首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
2.
3.
4.
Fructose 2,6-bisphosphate is present at high concentrations in many established lines of transformed cells. It plays a key role in the maintenance of a high glycolytic rate by coupling hormonal and growth factor signals with metabolic demand. The concentration of fructose 2,6-bisphosphate is controlled by the activity of the homodimeric bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2). We report here the PFKFB-3 gene expression control by insulin in the human colon adenocarcinoma HT29 cell line. The incubation of these cells with 1 microM insulin resulted in an increase in the PFK-2 mRNA level after 6 h of treatment, this effect being blocked by actinomycin D. Furthermore, insulin induced ubiquitous PFK-2 protein levels, that were evident after a lag of 3 h and could be inhibited by incubation with cycloheximide.  相似文献   

5.
Expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB-3) mRNA alternative splice variants was studied in different mouse tissues in hypoxic conditions in vivo. Significant increase of the expression of PFKFB-3 mRNA was observed in the mouse lungs, testes and brain in hypoxia. Several new alternative splice variants of PFKFB-3 mRNA were identified in the lung, testis, brain and skeletal muscle. They have different length and amino acid sequence of C-terminal regulatory part. However, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase catalytic domains were identical. Moreover, the expression of different alternative splice variants of PFKFB-3 mRNA has shown tissue specificity and different levels of induction in hypoxic conditions in vivo. Results of this investigation indicate a possible role of PFKFB-3 splice isoform in cell adaptation to hypoxic conditions.  相似文献   

6.
7.
Bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2 (PFKFB-2) is represented by several alternative splice variants and plays a significant role in the glycolysis regulation in the brain, lung, testis and heart cells. The expression of PFKFB-2 mRNA and its alternative splice variants in these rat vital organs after single intratracheal injection of silver nanoparticles was studied. It was shown that the expression of PFKFB-2 mRNA is significantly changed in different rat tissues under silver nanoparticles action. The effect of silver nanoparticles on the expression of PFKFB-2 mRNA was observed one day after its injection to animals. In 3 and 14 days the effect of silver nanoparticles was increased (in testes) or kept on the approximately same level (in other investigated tissues). The expression of PFKFB-2 mRNA in most tissues is returned to its control levels one year after the injection of silver nanoparticles to the rats. It was also shown that the expression of alternative splice variants of PFKFB-2 mRNA without functional activity of 6-phosphofructo-2-kinase is significantly increased in different tissues 1, 3 and 14 days after single injection of silver nanoparticles. The results of this investigation demonstrate clearly that silver nanoparticles significantly affect the expression of PFKFB-2 mRNA on the alternative splicing level in different vital organs and show their effect on the important mechanisms of metabolism regulation in the cells on the level of key enzyme gene expression.  相似文献   

8.
In oncology, the “Warburg effect” describes the elevated production of energy by glycolysis in cancer cells. The ubiquitous and hypoxia-induced 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) plays a noteworthy role in the regulation of glycolysis by producing fructose-2,6-biphosphate (F-2,6-BP), a potent activator of the glycolysis rate-limiting phosphofructokinase PFK-1. Series of amides and sulfonamides derivatives based on a N-aryl 6-aminoquinoxaline scaffold were synthesized and tested for their inhibition of PFKFB3 in vitro in a biochemical assay as well as in HCT116 cells. The carboxamide series displayed satisfactory kinetic solubility and metabolic stability, and within this class, potent lead compounds with low nanomolar activity have been identified with a suitable profile for further in vivo evaluation.  相似文献   

9.
10.
11.
This study was designed to test whether reduced levels of cardiac fructose-2,6-bisphosphate (F-2,6-P2) exacerbates cardiac damage in response to pressure overload. F-2,6-P2 is a positive regulator of the glycolytic enzyme phosphofructokinase. Normal and Mb transgenic mice were subject to transverse aortic constriction (TAC) or sham surgery. Mb transgenic mice have reduced F-2,6-P2 levels, due to cardiac expression of a transgene for a mutant, kinase deficient form of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) which controls the level of F-2,6-P2. Thirteen weeks following TAC surgery, glycolysis was elevated in FVB, but not in Mb, hearts. Mb hearts were markedly more sensitive to TAC induced damage. Echocardiography revealed lower fractional shortening in Mb-TAC mice as well as larger left ventricular end diastolic and end systolic diameters. Cardiac hypertrophy and pulmonary congestion were more severe in Mb-TAC mice as indicated by the ratios of heart and lung weight to tibia length. Expression of α-MHC RNA was reduced more in Mb-TAC hearts than in FVB-TAC hearts. TAC produced a much greater increase in fibrosis of Mb hearts and this was accompanied by 5-fold more collagen 1 RNA expression in Mb-TAC versus FVB-TAC hearts. Mb-TAC hearts had the lowest phosphocreatine to ATP ratio and the most oxidative stress as indicated by higher cardiac content of 4-hydroxynonenal protein adducts. These results indicate that the heart’s capacity to increase F-2,6-P2 during pressure overload elevates glycolysis which is beneficial for reducing pressure overload induced cardiac hypertrophy, dysfunction and fibrosis.  相似文献   

