora damicornis, Seriatopora hystrix, and Stylophora pistillata) and four broadcast spawners (Acropora hyacinthus, A. cytherea, A. millepora, and A. valida), which encompassed a wide range of larval types and potential dispersal capabilities. We found substantial genotypic diversity at local scales in six of the nine species (four brooders, two spawners). For these six, each local population displayed approximately the levels of multilocus genotypic diversity (Go) expected for outcrossed sexual reproduction (mean values of Go:Ge ranged from 0.85 to 1.02), although consistent single-locus heterozygous deficits indicate that inbreeding occurs at the scale of whole reefs. The remaining three species, the brooder S. hystrix and the spawners A. valida and A. millepora displayed significantly less multilocus genotypic diversity (Go) than was expected for outcrossed sexual reproduction (Ge) within each of several sites. Acropora valida and A. millepora showed evidence of extensive localized asexual replication: (1) a small number of multilocus (clonal) genotypes were numerically dominant within some sites (Go:Ge values were as low as 0.17 and 0.20): (2) single-locus genotype frequencies were characterized by both excesses and deficits of heterozygotes (cf. Hardy-Weinberg expectations), and (3) significant linkage disequilibria occurred. For the brooding S. hystrix Go:Ge values were also low within each of four sites (x = 0.48). However, this result most likely reflects the highly restricted dispersal of gametes or larvae, because levels of genetic variation among sites within reefs were extremely high (FSR = 0.28). For all species, we detected considerable genetic subdivision among sites within each reef (high FSR-values), and we infer that larval dispersal is surprisingly limited (i.e., Nem among sites ranging from 0.6 to 3.3 migrants per generation), even in species that have relatively long planktonic durations. Nevertheless, our estimates of allelic variation among reefs (FRT) also imply that for all four broadcast spawning species and three of the brooders, larval dispersal is sufficient to maintain moderate to high levels of gene flow along the entire Great Barrier Reef (i.e., Nem among reefs ranged from 5 to 31). In contrast, widespread populations of S. hystrix and S. pistilata (the two remaining brooders) are relatively weakly connected (Nem among reefs was 1.4 and 2.5, respectively). We conclude that most recruitment by corals is very local, particularly in brooders, but that enough propagules are widely dispersed to ensure that both broadcast spawning and brooding species form vast effectively panmictic populations on the Great Barrier Reef.  相似文献   

10.
It is suggested that considerable inter-reef dispersal of reef fishes and many benthic invertebrates is likely in the central region of the Great Barrier Reef. Larvae are most abundant in spring-summer when currents on the outer shelf, where most of the coral reefs occur, are almost entirely unidirectional and southeastward (longshore). Net drift on the outer shelf at this time is likely to be greater, but the dispersion smaller, than that nearshore at the same time due to more extensive periodic reversals of water movement in the latter area than the former. Net drift on the outer shelf in winter will be significantly more restricted, but the dispersion greater, than in summer due to extensive periodic reversals of currents in this area during the trade wind (winter) season. These conclusions suggest that reefs within the Central Great Barrier Reef are biologically interconnected and interdependent; a result of considerable significance for management of reefs within the Great Barrier Reef marine park.Australian Institute of Marine Science Contribution No. 250  相似文献   

11.
12.
Understanding the distribution of genetic diversity in exploited species is fundamental to successful conservation. Genetic structure and the degree of gene flow among populations must be assessed to design appropriate strategies to prevent the loss of distinct populations. The cephalopod Nautilus pompilius is fished unsustainably in the Philippines for the ornamental shell trade and has limited legislative protection, despite the species' recent dramatic decline in the region. Here, we use 14 microsatellite markers to evaluate the population structure of N. pompilius around Australia and the Philippines. Despite their relative geographical proximity, Great Barrier Reef individuals are genetically isolated from Osprey Reef and Shark Reef in the Coral Sea (FST = 0.312, 0.229, respectively). Conversely, despite the larger geographical distances between the Philippines and west Australian reefs, samples display a small degree of genetic structure (FST = 0.015). Demographic scenarios modelled using approximate Bayesian computation analysis indicate that this limited divergence is not due to contemporary gene flow between the Philippines and west Australia. Instead, present‐day genetic similarity can be explained by very limited genetic drift that has occurred due to large average effective population sizes that persisted at both locations following their separation. The lack of connectivity among populations suggests that immigrants from west Australia would not facilitate natural recolonization if Philippine populations were fished to extinction. These data help to rectify the paucity of information on the species' biology currently inhibiting their conservation classification. Understanding population structure can allow us to facilitate sustainable harvesting, thereby preserving the diversity of genetically distinct stocks.  相似文献   

