首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have examined the surface (0–10 cm) soil characteristics of sites after bamboo (Cephalostachyum pergracile) mass flowering and death (DB sites) in comparison with sites with living bamboo (Bambusa tulda) (LB sites) in a seasonal tropical forest in Thailand. One year after bamboo flowering the DB sites were acidic with lower concentrations of exchangeable Ca and Mg and soil nitrogen than the LB sites. Therefore, although leaf and root litter of the dead bamboo was deposited in the DB sites after bamboo flowering, soil nutrient status decreased.  相似文献   

2.
Over the last decade, bamboo has emerged as an interesting plant for the treatment of various polluted waters using plant-based wastewater treatment systems. In these systems, nitrogen and phosphorous concentrations in wastewater can exceed plant requirements and potentially limit plant growth. The effects of two nutrient rates on the growth of seven bamboo species were assessed in a one-year experiment: Dendrocalamus strictus, Thyrsostachys siamensis, Bambusa tuldoides, Gigantochloa wrayi, Bambusa oldhamii, Bambusa multiplex and Bambusa vulgaris. Nutrient rates were applied with a 20:20:20 NPK fertilizer as 2.6 and 13.2 t.ha.yr?1NPK to three-year-old bamboo planted in 70 L containers. Morphological characters, photosynthetic responses, and NPK content in bamboo tissues were investigated. Under high-nutrient supply rate, the main trend observed was an increase of culm production but the culms’ diameters were reduced. For the seven species, the aboveground biomass yield tended to increase with high-nutrient rate. Increasing in nutrient rates also improved the photosynthetic activity which is consistent with the increase of nitrogen and phosphorus contents measured in plant tissues. All the bamboo species tested appears suitable for wastewater treatment purposes, but the species Bambusa oldhamii and Gigantochloa wrayi showed the higher biomass yield and nutrient removal.  相似文献   

3.
Canopy closure, leaf flush, and ramet recruitment in Bambusa arnhemica, a semelparous, clumping bamboo from the Australian monsoonal tropics, were monitored monthly for 2.5 years at three sites along a flood gradient. Bambusa arnhemica was facultatively deciduous, remaining evergreen at a downslope riparian site but suffering total loss of canopy on a hillside for up to 4 mo during the dry season. Leaf flush was flexible, occurring after as little as 25 mm of rain at the onset of wet season, in response to unusual dry season storms, and apparently also in response to fire independent of rainfall. New culms emerged soon after leaf flush early in the wet season. Culm growth took place during the middle and late wet season, with peak elongation rates of 15–30 cm/day. Some growth continued into the dry season, mostly on branches and leaves of new culms at riparian sites. Not all culms completed elongation before the onset of the dry season, and those that did not were permanently stunted. The demands of culm elongation may limit the occurrence of bamboo in wet‐dry climates to areas with predictable and sustained wet season rainfall, but the flexibility of branching and leaf processes facilitates coping with, and permits exploitation of less predictable pre‐ and postmonsoonal rains. The bamboo growth form and phenological patterns differ markedly from those of dicotyledonous trees and shrubs.  相似文献   

4.
苦竹(Pleioblastus amarus)是优质笋材兼用竹种,分布广。为探究界面区苦竹分株秆形及地上构件生物量分配格局的变化特征,解析苦竹对异质生境适应机制,该研究选取了相邻的苦竹林和苦竹-杉木(Cunninghamia lanceolata)混交林两种林分类型,分别测定了苦竹林和混交林中心区及界面区不同龄级立竹秆形和秆、枝、叶的生物量,分析立竹秆形及地上构件生物量积累、分配、异速生长关系的差异。结果表明:(1)界面区1 a立竹生物量积累及分配差异增大,其中苦竹林界面区各构件相对生物量和叶生物量分配比例提高,而混交林界面区各构件相对生物量和叶生物量分配比例降低; 2 a立竹生物量积累及分配比例的差异缩小,界面区两边2 a立竹各构件相对生物量和生物量分配比例均无明显差异。(2)界面区立竹秆形特征及1 a立竹各构件生物量异速生长关系均无明显变化,而苦竹林界面区2 a立竹秆的增长速率提高,枝、叶的增长速率降低。综上认为,苦竹通过权衡资源分配关系,明显改变界面区立竹秆形及生物量分配格局,以提高克隆分株对异质环境的适合度。  相似文献   

5.
Bambusa arnhemica is a bamboo species endemic to northern Australia. We isolated and characterized nine microsatellite loci from this species. The number of alleles ranged from 2 to 16 with an average of 6.8, and expected heterozygosities from 0.40 to 0.84 with an average of 0.69. The markers described here will be useful to investigate clump structure, evolution of the bamboo flowering wave, patterns of gene flow, and the biogeographic history of B. arnhemica in Australia.  相似文献   

6.
7.

