首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoplankton and zooplankton development in a lowland, temperate river   总被引:5,自引:0,他引:5  
The longitudinal and seasonal patterns of plankton developmentwere examined over 2 years in a lowland, temperate river: theRideau River (Ontario, Canada). Following an initial decreasein phytoplankton and zooplankton biomass as water flowed fromthe headwaters into the Rideau River proper, there was an increasein chlorophyll a (chl a) and zooplankton biomass with downstreamtravel. At approximately river km 60, both phytoplankton andzooplankton reached their maximum biomass of 27 µg l–1(chl a) and 470 µg l–1 (dry mass), respectively.Downstream of river km 60, the biomass of both planktonic communitiesdeclined significantly despite increasing nutrient concentrationsand favorable light conditions. These downstream declines maybe due to the feeding activity of the exotic zebra mussel (Dreissenapolymorpha) which was at high density in downstream reaches(>1000 individuals m–2). There was no evidence forlongitudinal phasing of phytoplankton and zooplankton, as increasesand decreases in chl a and zooplankton biomass appeared to coincide.Overall, chl a was best predicted by total phosphorus (R2=0.43),whereas zooplankton biomass was best predicted by chl a (R2=0.20).There was no evidence for significant grazing effects of zooplanktonon phytoplankton biomass.  相似文献   

2.
The production of phytoplankton in the three main branches andsedimentation areas of the River Rhine in the Netherlands wasanalyzed using a simulation model describing the carbon andsilicate metabolism. This model is based on data derived froma sampling programme in which river water was followed duringdownstream transport. A ‘plug-flow model’ was developed,including sky irradiance and light attenuation in the water,and integrating photosynthetic rates determined in the laboratory.On the basis of the silicate content of diatom-dominated phytoplanktonand silicate regeneration in the river bottom, changes in silicateconcentrations were simulated and found to match observed changesin dissolved silicate. Low sìlicate concentrations wereshown to restrict the maximum population density of diatoms.Depth- and time-integrated rates of photosynthesis were shownto permit multiplication of the phytoplankton at a rate of upto one doubling day–1 In the primary production periodApril-August 1988. values of 0.48–6.33 g C m–2 day–1,close to the few values reported for highly eutrophic riversand lakes, were observed. Model runs, including phytoplanktonproduction and losses, such as respiration, sedimentation andplanktonic grazing, were carried out to simulate the downstreamdevelopment of phytoplankton biomass. These simulations confirmthe view that a substantial part of the phytoplankton biomassand production is grazed or settles in the river delta despiteresidence times of only 52–97 h.  相似文献   

3.
The impact of fish-mediated changes on the structure and grazingof zooplankton on phytoplankton and bacterioplankton was studiedin Lake Søbygaard during the period 1984–92 bymeans of in vitro grazing experiments (14C-labelled phytoplankton,3H-labelled bacterioplankton) and model predictions. Measuredzooplankton clearance rates ranged from 0–25 ml l–1h–1 on phytoplankton to 0–33 ml l–1 h–1on bacterioplankton.The highest rates were found during thesummer when Daphnia spp. were dominant. As the phytoplanktonbiomass was substantially greater than that of bacterioplanktonthroughout the study period, ingestion of phytoplankton was26-fold greater than that of bacterioplankton. Multiple regressionanalysis of the experimental data revealed that Daphnia spp.,Bosmina longirostris and Cyclops vicinus, which were the dominantzooplankton, all contributed significantly to the variationin ingestion of phytoplankton, while only Daphnia spp. contributedsignificantly to that of bacterioplankton. Using estimated meanvalues for clearance and ingestion rates for different zooplankters,we calculated zooplankton grazing on phytoplankton and bacterioplanktonon the basis of monitoring data of lake plankton obtained duringa 9 year study period. Summer mean grazing ranged from 2 to4% of phytoplankton production and 2% of bacterioplankton productionto maxima of 53 and 88%, respectively. The grazing percentagedecreased with increasing density of planktivorous fish caughtin August each year using gill nets and shore-line electrofishing.The changes along a gradient of planktivorous fish abundanceseemed highest for bacterioplankton. Accordingly, the percentagecontribution of bacterioplankton to the total ingestion of thetwo carbon sources decreased from a summer mean value of 8%in Daphnia-dominated communities at lower fish density to 0.7–1.1%at high fish density, when cyclopoid copepods or Bosmina androtifers dominated. Likewise, the percentage of phytoplanktonproduction channelled through the bacteria varied, it beinghighest (5–8%) at high fish densities. It is argued thatthe negative impact of zooplankton grazing on bacterioplanktonin shallow lakes is highest at intermediate phosphorus levels,under which conditions Daphnia dominate the zooplankton community.  相似文献   

