首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation has been carried out to determine whether chromosome aberrations in peripheral blood lymphocytes reflect the elevated environmental dose of low-LET ionising radiation, mainly due to radiocesium from Chernobyl fallout, to the population living in Salzburg city. Sixteen volunteers were sampled 1 year after the Chernobyl accident. Two of these persons were also sampled before the accident, and then in 1988 and 1990. The radioactive environment of Salzburg city and the radiation burden of its inhabitants have been frequently determined before and after the accident. The Cs-137 content of the volunteers was measured by whole-body counting. The additional external plus internal radiation doses in the year 1987 to the tested individuals ranged between 15 and 68% of the former normal environmental burden. The aberration frequencies showed a sharp increase of about a factor 6 from the pre-Chernobyl dose rate (0.9. mGy/year) to the post-Chernobyl dose rate (about 2 mGy/year total) but then decreased again with higher additional dose. In the two persons analysed before and up to 4 years after the accident the aberration yield showed a significant increase from 1984/85 to 1987, a decrease in 1988 and a further decrease in 1990. If these last 2 values are plotted against additional dose they fit the curve of the pooled 1987 values. The dose-effect curves revealed the same tendency as we found in various previous investigations and support the assumption that repair enzymes could be triggered by a certain amount of damage to the DNA.  相似文献   

2.
Peripheral blood lymphocytes were irradiated in vitro with (213)Bi alpha particles at doses of 0, 10, 20, 50, 100, 200 and 500 mGy. Chromosome analysis was performed on 47-h cultures using single-color fluorescence in situ hybridization (FISH) to paint chromosomes 1, 3 and 5. The whole genome was analyzed for unstable aberrations to derive aberration frequencies and determine cell stability. The dose response for dicentrics was 33.60 +/- 0.47 x 10(-2) per Gy. A more detailed analysis revealed that the majority of aberrations scored as dicentrics were part of complex/multiple aberrations, with the proportion of cells containing complexes increasing with dose. Cells containing aberrations involving painted chromosomes (FISH aberrations) were further classified according to cell stability and complexity. The majority of cells with FISH aberrations were unstable. The proportion of aberrant FISH cells with complex/multiple aberrations ranged from 56% at 10 mGy to 89% at 500 mGy. A linear dose response for genomic frequencies of translocations in stable cells fitted the data from 0 to 200 mGy with a dose response of 7.90 +/- 0.98 x 10(-2) per Gy, thus indicating that they are likely to be observed in peripheral blood lymphocytes from individuals with past or chronic exposure to high-LET radiation. Comparisons with the dose response for low-LET radiation suggest an RBE of 13.6 for dicentrics in all cells and 3.2 for translocations in stable cells. Since stochastic effects of radiation are attributable to genetic changes in viable cells, translocations in stable cells may be a better measure when considering the comparative risks of different qualities of radiation.  相似文献   

3.
Chronological changes of chromosome aberration rates related to accumulated doses in chronically exposed humans and animals at a low-dose-rate have not been well studied. C3H female specific pathogen-free mice (8 weeks of age) were chronically irradiated. Chromosome aberration rate in mouse splenocytes after long-term exposure to low-dose-rate (LDR) gamma-rays was serially determined by conventional Giemsa method. Incidence of dicentrics and centric rings increased almost linearly up to 8000 mGy following irradiation for about 400 days at a LDR of 20 mGy/day. Clear dose-rate effects were observed in the chromosome aberration frequencies between dose rates of 20 mGy/day and 200 Gy/day. Furthermore, the frequencies of complex aberrations increased as accumulated doses increased in LDR irradiation. This trend was also observed for the incidences of micronuclei and trisomies of chromosomes 5, 13 and 18 in splenocytes, detected by micronucleus assay and metaphase fluorescence in situ hybridization (FISH) method, respectively. Incidences of 2-4 micronuclei and trisomy increased in mouse splenocytes after irradiation of 8000 mGy at a LDR of 20 mGy/day. These complex chromosome aberrations and numerical chromosome aberrations seem to be induced indirectly after radiation exposure and thus the results indicate that continuous gamma-ray irradiation for 400 days at LDR of 20 mGy/day induced chromosomal instability in mice. These results are important to evaluate the biological effects of long-term exposure to LDR radiation in humans.  相似文献   

