首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Mevalonate is biosynthesized from acetyl-CoA and metabolized to isoprenoid compounds in a wide variety of organisms although certain types of prokaryotes employ another route for isoprenoid biosynthesis (the non-mevalonate pathway). To establish a fermentative process for mevalonate production, enzymes for mevalonate synthesis from Enterococcus faecalis were expressed in Escherichia coli, a non-mevalonate pathway bacterium. Mevalonate was accumulated, indicating a redirection of acetate metabolism by the expressed enzyme. The recombinant E. coli produced 47 g mevalonate l(-1) in 50 h of fed-batch cultivation in a 2 l jar fermenter; this is the highest titer ever reported demonstrating the superiority of E. coli in its ability of acetyl-CoA supply and its inability is degrade mevalonate.  相似文献   

2.
Mevalonate is a useful metabolite synthesized from three molecules of acetyl-CoA, consuming two molecules of NADPH. Escherichia coli ( E. coli) catabolizes glucose to acetyl-CoA via several routes, such as the Embden–Meyerhof–Parnas (EMP) and the oxidative pentose phosphate (oxPP) pathways. Although the oxPP pathway supplies NADPH, it is disadvantageous in terms of acetyl-CoA supply, compared with the EMP pathway. In this study, the optimal flux ratio between the EMP and oxPP pathways on the mevalonate yield was investigated. Expression level of pgi was controlled by isopropyl β-D-1-thiogalactopyranoside (IPTG) inducible promoter in an engineered mevalonate-producing E. coli strain. The relationship between the flux ratio and mevalonate yield was evaluated by changing the flux ratio by varying IPTG concentration. At the stationary phase, the mevalonate yield was maximum at an EMP flux of 39.7%, and was increased by 25% compared with that with no flux control (EMP flux of 70.4%). The optimal flux ratio was consistent with the theoretical value based on the mass balance of NADPH. The flux ratio between EMP and oxPP pathways affects the synthesis fluxes of mevalonate and acetate from acetyl-CoA. Fine tuning of the flux ratio would be necessary to achieve an optimized production of metabolites that require NADPH.  相似文献   

3.
Microbial production of mevalonate from renewable feedstock is a promising and sustainable approach for the production of value-added chemicals. We describe the metabolic engineering of Escherichia coli to enhance mevalonate production from glucose and cellobiose. First, the mevalonate-producing pathway was introduced into E. coli and the expression of the gene atoB, which encodes the gene for acetoacetyl-CoA synthetase, was increased. Then, the deletion of the pgi gene, which encodes phosphoglucose isomerase, increased the NADPH/NADP+ ratio in the cells but did not improve mevalonate production. Alternatively, to reduce flux toward the tricarboxylic acid cycle, gltA, which encodes citrate synthetase, was disrupted. The resultant strain, MGΔgltA-MV, increased levels of intracellular acetyl-CoA up to sevenfold higher than the wild-type strain. This strain produced 8.0 g/L of mevalonate from 20 g/L of glucose. We also engineered the sugar supply by displaying β-glucosidase (BGL) on the cell surface. When cellobiose was used as carbon source, the strain lacking gnd displaying BGL efficiently consumed cellobiose and produced mevalonate at 5.7 g/L. The yield of mevalonate was 0.25 g/g glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing mevalonate from cellobiose or cellooligosaccharides using an engineered E. coli strain.  相似文献   

4.
Artemisinin from Artemisia annua has become one of the most important drugs for malaria therapy. Its biosynthesis proceeds via amorpha-4,11-diene, but it is still unknown whether the isoprenoid precursors units are obtained by the mevalonate pathway or the more recently discovered non-mevalonate pathway. In order to address that question, a plant of A. annua was grown in an atmosphere containing 700 ppm of 13CO2 for 100 min. Following a chase period of 10 days, artemisinin was isolated and analyzed by 13C NMR spectroscopy. The isotopologue pattern shows that artemisinin was predominantly biosynthesized from (E,E)-farnesyl diphosphate (FPP) whose central isoprenoid unit had been obtained via the non-mevalonate pathway. The isotopologue data confirm the previously proposed mechanisms for the cyclization of (E,E)-FPP to amorphadiene and its oxidative conversion to artemisinin. They also support deprotonation of a terminal allyl cation intermediate as the final step in the enzymatic conversion of FPP to amorphadiene and show that either of the two methyl groups can undergo deprotonation.  相似文献   