4.
Observations on phyto and zooplankton in two hydrographically different rivers were compared in order to discriminate phases in plankton development. Along the longitudinal axis of the River Rhine a gradual increase in the development of phytoplankton was observed, which reached its maximumca. 100 km before the river flows into its artificial sedimentation area. The development of rotifer populations was slightly retarded as compared with that of phytoplankton and highest population densities were only reached in the sedimentation area. Crustaceans developed in significant numbers, not until the river water had entered the sedimentation area. Development of zooplankton coincided here with a strong decrease in the density of phytoplankton. A similar trend in plankton development was observed in the River Meuse, although in this river the highest densities of phyto and zooplankton already occurred in its middle reaches. The differences in the timing of plankton growth in the two rivers are probably caused by differences in flow regime between both rivers. The River Rhine, which is fed by rainwater and melting of glaciers in the Alps, has a relatively constant discharge. On the other hand, the low discharge of the rain-fed River Meuse combined with an increased residence time of the water as a consequence of large numbers of weirs, allows a full cycle of plankton development long before its discharge into the sea. This phenomenon was also reflected in the silicate cycle in the Meuse, where the consumption by planktonic diatoms and the regeneration of silicate of deposits seem to be important. In contrast, in the main branches of the River Rhine only the effects of silicate consumption were detectable.  相似文献   

5.
Carbon dynamics in the 'grazing food chain' of a subtropical lake   总被引:1,自引:0,他引:1  
Studies were conducted over a 13 month period at four pelagicsites in eutrophic Lake Okeechobee, Florida (USA), in orderto quantify carbon (C) uptake rates by size-fractionated phytoplankton,and subsequent transfers of C to zooplankton. This was accomplishedusing laboratory 14C tracer methods and natural plankton assemblages.The annual biomass of picoplankton (<2 µm), nanoplankton(2–20 µm) and microplankton (<20 µm averaged60, 389 and 100 µg C 1–1 respectively, while correspondingrates of C uptake averaged 7, 51 and 13 µg C1–1h–1. The biomass of microzooplankton (40–200 µm)and macrozooplankton (<200 µm averaged 18 and 60 µgC 1–1, respectively, while C uptake rates by these herbivoregroups averaged 2 and 3 µg C 1–1 h–1. Therewere no strong seasonal patterns in any of the plankton metrics.The ratio of zooplankton to phytoplankton C uptake averaged7% over the course of the study. This low value is typical ofthat observed in eutrophic temperate lakes with small zooplanktonand large inedible phytoplankton, and indicates ineffectiveC transfer in the grazing food chain. On a single occasion,there was a high density (<40 1–1) of Daphnia lumholrzii,a large-bodied exotic cladoceran. At that time, zooplanktoncommunity C uptake was <20 µg C 1–1 h–1and the ratio of zooplankton to phytoplankton C uptake was near30%. If D.lumholrzii proliferates in Lake Okeechobee and theother Florida lakes where it has recently been observed, itmay substantially alter planktonic C dynamics.  相似文献   