13.
Acanthaster planci (L.) is one of the major threats to coral reefs, whose genetic diversity has been mainly studied with allozymes. Allozymes revealed the low genetic differentiation between A. planci populations in the Indo-Pacific area. We obtained sequences of A. planci from Kenya, Mayotte and Madagascar at the three loci cytochrome oxydase subunit I (COI), 16S rDNA (16S) and five tRNAs, analysed together with available sequences of Acanthaster from the Pacific Ocean. The level of genetic diversity varied among the three loci, tRNAs being on average three times less divergent than COI and 16S genes. The genus Acanthaster appeared monophyletic, the two species A. brevispinus (Fisher) and A. planci forming distinct clades in agreement with data from morphology and systematics. The A. planci clade split into a West Indian Ocean group and a Pacific group, in agreement with allozyme data on population differentiation. To cite this article: K. Gérard et al., C. R. Biologies 331 (2008).  相似文献   

14.
Uthicke S  Benzie JA 《Molecular ecology》2003,12(10):2635-2648
The sea cucumber, Holothuria nobilis, has a long-lived planktotrophic larvae, and previous allozyme surveys have suggested that high dispersal is realized. In contrast, recent ecological studies indicate that dispersal is low. To reconcile these data, and to investigate the evolution of this Indo-Pacific species, we screened geographical variation in 559 bp of a mitochondrial gene (COI) in 360 samples from the Australasian region and La Réunion. Sequences from La Réunion differed by > 7% from others and may constitute another species. Haplotype diversity in other samples was high (0.942, SD = 0.007), but haplotypes were closely related (mean nucleotide diversity: 0.0075, SD = 0.0041). AMOVA, pairwise FST values and exact tests did not detect significant population structure. Nested clade analysis showed that one of two main clades was over-represented in west Australia, whereas the other was more common in the northern Great Barrier Reef. Isolation-by-distance was identified as the main determinant of population structure at several clade levels. Contiguous range expansion was inferred for evolutionary older clade levels and this may correspond to a late Pleistocene (88 000-193 000 years ago) population expansion inferred from haplotype mismatch distributions. Thus, the population genetic structures detected are likely to be formed prior to the last ice age, with some indications for high dispersal on shorter time scales.  相似文献   

15.
Haliotis asinina is a broadcast-spawning mollusc that inhabits Indo-Pacific coral reefs. This tropical abalone develops through a nonfeeding larval stage that is competent to settle on specific species of coralline algae after 3-4 days in the plankton. Failure to contact an inductive algae within 10 days of hatching usually results in death. These life cycle characteristics suggest a limited capacity for dispersal and thus gene flow. This makes H. asinina particularly suitable for elucidating phylogeographical structure throughout the Indo-Malay Archipelagoes, and eastern Indian and western Pacific Oceans, all regions of biogeographical complexity and high conservation value. We assayed 482 bp of the mitochondrial cytochrome oxidase II gene in 206 abalone collected from 16 geographically discrete sites across the Indian and Pacific Oceans and Indo-Malay Archipelagoes. DNA sequence variation was analysed via population genetics and phylogenetics, and by nested clade analyses (NCA). Our data resolved clear phylogeographical breaks among major biogeographical regions, with sequence divergences ranging from a high of 3.7% and 3.0% between Indian and Pacific sites and Pacific and Indo-Malay sites, respectively, to a low of 1.1% between Indian and Indo-Malay sites. Despite the apparent limited dispersal capacity of H. asinina, no finer scale phylogeographical structure was resolved within the respective biogeographical regions. However, amova and NCA identified several significant associations between haplotypes and geographical distribution, most notably higher gene flow among geographical populations associated with major ocean currents. Our study provides further evidence that larval dispersal capacity alone is not a good predictor of population genetic structure in marine invertebrates. We infer instead that a combination of historical events (long-term barriers followed by range expansion associated with Pleistocene sea level changes) and contemporary processes (gene flow restricted by life history and oceanography) have shaped observed patterns of H. asinina phylogeography.  相似文献   