4.
The paper presents the results of the cohortal biodosimetry carried out in 435 Chernobyl clean-up workers, who were surveyed with the conventional cytogenetic technique in terms from several days to 10 years after the end of their duties in the Chernobyl accident exclusive zone. An empirical model of the aberrant cell dynamics was utilized for the calculation of mean initial yields of dicentrics and centric rings in groups with different terms and duration of staying in the Chernobyl zone. Corresponding protracted irradiation doses estimated from aberration levels ranged from 79 to 670 mGy. The probabilistic distribution of the radiation doses was constructed by the applying the Bayesian analysis to initial individual chromosome exchange yields extrapolated to the exposure termination moment. This distribution was characterized by the mean dose about 460 mGy and maximum of probability density in the interval of 50-300 mGy. For the late somatic risk assessment in clean-up workers the probabilistic distribution of equivalentally-acute radiation doses was proposed; that had the mean value about 270 mGy, modal classes of 250-350 mGy and 99.8% of the probability density concentrated within the dose range from 0 to 1000 mGy.  相似文献   

5.
The yield of chromosome aberrations induced by gamma-radiation of 60Co in human blood lymphocytes in vitro at low doses (30 divided by 600 mGy) and low dose rates (0.70, 5.05, 59.2 mGy/min) was investigated. It was found that the observed level of chromosomal aberrations induced by gamma-irradiation was unaffected by the value of the dose rate when using constant dose rate and obtaining different doses by altering the exposure time. However, a relatively enhanced level of chromatid aberrations was found at 5.05 and 59.2 mGy/min dose rates in the dose range less than 250 mGy. We have found that the observed level of the sum of chromosomal aberrations induced by gamma-irradiation at doses less than 250 mGy and a dose rate of 59.2 mGy/min was essentially larger compared with the level extrapolated from high doses (above 300 mGy) using a linear-quadratic dose curve. This complied with our previous finding in 1976, 1977 when the enhanced level of dicentrics was only found at a high dose rate approximately 500 mGy/min. Such a non-linear cytogenetic effect does not manifest itself statistically significantly at dose rates of 0.70 and 5.05 mGy/min for the sum of chromosomal aberrations and does not manifest itself at all for dicentrics at all the examined dose rates.  相似文献   

6.
Results of multiyear cytogenetic study of children and teenagers living in areas, radioactive by contaminated after Chernobyl accident, were adduced. Mean density of 137Cs contamination in two compared living areas were 111 and 200 kBq/m2 and mean external doses accumulated for 1986-2001 were 6.7 and 11.4 mGy correspondingly. Averaged thyroid doses receives by subjects of all age groups in the second area were approximately 1.5 times higher than in the first area; in the youngest group (0-1 year) the doses were 114.3 and 174.3 mGy. During 17 years cytogenetic investigation approximately from 30% to 60% of examined persons were observed the increased level of chromosome aberrations in lymphocytes of peripheral blood. Average frequency of unstable aberrations (acentrics, dicentrics and centric rings) constituted about 0.4 per 100 cells (0.22 per 100 cells in controls) during all period of observation. Level of marker aberrations (dicentrics and centric rings) was increased almost all times of study and varied within 0.04-0.19 per 100 cell (0.03 in control group). The parallel investigation of frequency of stable aberrations by FISH method showed up their level about 3 times exceeding observed dicentrics level. Comparably higher indexes of cytogenetic disturbances were revealed in group exposed in utero during period of accident.  相似文献   

7.
The paper presents the results of the follow-up cytogenetic survey and biological dosimetry carried out in inhabitants of Pripiat' town and nearby villages, who were departured from the Chernobyl NPP 30-km exclusive zone during first days after the Chernobyl catastrophe. The unstable chromosome aberration level in inhabitants were significantly increased above control in terms up to 1 year after evacuation and declined gardually during next 14 years. In early period the cytogenetic damage frequency in evacuees showed no dependence on gender. The chromosome type aberration level appeared to be lower in young persons comparing with adults. The dicentrics plus centric rings yield had a positive correlation with duration of staying at Chernobyl zone. The average doses of protracted exposure were calculated from the dicentrics and centric rings yields; the dose estimations appeared to be 1.4 times higher in persons evacuated 3-11 days after the accident than that of in persons with shorter departure time. Uing the Bayesian analysis the probabilistic distribution of biological doses was constructed for the studied evacuees group. This distribution was characterized by a mean dose of 360 mGy, the modal doses of 200-450 mGy and 80% of probability density within the dose range 0-1000 mGy, that seems to be sufficient for considering the increased risk of late somatic radiation effects for this cohort.  相似文献   