6.
To assess the influence of grazing by cladocerans on dissolvedorganic matter (DOM), glycolytic and proteolytic activitiesand bacterial growth were measured by in situ incubation oflake water from the epilimnion of an oligotrophic reservoirin three different treatments: in absence of zooplankton, andin presence of zooplankton (natural abundance and concentratedfour-fold). These experiments were conducted at two periodsin the succession of plankton populations (May and June 1998),that differed in the quality of the prey ingested (Eudorinasp. compared to Cryptomonas sp. and Rhodomonas sp.) and theirgrazing intensity (31.8 ± 2.2 µg C l–1 day–1compared to 10.2 ± 0.5 µg C l–1 day–1).A systematic increase in bacterial biomass was measured in thetreatments containing the highest zooplankton concentrations.The DOM concentrations produced in situ showed few significantdifferences between the three treatments, but the assimilationof DOM was higher in the presence of zooplankton than in theirabsence. These results show that the influence of cladoceranson the DOM was more of a qualitative than a quantitative nature.The protein compounds derived from the grazing activities ofmetazoans seem to be a major nutrient source for growth forbacteria (r = 0.81, P <0.05). In this study, the highesthydrolytic activities were recorded in the presence of highconcentrations of metazoan zooplankton. However, the processesthat regulated these activities differed between the two experimentaldates (repression compared to enzyme stimulation). Grazing activitiescould lead to an increase in phytoplanktonic excretion duringthe growth phase, and therefore the production of low molecularweight compounds that are easily assimilated by the bacterialplankton.  相似文献   

7.
Phytoplankton biomass, primary production rates and inorganicnutrients were measured in the uppermost layer of the ice-edgeregion and in open water and compared with environmental factorsduring a three-week cruise in September – October 1979.Biomass and production values were low (maximum 2.2 µgchl a l–1, 2.5 mg C m–3 h–1). A post-bloomcommunity of diatoms, consisting mainly of representatives ofChaetoceros, Leptocylindrus, Nitzschia and Thalassiosira, waspredominant. Concentrations of phosphate were quite low (maximum0.55 µM I–1). Nitrate and silicate ranged from nomeasurable quantities to 5.7 µM l–1 and 3.8 µMl–1, respectively. The possibility of light and nutrientlimitation on phytoplankton growth is discussed.  相似文献   

8.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

9.
Concentrations of dissolved silicate and particulate biogenic silicate were measured in three branches of the lower river Rhine in The Netherlands in order to analyse the role of this element in the eutrophication of the river basin. Particulate silicate followed the seasonal development of the phytoplankton, which was dominated by diatoms. The concentration of dissolved silicate fell during blooms (< 0.1 mg.l–1 ), but the amounts of biogenic silicate measured ( 1 mg.l–1) were insufficient to explain the seasonal decrease in the dissolved fraction; this indicates retention of silicate upstream. Some particulate biogenic silicate in river water settled in man-made sedimentation areas in the Rhine delta. The observations suggest that changes in silicate fixation in the Rhine may have contributed to the incidence of non-diatom phytoplankton blooms in receiving waters.  相似文献   

10.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

11.
A microcomputer simulation model is presented that describesthe generalized plankton production dynamics, in the surfacemixed layer, of the Juan de Fuca Eddy located on the southwesternBritish Columbia continental shelf. The Juan de Fuca Eddy simulationmodel evaluates how the annual biomass production of diatoms,copepods and euphausiids is forced by plankton feeding interactions,seasonal variability in upwelling, water temperature and solarradiation, and generalized fish predation. The model estimatesannual primary production of 345 g C m–2 year–1and secondary production of 19.4 g C m–2 year–1for copepods and 6 g C m–2 year–1 for euphausiids,during 1985–89; -90% of the annual plankton productionwas generated during the April-October upwelling season. Perturbationsof 22 abiotic and biotic parameters, one at a time by ±10%of nominal values, indicated that oceanic variability (e.g.upwelling rate) most strongly affected primary production. Conversely,zooplankton production was most sensitive to variability inbiological parameters describing zooplankton grazing potentialand growth (e.g. gross growth efficiency). Simulated seasonalbiomass patterns of diatoms, copepods and euphausiids were foundto closely match empirical data. However, euphausiid biomassproduction in the Juan de Fuca Eddy alone was unable to meetthe demands of estimated pelagic fish consumption. Local Eddyeuphausiid populations had to be supplemented, from regionaleuphausiids. by a mechanism that is proposed to be linked tothe seasonal pattern and intensity of positive Ekman transport(upwelling).  相似文献   