12.
The low affinity glucose-phosphorylating enzyme glucokinase shows the phenomenon of intracellular translocation in beta cells of the pancreas and the liver. To identify potential binding partners of glucokinase by a systematic strategy, human beta cell glucokinase was screened by a 12-mer random peptide library displayed by the M13 phage. This panning procedure revealed two consensus motifs with a high binding affinity for glucokinase. The first consensus motif, LSAXXVAG, corresponded to the glucokinase regulatory protein of the liver. The second consensus motif, SLKVWT, showed a complete homology to the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), which acts as a key regulator of glucose metabolism. Through yeast two-hybrid analysis it became evident that the binding of glucokinase to PFK-2/FBPase-2 is conferred by the bisphosphatase domain, whereas the kinase domain is responsible for dimerization. 5'-Rapid amplification of cDNA ends analysis and Northern blot analysis revealed that rat pancreatic islets express the brain isoform of PFK-2/FBPase-2. A minor portion of the islet PFK-2/FBPase-2 cDNA clones comprised a novel splice variant with 8 additional amino acids in the kinase domain. The binding of the islet/brain PFK-2/ FBPase-2 isoform to glucokinase was comparable with that of the liver isoform. The interaction between glucokinase and PFK-2/FBPase-2 may provide the rationale for recent observations of a fructose-2,6-bisphosphate level-dependent partial channeling of glycolytic intermediates between glucokinase and glycolytic enzymes. In pancreatic beta cells this interaction may have a regulatory function for the metabolic stimulus-secretion coupling. Changes in fructose-2,6-bisphosphate levels and modulation of PFK-2/FBPase-2 activities may participate in the physiological regulation of glucokinase-mediated glucose-induced insulin secretion.  相似文献   

13.
1. The fructose-2,6-bisphosphate (Fru-2,6-P2) content of mesenteric lymph nodes was measured in rats. 2. The effects of Fru-2,6-P2 on the activity of 6-phosphofructo-1-kinase (PFK-1) from rat mesenteric lymph nodes were also studied. 3. The affinity of the enzyme for fructose-6-phosphate was increased by Fru-2,6-P2 whereas the inhibition of the enzyme with high concentrations of ATP was released by Fru-2,6-P2. 4. The activity of lymphocyte PFK-1 was highly stimulated in a simultaneous presence of low concentrations of AMP and Fru-2,6-P2. 5. These results show that rat lymphocyte PFK-1 is highly regulated with Fru-2,6-P2 which means that glycolysis in rat lymphocytes is controlled by Fru-2,6-P2.  相似文献   

14.
Fructose 2,6-bisphosphate (F-2,6-P2) stimulated glycolysis in cell-free extracts of both normal and ras-transfected rat-1 fibroblasts. The extract of the transformed cell glycolyzed more rapidly in both the absence and the presence of F-2,6-P2 than the extract of the parent fibroblast. Addition of mitochondrial ATPase (F1) or inorganic phosphate (Pi) further stimulated lactate production in both cell lines. F-2,6-P2 stimulated the 6-phosphofructo-1-kinase (PFK-1) activity in extracts of normal and transfected cells. The activity in extracts of transformed cells tested with a fructose 6-phosphate regenerating system was considerably higher than in the extract of normal cells. Stimulation of PFK-1 activity by cAMP of both cell lines was not as pronounced as that by F-2,6-P2. In the absence of F-2,6-P2 the PFK-1 activity was strongly inhibited in the transformed cell by ATP concentrations higher than 1 mM, whereas in the normal cell only a marginal inhibition was noted even at 2 or 3 mM ATP. F-2,6-P2 reversed the inhibition of PFK-1 by ATP. Nicotinamide adenine dinucleotide (NAD) at 100 microM (in the presence of 2 mM ATP and 1 microM F-2,6-P2) stimulated PFK-1 activity only in the transformed cell, whereas nicotinamide adenine dinucleotide phosphate (NADP) inhibited PFK-1 activity (in the presence or absence of 1 microM F-2,6-P2) in extracts of both cell lines. No previous observations of stimulation or inhibition by NAD or NADP on PFK-1 activity appear to have been reported. A threefold increase in the intracellular concentration of F-2,6-P2 was observed after transfection of rat-1 fibroblast by the ras oncogene. We conclude from these data that the PFK-1 activity of ras-transfected rat-1 fibroblasts shows a greater response to certain stimulating and inhibitory regulating factors than that of the parent cell.  相似文献   