5.
The increased synthesis of building blocks of IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) through metabolic engineering is a way to enhance the production of carotenoids. Using E. coli as a host, IPP and DMAPP supply can be increased significantly through the introduction of foreign MVA (mevalonate) pathway into it. The MVA pathway is split into two parts with the top and bottom portions supplying mevalonate from acetyl-CoA, and IPP and DMAPP from mevalonate, respectively. The bottom portions of MVA pathway from Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Saccharomyces cerevisiae were compared with exogenous mevalonate supplementation for β-carotene production in recombinant Escherichia coli harboring β-carotene synthesis genes. The E. coli harboring the bottom MVA pathway of S. pneumoniae produced the highest amount of β-carotene. The top portions of MVA pathway were also compared and the top MVA pathway of E. faecalis was found out to be the most efficient for mevalonate production in E. coli. The whole MVA pathway was constructed by combining the bottom and top portions of MVA pathway of S. pneumoniae and E. faecalis, respectively. The recombinant E. coli harboring the whole MVA pathway and β-carotene synthesis genes produced high amount of β-carotene even without exogenous mevalonate supplementation. When comparing various E. coli strains – MG1655, DH5α, S17-1, XL1-Blue and BL21 – the DH5α was found to be the best β-carotene producer. Using glycerol as the carbon source for β-carotene production was found to be superior to glucose, galactose, xylose and maltose. The recombinant E. coli DH5α harboring the whole MVA pathway and β-carotene synthesis genes produced β-carotene of 465 mg/L at glycerol concentration of 2% (w/v).  相似文献   

6.
A eukaryotic mevalonate pathway transferred and expressed in Escherichia coli, and a mammalian hydrocortisone biosynthetic pathway rebuilt in Saccharomyces cerevisiae are examples showing that transferring metabolic pathways from one organism to another can have a powerful impact on cell properties. In this study, we reconstructed the E. coli isoprenoid biosynthetic pathway in S. cerevisiae. Genes encoding the seven enzymatic steps of the pathway were cloned and expressed in S. cerevisiae. mRNA from the seven genes was detected, and the pathway was shown able to sustain growth of yeast in conditions of inhibition of its constitutive isoprenoid biosynthetic pathway.  相似文献   

7.
Farnesol (FOH) production has been carried out in metabolically engineered Escherichia coli. FOH is formed through the depyrophosphorylation of farnesyl pyrophosphate (FPP), which is synthesized from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) by FPP synthase. In order to increase FPP synthesis, E. coli was metabolically engineered to overexpress ispA and to utilize the foreign mevalonate (MVA) pathway for the efficient synthesis of IPP and DMAPP. Two‐phase culture using a decane overlay of the culture broth was applied to reduce volatile loss of FOH produced during culture and to extract FOH from the culture broth. A FOH production of 135.5 mg/L was obtained from the recombinant E. coli harboring the pTispA and pSNA plasmids for ispA overexpression and MVA pathway utilization, respectively. It is interesting to observe that a large amount of FOH could be produced from E. coli without FOH synthase by the augmentation of FPP synthesis. Introduction of the exogenous MVA pathway enabled the dramatic production of FOH by E. coli while no detectable FOH production was observed in the endogenous MEP pathway‐only control. Biotechnol. Bioeng. 2010;107: 421–429. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Isoprenol (3-methyl-3-butene-1-ol) is a valuable drop-in biofuel and an important precursor of several commodity chemicals. Synthetic microbial systems using the heterologous mevalonate pathway have recently been developed for the production of isoprenol in Escherichia coli, and a significant yield and titer improvement has been achieved through a decade of research. Saccharomyces cerevisiae has been widely used in the biotechnology industry for isoprenoid production, but there has been no good example of isoprenol production reported in this host. In this study, we engineered the budding yeast S. cerevisiae for improved biosynthesis of isoprenol. The strain engineered with the mevalonate pathway achieved isoprenol production at the titer of 36.02 ± 0.92 mg/L in the flask. The IPP (isopentenyl diphosphate)-bypass pathway, which has shown more efficient isoprenol production by avoiding the accumulation of the toxic intermediate in E. coli, was also constructed in S. cerevisiae and improved the isoprenol titer by 2-fold. We further engineered the strains by deleting a promiscuous endogenous kinase that could divert the pathway flux away from the isoprenol production and improved the titer to 130.52 ± 8.01 mg/L. Finally, we identified a pathway bottleneck using metabolomics analysis and overexpressed a promiscuous alkaline phosphatase to relieve this bottleneck. The combined efforts resulted in the titer improvement to 383.1 ± 31.62 mg/L in the flask. This is the highest isoprenol titer up to date in S. cerevisiae and this work provides the key strategies to engineer yeast as an industrial platform for isoprenol production.  相似文献   