12.
The plankton of a large oligotrophic freshwater Antarctic lake   总被引:4,自引:0,他引:4  
The planktonic community of Crooked Lake, a large freshwaterlake in the Vestfold Hills, Antarctica was investigated duringthe austral summer in 1990. Very low levels of chlorophyll aranging between mean values of 0 29 and 1.8 µl1were recorded. The phytoplankton was largely made up of colouredflagellates, including single species of Chlamydomonas, Ochromonasand Pendimum, which occurred in low concentrations (23.8x 102–47.3x102 l1). Heterotrophic colourless flagellates, includingParaphysomonas vestita, were also relatively sparse (2.1x 102–21.3x102l1). Ciliated protozoans were particularly poorly represented.Only three species occurred reaching densities of 10011,and among them the mixotrophic species Strombidium vinde wasthe most common. A single species of heliozoan Actinosphaeriumand relatively large numbers of naked amoebae were the sarcodinerepresentatives The protistan community and the bacteria wereconcentrated into microbial consortia associated with floesof paniculate organic matter probably derived from the benthicalgal mat. Of the two microcrustacean zooplankters recordedfrom the lake only Daphniopsis studeri was found breeding inthe plankton in very low numbers. The behavioural and physiologicaladaptations of the organisms inhabiting this extremely oligotrophicenvironment are discussed.  相似文献   

13.
Microphytoplankton and zooplankton composition and distributionin the vicinity of the Prince Edward Islands and at the Sub-antarcticFront (SAF) were investigated in late austral summer (April/May)1996. Samples were collected for analysis of chlorophyll a concentration(Chi a), microphytoplankton and zooplankton abundance. Generally,the highest Chl a concentrations (up to 2.0 µg l–1)and zooplankton densities (up to 192 ind. m–3) were recordedat stations within the inter-island area while the lowest values(<0.4 µg l–1) were observed at stations upstreamof the islands. High Chl a and zooplankton biomass values werealso associated with the SAF. Microphytoplankton were dominatedby chain-forming species of the genera Chaetoceros (mainly C.neglectus),Fragilariopsis spp. and the large diatom Dactyliosolen antarcticus.The zooplankton assemblages were always dominated by mesozooplanktonwhich at times contributed up to 98% of total zooplankton abundanceand up to 95% of total biomass. Among mesozooplankton, copepods,mainly Clausocalanus brevipes and Metridia lucens numericallydominated. Among the macrozooplankton euphausiids, mainly Euphausiavallentini, E.longirostis and Stylocheiron maximum, and chaetognaths(Sagitta gazellae) accounted for the bulk of abundance and biomass.Cluster and ordination analysis did not identify any distinctbiogeographic regions among either the microphytoplankton orzooplankton.  相似文献   

14.
The contribution of heterotrophic plankton to nitrogen (N) regenerationin the water column, and its significance for the requirementsof phytoplankton, were studied at the seasonal scale in thecoastal upwelling ecosystem of A Coruña (Galicia, NWSpain). During 1995–1997, monthly measurements were takenof hydrographic conditions, dissolved nutrients, and abundanceand biomass of microplanktonic heterotrophs (bacteria, flagellatesand ciliates), phytoplankton and mesozooplankton (>200 µm).Additionally, series of experiments were conducted to quantifyN fluxes, including primary production (14C method), phytoplanktonuptake of nitrate, ammonium and urea (15N-labelling techniques),microheterotrophic regeneration of ammonium, mesozooplanktongrazing (chlorophyll gut-content method) and excretion of ammoniumby mesozooplankton. Two N budgets were built for the averagesituations of high (>100 mg C m-2 h-1) and low (<100 mgC m-2 h-1) primary production. The results revealed that phytoplanktonrelied strongly on regenerated ammonium all year round (33 and43% of total N uptake in high and low production situations,respectively). This demand for ammonium was closely matchedby regeneration rates of microplankton (0.14–0.25 mmolN m-2 h-1), whereas zooplankton contributed on average <10%to N regeneration. Likewise, zooplankton grazing had littledirect control on phytoplanktonic biomass. The results obtainedindicate that in the A Coruña upwelling system, N biomassof heterotrophic plankton is generally higher than phytoplanktonN biomass. The high rates of N regeneration measured also suggestthat a large proportion of the organic matter produced afteran upwelling pulse is recycled in the water column through themicrobial food web.  相似文献   