15.
Glucokinase (GK) and 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBP-2) are each powerful regulators of hepatic carbohydrate metabolism that have been reported to influence each other's expression, activities, and cellular location. Here we present the first physical evidence for saturable and reversible binding of GK to the FBP-2 domain of PFK-2/FBP-2 in a 1:1 stoichiometric complex. We confirmed complex formation and stoichiometry by independent methods including affinity resin pull-down assays and fluorescent resonance energy transfer. All suggest that the binding of GK to PFK-2/FBP-2 is weak. Enzymatic assays of the GK:PFK-2/FBP-2 complex suggest a concomitant increase of the kinase-to-bisphosphatase ratio of bifunctional enzyme and activation of GK upon binding. The kinase-to-bisphosphatase ratio is increased by activation of the PFK-2 activity whereas FBP-2 activity is unchanged. This means that the GK-bound PFK-2/FBP-2 produces more of the biofactor fructose-2,6-bisphosphate, a potent activator of 6-phosphofructo-1-kinase, the committing step to glycolysis. Therefore, we conclude that the binding of GK to PFK-2/FBP-2 promotes a coordinated up-regulation of glucose phosphorylation and glycolysis in the liver, i.e. hepatic glucose disposal. The GK:PFK-2/FBP-2 interaction may also serve as a metabolic signal transduction pathway for the glucose sensor, GK, in the liver. Demonstration of molecular coordination of hepatic carbohydrate metabolism has fundamental relevance to understanding the function of the liver in maintaining fuel homeostasis, particularly in managing excursions in glycemia produced by meal consumption.  相似文献   

16.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

17.
Abstract

The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis in cancer cells by synthesizing fructose-2,6-bisphosphate (F-2,6-BP), a potent allosteric activator of phosphofructokinase-1 (PFK-1), which is a rate-limiting enzyme of glycolysis. PFKFB3 is an attractive target for cancer treatment. It is valuable to discover promising inhibitors by using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation. Twenty molecules with known activity were used to build 3D-QSAR pharmacophore models. The best pharmacophore model was ADHR called Hypo1, which had the highest correlation value of 0.98 and the lowest RMSD of 0.82. Then, the Hypo1 was validated by cost value method, test set method and decoy set validation method. Next, the Hypo1 combined with Lipinski's rule of five and ADMET properties were employed to screen databases including Asinex and Specs, total of 1,048,159 molecules. The hits retrieved from screening were docked into protein by different procedures including HTVS, SP and XP. Finally, nine molecules were picked out as potential PFKFB3 inhibitors. The stability of PFKFB3-lead complexes was verified by 40?ns molecular dynamics simulation. The binding free energy and the energy contribution of per residue to the binding energy were calculated by MM-PBSA based on molecular dynamics simulation.  相似文献   

18.
Modification of muscular contractile patterns by denervation and chronic low frequency stimulation induces structural, physiological, and biochemical alterations in fast twitch skeletal muscles. Fructose 2,6-bisphosphate is a potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. The concentration of Fru-2,6-P(2) depends on the activity of the bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), which catalyzes the synthesis and degradation of this metabolite. This enzyme has several isoforms, the relative abundance of which depends on the tissue metabolic properties. Skeletal muscle expresses two of these isoforms; it mainly contains the muscle isozyme (M-type) and a small amount of the liver isozyme (L-type), whose expression is under hormonal control. Moreover, contractile activity regulates expression of muscular proteins related with glucose metabolism. Fast twitch rabbit skeletal muscle denervation or chronic low frequency stimulation can provide information about the regulation of this enzyme. Our results show an increase in Fru-2,6-P(2) concentration after 2 days of denervation or stimulation. In denervated muscle, this increase is mediated by a rise in liver PFK-2/FBPase-2 isozyme, while in stimulated muscle it is mediated by a rise in muscle PFK-2/FBPase-2 isozyme. In conclusion, our results show that contractile activity could alter the expression of PFK-2/FBPase-2.  相似文献   