9.
Summary The activities of the mevalonate metabolizing enzymes-HMG-CoA reductase, mevalonate kinase, mevalonate phosphokinase and mevalonate pyrophosphate decarboxylase -were assayed with the respective substrates in green seedlings of Arachis hypogaea. MVAPP decarboxylase is the rate-limiting step among these enzymes and is inhibited by phenolic acids. Its activity in the seedlings was found to decrease in the absence of light and on treatment with abscisic acid. These results suggest that regulation of isoprene pathway in groundnut seedlings may occur at the level of mevalonate decarboxylation.Abbreviations HMG CoA 3-hydroxy-3-methyl-glutaryl coenzyme A - MVA Mevalonate - MVAP Mevalonate-5-phosphate - MVAPP Mevalonate-5-pyrophosphate - DTT Dithiothreitol - ABA Abscisic Acid  相似文献   

10.
In this study a comparison was made between type 1 and type 2 isopentenyl diphosphate isomerases (IDI) in improving lycopene production in Escherichia coli. The corresponding genes of Bacillus licheniformis and the host (i Bl and i Ec , respectively) were expressed in lycopene producing E. coli strains by pTlyciBl and pTlyciEc plasmids, under the control of tac promoter. The results showed that the overexpression of i Ec improved the lycopene production from 33 ± 1 in E. coli Tlyc to 68 ± 3 mg/gDCW in E. coli TlyciEc. In contrast, the expression of i Bl increased the lycopene production more efficiently up to 80 ± 9 mg/gDCW in E. coli TlyciBl. The introduction of a heterologous mevalonate pathway to elevate the IPP abundance resulted in a lycopene production up to 132 ± 5 mg/gDCW with i Ec in E. coli TlyciEc-mev and 181 ± 9 mg/gDCW with i Bl in E. coli TlyciBl-mev, that is, 4 and 5.6 times respectively. When fructose, mannose, arabinose, and acetate were each used as an auxiliary substrate with glycerol, lycopene production was inhibited by different extents. Among auxiliary substrates tested, only citrate was an improving one for lycopene production in all strains with a maximum of 198 ± 3 mg/gDCW in E. coli TlyciBl-mev. It may be concluded that the type 2 IDI performs better than the type 1 in metabolic engineering attempts for isoprenoid production in E. coli. In addition, the metabolic engineering of citrate pathway seems a promising approach to have more isoprenoid accumulation in E. coli.  相似文献   

11.
Isoprene, a key building block of synthetic rubber, is currently produced entirely from petrochemical sources. In this work, we engineered both the methylerythritol phosphate (MEP) pathway and the mevalonate (MVA) pathway for isoprene production in E. coli. The synergy between the MEP pathway and the MVA pathway was demonstrated by the production experiment, in which overexpression of both pathways improved the isoprene yield about 20-fold and 3-fold, respectively, compared to overexpression of the MEP pathway or the MVA pathway alone. The 13C metabolic flux analysis revealed that simultaneous utilization of the two pathways resulted in a 4.8-fold increase in the MEP pathway flux and a 1.5-fold increase in the MVA pathway flux. The synergy of the dual pathway was further verified by quantifying intracellular flux responses of the MEP pathway and the MVA pathway to fosmidomycin treatment and mevalonate supplementation. Our results strongly suggest that coupling of the complementary reducing equivalent demand and ATP requirement plays an important role in the synergy of the dual pathway. Fed-batch cultivation of the engineered strain overexpressing the dual pathway resulted in production of 24.0 g/L isoprene with a yield of 0.267 g/g of glucose. The synergy of the MEP pathway and the MVA pathway also successfully increased the lycopene productivity in E. coli, which demonstrates that it can be used to improve the production of a broad range of terpenoids in microorganisms.  相似文献   