Climate change models predict a strong reduction of average precipitation, especially of the summer rainfall, and an increase in intensity and frequency of drought events in the Mediterranean region. The research aim was to understand how four dominant grass species (Arrhenatherum elatius, Cynosurus cristatus, Elymus repens, and Lolium perenne) in sub-Mediterranean meadows (central Apennines, Italy) modulate their resource acquisition and conservation strategies to short-term variation of the pattern of summer water supply. During summer 2016, using a randomized block design, we tested the effect of three patterns of summer water supply, differing in water amount and watering frequency, on leaf area, leaf dry mass, specific leaf area (SLA), leaf senescence, and plant height. Our results showed that dominant grass species can modulate their strategies to variation of the pattern of summer water supply, but the response of leaf traits and plant height is mediated by the set of functional characteristics of the species. E. repens and A. elatius, with summer green leaves, lower SLA, later flowering period, and deeper roots, were less influenced by changes in water amount. C. cristatus and L. perenne, which display acquisitive strategies (persistent leaves, higher SLA values), earlier flowering, and shallower roots were more influenced by changes in the pattern of summer water supply. Our results suggest that a short-term decrease in water availability might affect primarily species with trait syndromes less adapted to face summer drought.

  相似文献   

8.
Sasa borealis, a monocarpic species of dwarf bamboo, is widely distributed throughout Korea. It dominates forest floors, thereby inhibiting mainly the biodiversity. Although it flowers very rarely, examples have recently been observed in multiple locations, providing a good opportunity to study reproduction phenomena, and to aid in biodiversity restoration. Therefore, we investigated the nationwide timing of flowering events by using data collected from a social network service (SNS). We also more closely examined flowering and decline event, focusing at the patch and culm levels on Mt. Jeombong. We then analyzed the main factors affecting flowering. Our SNS and survey results showed that S. borealis is in a current flowering cycle that started in 2013 and continues to the present (83% of all events happening within this period) with a peak in 2015 (48% of the cases occurring in that year). This clearly demonstrated nationwide, synchronized, and massive flowering. Although the culm density in patches was not related to flowering, patches with large culms tended to flower (F = 8.241, p = 0.01). We suspected that this nationwide flowering event was triggered by prolonged drought during the spring months of 2014 and 2015 (F = 5.207, p < 0.05), which led to concurrent, massive flowering in patches mature enough to do so. Because this species prefers a wet habitat, we concluded that severe, prolonged drought induced environmental stress for those plants. After flowering, culms in those particular patches tended to die off within one year. This large-scale synchronized decline should have an enormous effect on the vegetation dynamics of a forest dominated and suppressed by Sasa. Future investigations might incorporate methods of ecological control and manipulation to increase biodiversity there.  相似文献   

9.
Bamboo dominance reduces tree regeneration in a disturbed tropical forest   总被引:4,自引:0,他引:4  
Human disturbance may change dominance hierarchies of plant communities, and may cause substantial changes in biotic environmental conditions if the new dominant species have properties that differ from the previous dominant species. We examined the effects of bamboos (Bambusa tulda and Cephalostachyum pergracile) and their litter on the overall woody seedling abundance, species richness and diversity in a mixed deciduous forest in northeastern Thailand. These bamboo species are gaining dominance after human disturbance. Our results show that seedling abundance and species richness were reduced by bamboo canopies. Seedling abundance and species diversity under bamboo canopies were affected by bamboo litter, whereas seedling abundance and species diversity outside bamboo canopies did not respond to the mixed-tree litter manipulation. Removal of bamboo litter increased seedling abundance and species diversity. However, bamboo litter addition did not affect seedling abundance or species diversity compared to either control or litter removal. This may indicate that the effect of natural amount of bamboo litter is as high as for litter addition in preventing seedling establishment by woody species and hence in minimizing resource competition. We conclude that undergrowth bamboos and their litter affect tree seedling regeneration differently from mixed-tree litter, causing changes in plant community composition and species diversity. Increased human disturbance, causing a shift in dominance structure of these forests, may result in a concomitant reduction in their overall woody species abundance, richness and diversity. Thus, management of bamboos by controlling their distribution in areas of high bamboo density can be an important forest restoration method.  相似文献   