8.
Informative studies of cancer risks associated with medical radiation are difficult to conduct owing to low radiation doses, poor recall of diagnostic X rays, and long intervals before cancers occur. Chromosome aberrations have been associated with increased cancer risk and translocations are a known radiation biomarker. Seventy-nine U.S. radiologic technologists were selected for blood collection, and translocations were enumerated by whole chromosome painting. We developed a dose score to the red bone marrow for medical radiation exposure from X-ray examinations reported by the technologists that they received as patients. Using Poisson regression, we analyzed translocations in relation to the dose scores. Each dose score unit approximated 1 mGy. The estimated mean cumulative red bone marrow radiation dose score was 42 (range 1-265). After adjustment for age, occupational radiation, and radiotherapy for benign conditions, translocation frequencies significantly increased with increasing red bone marrow dose score with an estimate of 0.007 translocations per 100 CEs per score unit (95% CI, 0.002 to 0.013; P = 0.01). Chromosome damage has been linked with elevated cancer risk, and we found that cumulative radiation exposure from medical X-ray examinations was associated with increased numbers of chromosome translocations.  相似文献   

9.
Investigation of application of chromosome aberrations of lymphocytes in peripheral blood for biological dosimetry purposes in remote (up to 40 years) period after acute exposure to doses of 1 Gy and more was carried out. The comparative analysis of frequency of unstable and stable (using FISH and G-banding methods) aberrations was performed for 24 subjects accidentally exposed to radiation on nuclear submarines during 1961-1985. Statistically significant increasing of frequency of dicentrics and centric rings was determined in the exposed subjects in remote period after exposure to compare with controls. Their sum frequency in the exposed group varied depending on ARS heaviness from 0.1 to 1.0 aberrations per 100 cells. In control group it was from 0 to 0.2 correspondingly. Translocation frequency (complete + incomplete) fixed by FISH method (2, 4, and 12 chromosomes) varied within the limits of 0.2-16.0 for exposed subjects and 0.3-1.26 translocations per genome per 100 cells for controls. Some examined persons (5 subjects) exposed to accident in 1985 had results of analysis of unstable chromosome aberration in acute period after exposure that allow to estimate obtained doses by dicentrics frequency which having good correlation with ARS heaviness. Individual dosed using traslocation frequency were defined retrospectively in 11 from 21 exposed persons. They correlate with calculated physics doses and doses estimated by haematolotical parameters in acute period and also doses obtained by ESR spectroscopy of tooth enamel in remote period.  相似文献   

10.
Eighteen Ukrainian evacuees from the Chernobyl exclusive zone, twenty one inhabitants of radioactively contaminated areas of Belarus and twelve control donors age-matched to the exposed persons were investigated 14-15 years after the Chernobyl accident for chromosomal aberration yields detected in blood lymphocytes by fluorescence in situ hybridisation technique. Unstable aberration yields measured in both Chernobyl cohorts were close to the background frequencies. Positive age-dependence trends in control donors were determined for the all type stable aberration levels. In evacuees the tendency for diminishing the difference between them and controls for stable aberration levels with persons' age increasing was found. The total stable chromosome exchange yields in evacuees 46-55 years old and inhabitants of areas with low contamination level didn't exceed the control values, but for younger evacuees and inhabitants of sufficiently contaminated regions the statistical increase above the age relevant background meanings was detected for this end-point. The advantages of using the FISH-detectable stable aberrations and particularly the total level of stable chromosome exchanges as the end-points for retrospective biological indication of past radiation exposure in Chernobyl cohorts were discussed.  相似文献   

11.
Effect of low-dose radiation on repair of DNA and chromosome damage   总被引:1,自引:0,他引:1  
In this report results of studies on the effect of different doses of low LET (linear energy transfer) radiations on the unscheduled DNA synthesis (UDS) and DNA polymerase activity as well as the induction of adaptive response in bone marrow cells (BMC) by low dose radiation were presented. It was found that whole-body irradiation (WBI) with X-ray doses above 0.5 Gy caused a dose-dependent depression of both UD5 and DNA polymerase activity, while low dose radiation below 250 mGy could stimulate the DNA repair synthesis and the enzyme activity. WBI of mice with low doses of X-rays in the range of 2-100 mGy at a dose rate of 57.3 mGy per minute induced an adaptive response in the BMC expressed as a reduction of chromosome aberrations following a second exposure to a larger dose (0.65 mGy). It was demonstrated that the magnitude of the adaptive response seemed to be inversely related to the induction dose. The possibility of induction of adaptive response in GO phase of the cell cycle and the possibility of a second induction of the adaptive response were discussed.  相似文献   