16.
Marine populations are typically characterized by weak genetic differentiation due to the potential for long‐distance dispersal favouring high levels of gene flow. However, strong directional advection of water masses or retentive hydrodynamic forces can influence the degree of genetic exchange among marine populations. To determine the oceanographic drivers of genetic structure in a highly dispersive marine invertebrate, the giant California sea cucumber (Parastichopus californicus), we first tested for the presence of genetic discontinuities along the coast of North America in the northeastern Pacific Ocean. Then, we tested two hypotheses regarding spatial processes influencing population structure: (i) isolation by distance (IBD: genetic structure is explained by geographic distance) and (ii) isolation by resistance (IBR: genetic structure is driven by ocean circulation). Using RADseq, we genotyped 717 individuals from 24 sampling locations across 2,719 neutral SNPs to assess the degree of population differentiation and integrated estimates of genetic variation with inferred connectivity probabilities from a biophysical model of larval dispersal mediated by ocean currents. We identified two clusters separating north and south regions, as well as significant, albeit weak, substructure within regions (FST = 0.002, = .001). After modelling the asymmetric nature of ocean currents, we demonstrated that local oceanography (IBR) was a better predictor of genetic variation (R2 = .49) than geographic distance (IBD) (R2 = .18), and directional processes played an important role in shaping fine‐scale structure. Our study contributes to the growing body of literature identifying significant population structure in marine systems and has important implications for the spatial management of P. californicus and other exploited marine species.  相似文献   

17.
To test the influence of past vicariant events on population genetic structure of the sooty tern Sterna fuscata , we examined sequence variation in the mitochondrial control region of individuals from the Indo-Pacific and Atlantic Oceans. Our analyses indicate a rapid population expansion at a global scale during the last 100 000 years, consistent with global recolonisation during the interstade following the Pleistocene glacial maxima (125 000–175 000 years bp). We estimate islands of the Great Barrier Reef and Coral Sea were colonised no more than 16 000 years ago, most likely in association with the appearance of new breeding habitat following the final Pleistocene glacial retreat (19 000–22 000 years bp). Our results suggest that ice sheets linked to major glacial events not only impact genetic structuring in temperate seabirds, but that sea level changes in the tropics associated with these same events have also significantly impacted contemporary genetic structuring in tropical seabird species.  相似文献   

18.
The processes underlying the distributional limits of both corals and coral reefs can be elucidated by examining coral communities at high latitudes. Coral-dominated communities in eastern Australia cover a latitudinal range of >2,500 km, from the northern Great Barrier Reef (11°S) to South West Rocks (31.5°S). Patterns of coral species richness from 11 locations showed a clear separation between the Great Barrier Reef and subtropical sites, with a further abrupt change at around 31°S. Differences in community structure between the Great Barrier Reef and more southern sites were mainly attributable to higher cover of massive corals, branching Acropora, dead coral and coralline algae on the Great Barrier Reef, and higher cover of macroalgae and bare rock at more southern sites. The absence of some major reef-building taxa (i.e., staghorn Acropora and massive Porites) from most subtropical sites coincided with the loss of reef accretion capacity. Despite high cover of hard corals in communities at up to 31°S, only Lord Howe Island contained areas of reef accretion south of the Great Barrier Reef. Factors that have been hypothesized to account for latitudinal changes in coral community structure include water temperature, aragonite saturation, light availability, currents and larval dispersal, competition between corals and other biota including macroalgae, reduced coral growth rates, and failure of coral reproduction or recruitment. These factors do not operate independently of each other, and they interact in complex ways.  相似文献   

19.
Microsatellites are high-resolution genetic markers that may be applied to examine parentage, population structure and the direction and extent of dispersal. Here we present eight polymorphic microsatellite loci developed for the carybdeid jellyfish, Carukia barnesi. The loci were developed from a microsatellite-enriched, partial genomic DNA library and tested for polymorphism on animals from each of two geographically distinct populations, Lizard Island and Double Island, from the Great Barrier Reef. The number of alleles observed for each locus ranged from 7 to 19.  相似文献   

20.
Heliopora coerulea (Alcyonaria, Coenothecalia), widespread since the Cretaceous, is today found in the Indo-Western Pacific between 25° N and 25° S but is uncommon throughout most of its range. Studies around its reported southern and eastern limits of distribution (Great Barrier Reef, Vanuatu, Fiji, Tonga, Western Samoa, Tuvalu, Gilbert Group) suggest that ocean temperature (a lower marginal isotherm of 22°C), duration of larval life-span, prevailing currents, and the geological and climatic history of isolated archipelagoes determine distribution. Heliopora was found to be far more abundant in the equatorial Central Pacific sites (Tuvalu and Gilbert growps) than in the Western Pacific (Great Barrier Reef, New Guinea, Solomon Islands, Ponape, Palau). Heliopora comprised up to 16% of beach sediments in Tuvalu atolls, and was the dominant coral (averaging 40% of substrate between 6 m and 10 m on reef slopes) in coral assemblages on Tarawa Atoll. From ecological studies in Tarawa it is suggested that competition from the more specialized and aggressive Scleractinia (particularly Acroporidae and Faviidae) is the major factor limiting abundance in the equatorial Western Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号