10.
The axillary bud-break and multiple bud induction were obtained from the nodal explants of field-grown culms of Bambusa tulda in liquid Murashige and Skoog’s (MS) basal medium supplemented with 2.0 mg l?1 6-benzylaminopurine (BAP), 1.0 mg l?1 kinetin (Kn) and 8% coconut water. Multiple shoots regenerated and proliferated in the liquid MS medium fortified with 3.0 mg l?1 indolebutyric acid (IBA). While, in B. balcooa, MS medium supplemented with 2.5 mg l?1 BAP and 1.0 mg l?1 Kn induced axillary bud-break, bud multiplication and subsequently shoot elongation was obtained after three passages in the same medium. A clump with at least three shoots of both these bamboo species was used as propagule for successful root induction in half-strength MS liquid basal medium supplemented with 0.2 mg l?1 IBA. Sympodial type of microrhizomes developed in B. tulda and the regenerants acclimatized in the soil easily. Explants collected in the month of October produced best in vitro regeneration response in these two bamboo species. Endogenous phenol content proved detrimental for efficient shoot regeneration. The clonal fidelity of the regenerants was established by RAPD analysis advocating clonal propagation through axillary meristem culture of B. balcooa and B. tulda is reliable for commercial exploitation.  相似文献   

11.
Carbon dioxide emission from bamboo culms   总被引:1,自引:0,他引:1       下载免费PDF全文
Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.  相似文献   

12.
冠层高度对毛竹叶片光合生理特性的影响   总被引:2,自引:0,他引:2  
借助LI-6400便携式光合作用系统,研究了冠层高度对不同林龄毛竹(Phyllostachys pubescens)叶片光合生理特性和水分利用效率(WUE)的季节性影响,为促进毛竹林碳汇能力和生产力提升的林分结构调整等可持续栽培技术提供理论依据。结果表明:(1)出笋期,不同竹龄毛竹叶片净光合速率(Pn)和蒸腾速率(Tr)的日均值呈现出冠层上部小于冠层下部的梯度变化趋势,且2a生毛竹不同冠层Pn日均值大于3a生毛竹;孕笋行鞭期,不同林龄毛竹各时间点Pn值和日均值、以及2年生毛竹各时间点的Tr值均为冠层上部大于冠层下部。各生长季节,不同林龄毛竹个体叶片的气孔导度(Gs)均与Tr的变化趋势一致。(2)2年生毛竹各季节仅冠层上部叶片会出现"光合午休",而3年生毛竹仅于出笋期时各冠层叶片出现"光合午休"现象。(3)出笋期毛竹叶片WUE日均值随着冠层高度增加而增加,这种变化趋势不受竹龄影响;而孕笋行鞭期,仅2年生毛竹叶片WUE日均值随着冠层高度增加而下降。不同冠层高度的孕笋行鞭期毛竹叶片WUE日均值都显著高于出笋期;冠层高度对毛竹叶片气体交换特性和WUE的影响受生长发育关键期的季节因素影响,且毛竹叶片WUE与Gs之间存在负相关关系,其不受毛竹个体年龄和叶片冠层高度影响。(4)不同生长季节各冠层叶绿素a/b值均随着冠层高度下降而降低,不同林龄毛竹叶片叶绿素含量基本随着冠层自上而下呈逐渐增加的趋势。各生长季节,不同林龄个体叶片氮素含量、比叶重随冠层高度垂直变化趋势与叶片Pn日均值的垂直变化趋势一致。研究认为,毛竹不同冠层部位叶片通过改变形态、氮素含量来适应不同生长季节生长环境的变化,以便充分利用光能提高光合能力。  相似文献   