12.
Analysis of peripheral blood lymphocytes in children born after the accident at the Chernobyl Nuclear Power Plant in the period from 1987 to 2004 (permanent residents of territories contaminated with radionuclides, n = 92; and children of irradiated fathers-liquidators, n = 88) revealed increased levels of aberrant cells (ACs) and aberrations of the chromosomal type as compared to the control (P < 0.05). In three subgroups of children with different initial AC frequencies (children with high AC frequencies, ≥3%; children with medium AC frequencies, 2%; and children with low AC frequencies, ≤1%), the levels of aberrations of the chromosomal type are increased as compared to the control (P < 0.05). The levels of aberrant cells and chromosome aberrations (CAs) in the subgroup of children with ≥3% frequencies significantly differ from those in the subgroup of children with ≤1% AC frequencies. No dependence of the AC and CA frequencies on the year of birth after the Chernobyl accident was revealed. After fractional and single γ-irradiation (137Cs) of blood in vitro in the 10–30 cGy dose range, the average CA frequencies in the first and second mitoses increased in a similar way depending on the initial AC frequencies in the children and parents. All these results suggest an individual character of genomic instability induced by low radiation doses and its transgenerational phenomenon in the organisms of children.  相似文献   

13.
The effectiveness of a 70-MeV proton beam in the induction of chromosome aberrations was studied. We employed peripheral lymphocytes and analyzed the frequencies of dicentrics and rings after irradiation at doses ranging from 0.1 to 8.0 Gy at various depths within a Lucite phantom. The frequency of chromosome aberrations after irradiation with an unmodulated proton beam at 5 mm showed a dose-response relationship similar to that of 60Co gamma rays. However, irradiation at greater depths with the spread-out Bragg peak induced higher aberration frequencies at doses lower than those with gamma rays. Furthermore, the distribution curve of chromosome aberration frequencies as a function of depth was found to be slightly different from the physically measured depth-dose curve. With the spread-out Bragg peak the biological effects were more marked at greater depths, resulting in a distribution of relative biological effectiveness values. The results obtained from chromosome aberration analysis may not be related directly to those for the relationship between dose and cell killing. Slight differences in values for relative biological effectiveness due to the change of dose and site of proton beam irradiation may not be important for practical proton beam therapy, but may be important in the prevention of late radiation injuries.  相似文献   

14.
The aim of the present study was to investigate whether chromosome 16p presents breakpoint regions susceptible to radiation-induced rearrangements. The frequencies of translocations were determined by fluorescence in situ hybridization (FISH) using cosmid probes C40 and C55 mapping on chromosome 16p, and a chromosome 16 centromere-specific probe (pHUR195). Peripheral lymphocytes were collected from normal individuals and from seven victims of 137Cs in the Goiania (Brasil) accident (absorbed doses: 0.8-4.6 Gy) 10 years after exposure. In vitro irradiated lymphocytes (3 Gy) were also analyzed. The mean translocation frequency/cell obtained for the 137Cs exposed individuals was 2.4-fold higher than the control value (3.6 x 10(-3) +/- 0.001), and the in vitro irradiated lymphocytes showed a seven-fold increase. The genomic translocation frequencies (FGs) were calculated by the formula Fp = 2.05 fp(1-fp)FG (Lucas et al., 1992). For the irradiated lymphocytes and victims of 137Cs, the FGs calculated on the basis of chromosome 16 were 2- to 8-fold higher than those for chromosomes 1, 4 and 12. Our results indicate that chromosome 16 is more prone to radiation-induced chromosome breaks, and demonstrate a non-random distribution of induced aberrations. This information is valuable for retrospective biological dosimetry in case of human exposure to radiation, since the estimates of absorbed doses are calculated by determining the translocation frequency for a sub-set of chromosomes, and the results are extrapolated to the whole genome, assuming a random distribution of induced aberrations. Furthermore, the demonstration of breakpoints on 16p is compatible with the reports about their involvement in neoplasias.  相似文献   