15.
We determined the productivity (µg C µg–1Chi a h–1) of size-fractionated phytoplankton in the northernNorth Pacific and the Bering Sea in summer and winter. Picoplankton(<2 µm) were more productive than larger sized phytoplankton(2–10 and 10–200 µm) in the subtropical region,where the in situ temperature was >10°C; whereas picoplanktonin the subarctic region were similar in productivity or lessproductive than larger sized plankton, where the in situ temperaturewas <10°C. The result from the subtropical region inthis study agrees with previous results from tropical and subtropical waters, which indicate that phytoplankton productivitytends to decrease with increasing cell size. The result fromthe subarctic region, however, differs from previous results.We observed a positive linear regression for in situ temperatureand picoplankton productivity, but this trend was not seen inthe larger sized phytoplankton. The results show that the productivityof picoplankton is markedly influenced by in situ temperaturecompared with that of larger sized plankton. Low tem peratureappears to account largely for the observation that the productivityof picoplankton is not significantly higher than that of largersized phytoplankton in the subarctic region.  相似文献   

16.
Zooplankton populations were sampled over one annual cycle intwo floodplain lakes of the Orinoco River, Venezuela, in anattempt to establish the relationship between abundance patternsand the hydrology and morphometry of the lakes. One of the lakes(Tineo) is relatively large with a gently sloping basin; theother one (Aguilera) is smaller and channel-shaped. The hydraulicresidence time of Lake Aguilera during inundation by the riveris shorter (<1 day) than the minimum generation times ofcrustacean (4–12 days) and rotiferan (2.5 days) zooplankton.For Lake Tineo, residence time during inundation (7 days) islonger than generation times for all taxa except copepods. AlthoughLake Aguilera receives water from Lake Tineo during inundation,zooplankton densities were greatly reduced during passage througha large bed of the floating aquatic grass Paspalum repens locatednear the outlet of Lake Tineo. This retention was not size-selectiveand affected phytoplankton as well as zooplankton. In the Orinocofloodplain zooplankton densities are affected not only by hydraulicresidence times but also by passage of water between lakes,which exposes populations to large losses within macrophytebeds. Retention of plankton by floating macrophyte beds is potentiallyimportant to the trophic ecology of tropical floodplain lakesbecause it results in the concentration of planktonic productionin epiphytic and benthic habitats, where it can readily supportfood webs consisting of macroinvertebrates and fishes. Exportof plankton from floodplain waterbodies to the river is alsoreduced by this mechanism. 1Present address: Department of Biological Sciences, Universityof California, Santa Barbara, CA 93106, USA  相似文献   

17.
The methylthiotriazine herbicide, simetryn, is commonly used in Japan, and its concentration in surface water is often high enough to affect natural phytoplankton. To estimate how the plankton community in eutrophic systems respond to short-term exposure of realistic concentrations of simetryn, we collected plankton from a eutrophic lake and exposed them to low (20 μg l−1) and high (100 μg l−1) concentrations of simetryn for 12 days in microcosm tanks (50 l). High concentrations significantly lowered total phytoplankton biomass, particularly green algal density. Consequently, the species composition was severely modified by simetryn application. However, there was no apparent impact of simetryn on microbial food-web components, bacteria, heterotrophic nanoflagellates (HNF), and ciliates. Despite the decreased abundance of algal food, the zooplankton community showed subtle changes with simetryn application. The results indicate that the direct impact of simetryn on planktonic organisms other than phytoplankton, particularly on microbial food-web components, is weak. The indirect impact of simetryn on zooplankton through the change of food quality and quantity was also small. It has been suggested that the persistence of microorganisms, alternative food for zooplankton, probably dilutes the indirect impact of simetryn on zooplankton by compensating for the loss of food phytoplankton. Consequently, the plankton community in eutrophicated systems is resistant to the herbicide at a feasible concentration for a short period of time.  相似文献   