19.
The regulation of metabolism and growth must be tightly coupled to guarantee the efficient use of energy and anabolic substrates throughout the cell cycle. Fructose 2,6-bisphosphate (Fru-2,6-BP) is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a rate-limiting enzyme and essential control point in glycolysis. The concentration of Fru-2,6-BP in mammalian cells is set by four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1–4), which interconvert fructose 6-phosphate and Fru-2,6-BP. The relative functions of the PFKFB3 and PFKFB4 enzymes are of particular interest because they are activated in human cancers and increased by mitogens and low oxygen. We examined the cellular localization of PFKFB3 and PFKFB4 and unexpectedly found that whereas PFKFB4 localized to the cytoplasm (i.e. the site of glycolysis), PFKFB3 localized to the nucleus. We then overexpressed PFKFB3 and observed no change in glucose metabolism but rather a marked increase in cell proliferation. These effects on proliferation were completely abrogated by mutating either the active site or nuclear localization residues of PFKFB3, demonstrating a requirement for nuclear delivery of Fru-2,6-BP. Using protein array analyses, we then found that ectopic expression of PFKFB3 increased the expression of several key cell cycle proteins, including cyclin-dependent kinase (Cdk)-1, Cdc25C, and cyclin D3 and decreased the expression of the cell cycle inhibitor p27, a universal inhibitor of Cdk-1 and the cell cycle. We also observed that the addition of Fru-2,6-BP to HeLa cell lysates increased the phosphorylation of the Cdk-specific Thr-187 site of p27. Taken together, these observations demonstrate an unexpected role for PFKFB3 in nuclear signaling and indicate that Fru-2,6-BP may couple the activation of glucose metabolism with cell proliferation.Neoplastic transformation and growth require a massive increase in glucose uptake and glycolytic flux not only for energy production but also for the synthesis of nucleic acids, amino acids, and fatty acids. A central control point of glycolysis is the negative allosteric regulation of a rate-limiting enzyme, phosphofructokinase-1 (PFK-1),2 by ATP (i.e. the Pasteur effect) (1, 2). When intracellular ATP production exceeds usage, ATP inhibits PFK-1 and glycolytic flux. Fructose 2,6-bisphosphate (Fru-2,6-BP) is a potent allosteric activator of PFK-1 that overrides this inhibitory influence of ATP on PFK-1, allowing forward flux of the entire pathway (35).The steady-state cellular concentration of Fru-2,6-BP is dependent on the activities of bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB), which are encoded by four independent genes (PFKFB1–4) (6, 7). The PFKFB3 mRNA is distinguished by the presence of multiple copies of an AUUUA instability motif in its 3′-untranslated region and the PFKFB3 protein product has a high kinase:phosphatase activity ratio (740:1) (8). PFKFB3 mRNA is overexpressed by rapidly proliferating transformed cells and the PFKFB3 protein is highly expressed in solid tumors and leukemias (811). PFKFB3 expression is increased in response to several mitogenic stimuli, including progesterone, serum, and insulin (1214). These studies indicate that the PFKFB3 enzyme may serve an essential function in the regulation of glucose metabolism during cell proliferation.The PFKFB3 mRNA is spliced into several variants that encode distinct carboxyl-terminal domains (9, 15). Importantly, the functional consequences of the disparate carboxyl-terminal variants of PFKFB3 are unknown. The mRNA splice variant 5 is the dominant PFKFB3 mRNA in human brain, several transformed cells, and colon adenocarcinoma tissues (9, 10). In the following series of experiments, we present data that the carboxyl-terminal domain of PFKFB3 variant 5 localizes the enzyme to the nucleus where its product, Fru-2,6-BP, increases the expression and activity of cyclin-dependent kinase-1. These data demonstrate a heretofore unidentified function of the PFKFB3 enzyme that is distinct from glycolysis, and provide a potential mechanism for the coupling of metabolism and proliferation.  相似文献   

20.
Michels PA  Rigden DJ 《IUBMB life》2006,58(3):133-141
Fructose 2,6-bisphosphate is a potent metabolic regulator in eukaryotic organisms; it affects the activity of key enzymes of the glycolytic and gluconeogenic pathways. The enzymes responsible for its synthesis and hydrolysis, 6-phosphofructo-2-kinase (PFK-2) and fructose-2,6-bisphosphatase (FBPase-2) are present in representatives of all major eukaryotic taxa. Results from a bioinformatics analysis of genome databases suggest that very early in evolution, in a common ancestor of all extant eukaryotes, distinct genes encoding PFK-2 and FBPase-2, or related enzymes with broader substrate specificity, fused resulting in a bifunctional enzyme both domains of which had, or later acquired, specificity for fructose 2,6-bisphosphate. Subsequently, in different phylogenetic lineages duplications of the gene of the bifunctional enzyme occurred, allowing the development of distinct isoenzymes for expression in different tissues, at specific developmental stages or under different nutritional conditions. Independently in different lineages of many unicellular eukaryotes one of the domains of the different PFK-2/FBPase-2 isoforms has undergone substitutions of critical catalytic residues, or deletions rendering some enzymes monofunctional. In a considerable number of other unicellular eukaryotes, mainly parasitic organisms, the enzyme seems to have been lost altogether. Besides the catalytic core, the PFK-2/FBPase-2 has often N- and C-terminal extensions which show little sequence conservation. The N-terminal extension in particular can vary considerably in length, and seems to have acquired motifs which, in a lineage-specific manner, may be responsible for regulation of catalytic activities, by phosphorylation or ligand binding, or for mediating protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号