15.
The main results of the complex examination of the genome instability are presented in children constantly living on territories contaminated with radionuclides as a result of the accident at the CNPP (Novozybkov district, Bryansk region, 16-18 Ci/km2, 137Cs) and in children exposed to low-intensity radiation at different stages of ontogenetic development: children exposed to postnatal irradiation in 1986 (born before the accident), children exposed to intrauterine irradiation during the accident in 1986, children of irradiated parents born after the accident in 1987-1992 and in 1994-2000. In all examined groups of irradiated children increased frequencies of certain radiation-induced chromosome aberrations were observed as well as a reduced activity of unscheduled synthesis of genomic DNA in lymphocytes and peculiarities in individual heterozygosity of genes encoding structural and enzymatic proteins of blood. An increased radiosensitivity of lymphocyte genomes to testing in vitro irradiation and peculiarities in the dynamics of the frequencies of chromosome aberrations and sister chromatid exchanges in 3 cell generations were revealed in children from the contaminated areas. The data obtained suggest a systemic character of dysgenomic effects, the reality of induction of genome instability in the growing organism of children exposed to low-intensity radiation at low doses the expression of which is determined by individual genotypic features of the organism. Biological significance of the phenomenon of the post-radiation genome instability, its relation to the state of health and the pathogenetic role in the development of somatic pathology are postulated.  相似文献   

16.

This study considers the exposure of the population of the most contaminated Gomel and Mogilev Oblasts in Belarus to prolonged sources of irradiation resulting from the Chernobyl accident. Dose reconstruction methods were developed and applied in this study to estimate the red bone-marrow doses (RBMs) from (i) external irradiation from gamma-emitting radionuclides deposited on the ground and (ii) 134Cs, 137Cs and 90Sr ingestion with locally produced foodstuffs. The mean population-weighted RBM doses accumulated during 35 years after the Chernobyl accident were 12 and 5.7 mGy for adult residents in Gomel and Mogilev Oblasts, respectively, while doses for youngest age groups were 20–40% lower. The highest mean area-specific RBM doses for adults accumulated in 1986–2021 were 63, 56 and 46 mGy in Narovlya, Vetka and Korma raions in Gomel Oblast, respectively. For most areas, external irradiation was the predominant pathway of exposure (60–70% from the total dose), except for areas with an extremely high aggregated 137Cs soil to cow’s milk transfer coefficient (≥?5.0 Bq L?1 per kBq m?2), where the contribution of 134Cs and 137Cs ingestion to the total RBM dose was more than 70%. The contribution of 90Sr intake to the total RBM dose did not exceed 4% for adults and 10% for newborns in most raion in Gomel and Mogilev Oblasts. The validity of the doses estimated in this study was assessed by comparison with doses obtained from measurements by thermoluminescence dosimeters and whole-body counters done in 1987–2015. The methodology developed in this study can be used to calculate doses to target organs other than RBM such as thyroid and breast doses. The age-dependent and population-weighted doses estimated in this study are useful for ecological epidemiological studies, for projection of radiation risk, and for justification of analytical epidemiological studies in populations exposed to Chernobyl fallout.

  相似文献   

17.
The chromosome damage induced by the doses of y-irradiation 6)Co in peripheral blood lymphocytes was studied using different cytogenetic assays. Isolated lymphocytes were exposed to 0.01-1.0 Gy, stimulated by PHA, and analysed for chromosome aberrations at 48 h postirradiation by metaphase method, at 49 h--by the anaphase method, at 58 h by micronucleus assay with cytochalasin B and, additionally, micronuclei were counted at 48 h on the slides prepared for the metaphase analysis without cytochalasin B. Despite of the quantitative differences in the amount of chromosome damage revealed by different methods all of them demonstrated complex nonlinear dose dependence of the frequency of aberrant cells and aberrations. At the dose range from 0.01 Gy to 0.05-0.07 Gy the cells had the highest radiosensitivity mainly due to chromatid-type aberration induction. With dose increasing the frequency of the aberrant cells and aberrations decreased significantly (in some cases to the control level). At the doses up to 0.5-0.7 Gy the dose-effect curves have become linear with the decreased slope compare to initial one (by factor of 5 to 10 for different criteria) reflecting the higher radioresistance of cells. These data confirm the idea that the direct linear extrapolation of high dose effect to low dose range--the procedure routinelly used to estimate genetic risk of low dose irradiation--cannot be effective and may lead to underestimation of chromosome damage produced by low radiation doses. Preferences and disadvantages of used cytogenetic assays and possible mechanisms of low ionising radiation doses action were discussed.  相似文献   

