首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The potentiometric fluorescence probe diS-C3(3) is expelled from S. cerevisiae by ABC pumps Pdr5 and Snq2 and can conveniently be used for studying their performance. The activity of these pumps in a strain with wild-type PDR1 allele was shown to drop sharply on glucose depletion from the medium and then again at the end of the diauxic shift when the cells are adapted to growth on respiratory substrates. The presence of the PDR1-3 allele causing pump overproduction prevented this second drop and the pump activity typical for diauxic cells was largely retained. Growth phase-dependent changes of membrane potential measured by the same probe in pump-free mutants included a Deltapsi drop in the late exponential and diauxic growth phase, indicating lowered activity of H+ -ATPase. Suppression of activity of both ABC pumps and H+ -ATPase obviously signifies cell transition to an energy-saving mode. Challenging respiration-adapted cells with glucose showed a novel feature of yeast ABC pumps--a strong dependence of pump activity on the type of the carbon source.  相似文献   

2.
3.
Pdr5p in Saccharomyces cerevisiae is a functional homologue of mammalian P-glycoprotein implicated in multidrug resistance (MDR). In order to obtain useful inhibitors to overcome MDR in clinical tumors, screening of Pdr5p inhibitors has been carried out. We isolated a fungal strain producing Pdr5p inhibitors using our original assay system, and it was classified as Trichoderma sp. P24-3. The purified inhibitor was identified as isonitrile, 3-(3'-isocyano-cyclopent-2'-enylidene)-propionic acid, a compound whose carboxyl residue is essential for the inhibitory activity. A non-toxic concentration of the isonitrile (41.5 microg/ml, 255 microM) inhibited Pdr5p-mediated efflux of cycloheximide or cerulenin in Pdr5p-overexpressing cells. In addition, addition of the isonitrile led to accumulation of rhodamine 6G, a substrate of Pdr5p, in the Pdr5p-overexpressing cells. The inhibitory profiles of the isonitrile against S1360 mutants (S1360A and S1360F) of Pdr5p were different from those of FK506 and enniatin. The isonitrile did not influence PDR5 gene expression and the amount of Pdr5 protein, nor did it inhibit the function of Snq2p, a homologue of Pdr5p. Interestingly, the isonitrile inhibited the function of Cdr1p and Cdr2p, Pdr5p homologues in pathogenic yeast Candida albicans. Thus, it was found that the isonitrile shows a different inhibitory spectrum from that of FK506 and enniatin as a potent inhibitor for Pdr5p, Cdr1p, and Cdr2p.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Overexpression of the yeast Pdr5 ATP-binding cassette transporter leads to pleiotropic drug resistance to a variety of structurally unrelated cytotoxic compounds. To identify Pdr5 residues involved in substrate recognition and/or drug transport, we used a combination of random in vitro mutagenesis and phenotypic screening to isolate novel mutant Pdr5 transporters with altered substrate specificity. A plasmid library containing randomly mutagenized PDR5 genes was transformed into appropriate drug-sensitive yeast cells followed by phenotypic selection of Pdr5 mutants. Selected mutant Pdr5 transporters were analyzed with respect to their expression levels, subcellular localization, drug resistance profiles to cycloheximide, rhodamines, antifungal azoles, steroids, and sensitivity to the inhibitor FK506. DNA sequencing of six PDR5 mutant genes identified amino acids important for substrate recognition, drug transport, and specific inhibition of the Pdr5 transporter. Mutations were found in each nucleotide-binding domain, the transmembrane domain 10, and, most surprisingly, even in predicted extracellular hydrophilic loops. At least some point mutations identified appear to influence folding of Pdr5, suggesting that the folded structure is a major substrate specificity determinant. Surprisingly, a S1360F exchange in transmembrane domain 10 not only caused limited substrate specificity, but also abolished Pdr5 susceptibility to inhibition by the immunosuppressant FK506. This is the first report of a mutation in a yeast ATP-binding cassette transporter that allows for the functional separation of substrate transport and inhibitor susceptibility.  相似文献   

12.
13.
14.
15.
16.
Pdr5p is one of the major multidrug efflux pumps whose overexpression confers multidrug resistance (MDR) in Saccharomyces cerevisiae. By using our original assay system, a fungal strain producing inhibitors for Pdr5p was obtained and classified as Fusarium sp. Y-53. The purified inhibitors were identified as ionophore antibiotics, enniatin B, B1, and D, respectively. A non-toxic concentration of each enniatin (5 microg/ml, approximately 7.8 microM) strongly inhibited a Pdr5p-mediated efflux of cycloheximide or cerulenin in Pdr5p-overexpressing cells. The enniatins accumulated a fluorescent dye rhodamine 123, a substrate of Pdr5p, into yeast cells. The mode of Pdr5p inhibition of enniatin was competitive against FK506, and its inhibitory activity was more potent with less toxicity than that of FK506. The enniatins showed similar inhibitory profile as FK506 against S1360 mutants (S1360A and S1360F) of Pdr5p. The enniatins did not inhibit the function of Snq2p, a homologue of Pdr5p. Thus, it was found that enniatins are potent and specific inhibitors for Pdr5p, with less toxicities than that of FK506.  相似文献   

17.
18.
19.
ATP-binding cassette (ABC) transporters play important roles in drug efflux, but some may also function in cellular detoxification. The Pdr15p ABC protein is the closest homologue of the multidrug efflux transporter Pdr5p, which mediates pleiotropic drug resistance to hundreds of unrelated compounds. In this study, we show that the plasma membrane protein Pdr15p displays limited drug transport capacity, mediating chloramphenicol and detergent tolerance. Interestingly, Pdr15p becomes most abundant when cells exit the exponential growth phase, whereas its closest homologue, Pdr5p, disappears after exponential growth. Furthermore, in contrast to Pdr5p, Pdr15p is strongly induced by various stress conditions including heat shock, low pH, weak acids, or high osmolarity. PDR15 induction bypasses the Pdr1p/Pdr3p regulators but requires the general stress regulator Msn2p, which directly decorates the stress response elements in the PDR15 promoter. Remarkably, however, Pdr15p induction bypasses upstream components of the high osmolarity glycerol (HOG) pathway including the Hog1p and Pbs2p kinases as well as the dedicated HOG cell surface sensors. Our data provide evidence for a novel upstream branch of the general stress response pathway activating Msn2p. In addition, the results demonstrate a cross-talk between stress response and the pleiotropic drug resistance network.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号