18.
From April to October 1986 abundance and vertical distributionof picocyanobacteria were studied at four stations in Kiel Fjordand Kiel Bight. Both picocyanobacteria and autotrophic, eukaryoticpicoplankton cell numbers were estimated by epifluorescencemicroscopy whereas larger phytoplankton (>3 µm) wasenumerated by the Utermöhi settling technique. Picocyanobactenacell numbers peaked in July and August near the water surface(1.4–2.6 x 108 cells l–1). Although picocyanobacteriaabundance increased from the outer Kiel Bight to the more eutrophicinner stations of Kiel Fjord, their contribution to total phytoplanktonbiomass decreased. During summer up to 52% of phytoplanktoncarbon and up to 97% of autotrophic picoplankton carbon werecontributed by picocyanobacteria. Therefore picocyanobacteriaare an important component of the summer phytoplankton communityin boreal inshore waters, too.  相似文献   

19.
Fine-scale vertical (5 – 40 m) and horizontal (50 –500 m) patterns of temperature, chlorophyll and abundance ofzooplankton species were sampled with a pump filtration systemin the surface waters offshore of San Diego in May and October,1978. Intense and consistent patterns were most apparent invertical profiles. Herbivorous zooplankton were more consistentlyassociated with the estimated primary productivity maximum thanwith the deeper chlorophyll maximum layer, which representeda phytoplankton biomass maximum. Predators were positively correlatedwith abundant potential prey species. Variations in body lengthwith depth suggest that these fine-scale patterns were sufficientlystable to influence zooplankton growth. Consequences for grazingand predator – prey interactions in pelagic ecosystemsare discussed. 1Present address: NOAA/NMFS Southwest Fisheries Center, PO Box271, La Jolla, CA 92038, USA  相似文献   

20.
Trophic interactions within the plankton of the lowland RiverMeuse (Belgium) were measured in spring and summer 2001. Consumptionof bacteria by protozoa was measured by monitoring the disappearanceof 3H-thymidine-labelled bacteria. Metazooplankton bacterivorywas assessed using 0.5-µm fluorescent microparticles (FMPs),and predation of metazooplankton on ciliates was measured usingnatural ciliate assemblages labelled with FMPs as tracer food.Grazing of metazooplankton on flagellates was determined throughin situ incubations with manipulated metazooplankton densities.Protozooplankton bacterivory varied between 6.08 and 53.90 mgC m–3 day–1 (i.e. from 0.12 to 0.86 g C–1bacteria g C–1 protozoa day–1). Metazooplankton,essentially rotifers, grazing on bacteria was negligible comparedwith grazing by protozoa (1000 times lower). Predation of rotiferson heterotrophic flagellates (HFs) was generally low (on average1.77 mg C m–3 day–1, i.e. 0.084 g C–1 flagellatesg C–1 rotifers day–1), the higher contribution ofHF in the diet of rotifers being observed when Keratella cochleariswas the dominant metazooplankter. Predation of rotifers on ciliateswas low in spring samples (0.56 mg C m–3 day–1,i.e. 0.014 g C–1 ciliates g C–1 rotifers day–1)in contrast to measurements performed in July (8.72 mg C m–3day–1, i.e. 0.242 g C–1 ciliates g C–1 rotifersday–1). The proportion of protozoa in the diet of rotiferswas low compared with that of phytoplankton (<30% of totalcarbon ingestion) except when phytoplankton biomass decreasedbelow the incipient limiting level (ILL) of the main metazooplantonicspecies. In such conditions, protozoa (mainly ciliates) constituted50% of total rotifer diet. These results give evidence thatmicrobial organisms play a significant role within the planktonicfood web of a eutrophic lowland river, ciliates providing analternative food for metazooplankton when phytoplankton becomesscarce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号