18.
The dose-response for radiation-induced chromosome aberrations in human lymphocytes is usually fitted to the quadratic model. This assumes that the slope is essentially linear at low doses. Empirical observations of linearity at less than 200 mGy are, however, sparse. Some data have been published indicating a non-linear (threshold) response and these are reviewed. In particular one study with X-rays showed a plateau in response up to 50 mGy and with a significant dip below the control level at 4 mGy. The mechanism proposed to explain non-linearity is that low doses stimulate the enzymic repair capability of lymphocytes. Preliminary data are presented from a large experiment by six laboratories in which the low dose-response for X-rays has been re-examined. The plateau in the dose-response relationship, if it exists, does not extend to doses above approximately 10 mGy. No irradiated cells yielded aberration levels significantly below the control. Over the range 0-300 mGy the response can be fitted to a linear regression. There are, however, variations in sensitivity between cells from different donors. An unexpected finding was that some lymphocytes contained greater than 1 exchange aberrations. This may indicate a small subset of cells that are especially susceptible to the induction of aberrations by low doses.  相似文献   

19.
Unstable chromosome aberrations induced by in vitro irradiation with zero plus seven low doses of 14.8 MeV D-T neutrons in the range 3.55-244 mGy have been analysed in human peripheral blood lymphocytes. In order to obtain the required large numbers of scored cells for such low doses, fourteen laboratories participated in the experiment. The dose responses for dicentrics, excess acentrics and total aberrations, fitted well to the Y = alpha D model. The alpha coefficient of yield for dicentrics, 1.60 +/- 0.07 X 10(-2) Gy-1, compares well with the values obtained in previous studies with D-T neutrons at somewhat higher doses. Results from a previous collaborative study using 250 kVp X-rays over a comparable dose range indicated the possible existence of a threshold below 50 mGy. In the present study there is no clear evidence for neutrons for such a threshold. However, the data were insufficient to permit the rejection of a possible threshold below approximately 10 mGy.  相似文献   

20.
Epidemiological studies have found that children living around Chernobyl have rates of respiratory tract illness that are higher than those seen in the area before the Chernobyl accident. The present study investigates the possible effects of radiation exposure on the composition of peripheral blood lymphocyte subsets in children living around Chernobyl. Two hundred nineteen healthy children and children suffering from recurrent respiratory diseases aged 6-14 years who received both low doses of radiation to the whole body from (137)Cs and various doses of radiation to the thyroid from (131)I as fallout from the accident were assessed 5 (1991) and 8-10 years (1994-1996) after the accident. A total of 148 healthy children and children suffering from recurrent respiratory diseases living in noncontaminated areas were also evaluated as controls. Children with recurrent respiratory diseases who lived around Chernobyl had a significantly lower percentage of T cells and a higher percentage of NK cells compared to control children with recurrent respiratory diseases during the study period. In contrast to the findings in 1991, a significant decrease in the percentage of helper-inducer cells was observed in children with recurrent respiratory diseases in 1994-1996. In contrast to 1991, there is a positive correlation between the percentage of helper-inducer cells, the helper-inducer/cytotoxic-suppressor cell ratio, and the dose of radiation to the thyroid of healthy children from (131)I in 1994-1996. There was a positive correlation between the dose of radiation to the thyroid from (131)I and the percentage of helper-inducer cells in children with recurrent respiratory diseases 5 years (1991) after the accident. Further, the dose of radiation to the thyroid from (131)I correlated negatively with the percentage of T and B cells and positively with the percentage of NK cells in children with recurrent respiratory diseases 8-10 years (1994-1996) after the accident. These results raise the possibility that long-term exposure to low doses of (137)Cs may have altered the composition of the T-cell subsets and NK cells in children with recurrent respiratory diseases. The differences in the composition of the peripheral blood lymphocyte subsets between healthy children and those with recurrent respiratory diseases may be attributed to long-term low-dose exposure of the whole body to radiation from (137)Cs and exposure of the thyroid to radiation from (131)I subsequent to the Chernobyl accident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号