12.
13.
Summary A number of cellular proteins, including p21ras, lamin B, and the G-protein subunits, undeDanvillergo post-translational modification by 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenoid moieties derived from pyrophosphate intermediates of the cholesterol biosynthetic pathway. In this study, isoprenylated proteins in three mammalian cell lines (Hela cells, Rat-6 fibroblasts and COS cells) were radiolabeled with an isoprenoid precursor, [3H]mevalonate, and resolved by SDS gel electrophoresis. Groups of proteins with different molecular masses were eluted from the gels and the chain-lengths of the radiolabeled isoprenyl groups, released from the proteins by Raney-nickel-catalyzed desulfurization, were established by gel permeation chromatography. 15-Carbon and 20-carbon isoprenyl groups were found in separate classes of proteins within each cell line. With the exception of p21ras, which incorporated a 15-carbon group when expressed in COS cells, the proteins in the region of the 21–28 kDa ras-related GTP binding proteins contained mostly 20-carbon isoprenyl chains. In contrast, proteins belonging to the 66–72 kDa nuclear lamin family, as well as unidentified proteins with molecular masses of 41–46 kDa and 53–55 kDa, contained predominantly 15-carbon isoprenyl chains. The chain-lengths of the isoprenoids associated with particular classes of proteins did not vary from one cell line to another, suggesting that the nature of the isoprenoid modification (farnesyl versus geranylgeranyl) is determined by intrinsic structural features of the proteins, rather than the cell type in which the proteins are expressed.Abbreviations MVA Mevalonolactone - SDS Sodium Dodecyl Sulfate - PAGE Polyacrylamide Gel Electrophoresis  相似文献   

14.
Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway.  相似文献   

15.
Engineering microbes to utilize non-conventional substrates could create short and efficient pathways to convert substrate into product. In this study, we designed and constructed a two-step heterologous ethanol utilization pathway (EUP) in Escherichia coli by using acetaldehyde dehydrogenase (encoded by ada) from Dickeya zeae and alcohol dehydrogenase (encoded by adh2) from Saccharomyces cerevisiae. This EUP can convert ethanol into acetyl-CoA without ATP consumption, and generate two molecules of NADH per molecule of ethanol. We optimized the expression of these two genes and found that ethanol consumption could be improved by expressing them in a specific order (ada-adh2) with a constitutive promoter (PgyrA). The engineered E. coli strain with EUP consumed approximately 8 g/L of ethanol in 96 h when it was used as sole carbon source. Subsequently, we combined EUP with the biosynthesis of polyhydroxybutyrate (PHB), a biodegradable polymer derived from acetyl-CoA. The engineered E. coli strain carrying EUP and PHB biosynthetic pathway produced 1.1 g/L of PHB from 10 g/L of ethanol and 1 g/L of aspartate family amino acids in 96 h. We also engineered a E. coli strain to produce 24 mg/L of prenol in an ethanol-containing medium, supporting the feasibility of converting ethanol into different classes of acetyl-CoA derived compounds.  相似文献   

16.
To increase expression of lycopene synthetic genes crtE, crtB, crtI, and ipiHP1, the four exogenous genes were cloned into a high copy pTrc99A vector with a strong trc promoter. Recombinant Escherichia coli harboring pT-LYCm4 produced 17 mg/L of lycopene. The mevalonate lower pathway, composed of mvaK1, mvaK2, mvaD, and idi, was engineered to produce pSSN12Didi for an efficient supply of the lycopene building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Mevalonate was supplied as a substrate for the mevalonate lower pathway. Lycopene production in E. coli harboring pT-LYCm4 and pSSN12Didi with supplementation of 3.3 mM mevalonate was more than threefold greater than bacteria with pT-LYCm4 only. Lycopene production was dependent on mevalonate concentration supplied in the culture. Clump formation was observed as cells accumulated more lycopene. Further clumping was prevented by adding the surfactant Tween 80 0.5% (w/v), which also increased lycopene production and cell growth. When recombinant E. coli harboring pT-LYCm4 and pSSN12Didi was cultivated in 2YT medium containing 2% (w/v) glycerol as a carbon source, 6.6 mM mevalonate for the mevalonate lower pathway, and 0.5% (w/v) Tween 80 to prevent clump formation, lycopene production was 102 mg/L and 22 mg/g dry cell weight, and cell growth had an OD(600) value of 15 for 72 h.  相似文献   

17.
IspG protein serves as the penultimate enzyme of the recently discovered non-mevalonate pathway for the biosynthesis of the universal isoprenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. The enzyme catalyzes the reductive ring opening of 2C-methyl-d-erythritol 2,4-cyclodiphosphate, which affords 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. The protein was crystallized under anaerobic conditions, and its three-dimensional structure was determined to a resolution of 2.7 Å. Each subunit of the c2 symmetric homodimer folds into two domains connected by a short linker sequence. The N-terminal domain (N domain) is an eight-stranded β barrel that belongs to the large TIM-barrel superfamily. The C-terminal domain (C domain) consists of a β sheet that is flanked on both sides by helices. One glutamate and three cysteine residues of the C domain coordinate a [4Fe-4S] cluster. Homodimer formation involves an extended contact area (about 1100 Å2) between helices 8 and 9 of each respective β barrel. Moreover, each C domain contacts the N domain of the partner subunit, but the interface regions are small (about 430 Å2). We propose that the enzyme substrate binds to the positively charged surface area at the C-terminal pole of the β barrel. The C domain carrying the iron-sulfur cluster could then move over to form a closed conformation where the substrate is sandwiched between the N domain and the C domain. This article completes the set of three-dimensional structures of the non-mevalonate pathway enzymes, which are of specific interest as potential targets for tuberculostatic and antimalarial drugs.  相似文献   

18.
Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400 mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100 mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative.  相似文献   

19.
The potent antimalarial sesquiterpene lactone, artemisinin, is produced in low quantities by the plant Artemisia annua L. The source and regulation of the isopentenyl diphosphate (IPP) used in the biosynthesis of artemisinin has not been completely characterized. Terpenoid biosynthesis occurs in plants via two IPP-generating pathways: the mevalonate pathway in the cytosol, and the non-mevalonate pathway in plastids. Using inhibitors specific to each pathway, it is possible to resolve which supplies the IPP precursor to the end product. Here, we show the effects of inhibition on the two pathways leading to IPP for artemisinin production in plants. We grew young (7–14 days post cotyledon) plants in liquid culture, and added mevinolin to the medium to inhibit the mevalonate pathway, or fosmidomycin to inhibit the non-mevalonate pathway. Artemisinin levels were measured after 7–14 days incubation, and production was significantly reduced by each inhibitor compared to controls, thus, it appears that IPP from both pathways is used in artemisinin production. Also when grown in miconazole, an inhibitor of sterol biosynthesis, there was a significant increase in artemisinin compared to controls suggesting that carbon was shifted from sterols into sesquiterpenes. Collectively these results indicate that artemisinin is probably biosynthesized from IPP pools from both the plastid and the cytosol, and that carbon from competing pathways can be channeled toward sesquiterpenes. This information will help advance our understanding of the regulation of in planta production of artemisinin.  相似文献   

20.
Isoprenoids are the largest family of natural products, over 40 000 compounds have been described, which have been widely used in various fields. Currently, the isoprenoid products are mainly produced by natural extraction or chemical synthesis, however, limited yield and high cost is far behind the increasing need. Most bacteria synthesize the precursors of isoprenoids through the methylerythritol 4‐phosphate pathway, microbial synthesis of isoprenoids by fermentation becomes more attractive mainly in terms of environmental concern and renewable resources. In this review, the strategies of isoprenoid production in bacteria by synthetic biology are discussed. Introducing foreign genes associated with desired products made it possible to produce isoprenoids in bacteria. Furthermore, the yield of isoprenoids is increased by the strategies of overexpression of native or foreign genes, introducing heterologous mevalonate pathway, balancing of the precursors and inactivating the competing pathway, these methods were used separately or simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号