13.
为探讨观赏竹叶片异质性的机理,根据麻竹(Dendrocalamus latiflorus)和绿竹(Bambusa oldhamii)叶绿体基因组序列开发SSR分子标记。结果表明,在麻竹和绿竹叶绿体基因组中分别存在87和86个SSR位点,其中三核苷酸重复类型最多,其次为单核苷酸重复类型。根据SSR位点设计21对引物,其中11对引物对6竹种能够扩增出稳定、清晰的条带,且具有多态性,引物有效率达到52.4%。聚类分析表明,6竹种可分为两大类群,与形态学分类结果基本一致。有4对引物在菲白竹(Pleioblastus fortunei)和白纹椎谷笹(Sasaella glabra f.albo-striata)的花叶中具有多态性,可作为区分观赏竹叶片异质性的分子标记。  相似文献   

14.
Understanding which environmental variables and traits underlie adaptation to harsh environments is difficult because many traits evolve simultaneously as populations or species diverge. Here, we investigate the ecological variables and traits that underlie Mimulus laciniatus’ adaptation to granite outcrops compared to its sympatric, mesic‐adapted progenitor, Mimulus guttatus. We use fine‐scale measurements of soil moisture and herbivory to examine differences in selective forces between the species’ habitats, and measure selection on flowering time, flower size, plant height, and leaf shape in a reciprocal transplant using M. laciniatus × M. guttatus F4 hybrids. We find that differences in drought and herbivory drive survival differences between habitats, that M. laciniatus and M. guttatus are each better adapted to their native habitat, and differential habitat selection on flowering time, plant stature, and leaf shape. Although early flowering time, small stature, and lobed leaf shape underlie plant fitness in M. laciniatus’ seasonally dry environment, increased plant size is advantageous in a competitive mesic environment replete with herbivores like M. guttatus’. Given that we observed divergent selection between habitats in the direction of species differences, we conclude that adaptation to different microhabitats is an important component of reproductive isolation in this sympatric species pair.  相似文献   

15.
The giant panda (Ailuropoda melanoleuca) is classified as a carnivore, yet subsists on a diet comprised almost exclusively of bamboo. Wild and captive giant pandas use highly selective foraging behaviors for processing and consuming bamboo. These behaviors are for the first time quantified in captive giant pandas over a 5‐year period of time showing highly specific seasonal trends. Giant panda feeding behavior was recorded using live video observations of two giant pandas housed at the Memphis Zoo from November 2003 to June 2008. Leaf was the primary plant part consumed from June to December, whereas culm was consumed primarily from February to May, with both bears displaying similar seasonal shifts in plant part consumption. From May to June, leaf consumption increased significantly (P‐values<0.001); from June to August, leaf consumption remained high and stable. From December to March, leaf consumption decreased significantly (P‐values<0.001). Specific behaviors for bamboo leaf and culm consumption were also observed. Both bears formed wads of leaves before ingestion while feeding on leaf, but the male employed this feeding behavior more often than the female (54 and 33%, respectively). Both bears used similar culm‐stripping behavior (26 and 25%), used to remove the outer layer and isolate the pith for consumption. This study indicates that unique seasonal foraging behaviors observed in wild pandas are also apparent in captive animals in relation to plant part selectivity and feeding behaviors. Zoo Biol 29:470–483, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
探究竹子化学计量特征对生长阶段和海拔的响应对于了解其生理生态特征及生长适应策略至关重要。对武夷山沿海拔分布的五种典型竹子叶、枝、秆的碳(C)、氮(N)、磷(P)含量及化学计量内稳态指数(H)进行两个生长阶段的测定。结果显示不论生长阶段的变化,各器官N、P含量的变异系数均显著大于C含量,且秆的N、P含量变异系数要显著大于叶片和竹枝,但不同生长阶段并未改变秆的N∶P (12∶1)。毛竹4月份枝和8月份叶的N、P含量均随海拔增加而降低,而箬竹叶的N、P含量均随海拔增加而增加。海拔和生长阶段的交互作用显著提高了竹秆N含量对生长阶段变化的响应。竹叶N和秆的N、P含量在不同生长阶段具有明显的内稳性调控机制,但竹枝N、P的内稳性特征表现不明显。总而言之,这些结果一方面反映了武夷山五种竹子偏向于选择维持叶N含量的内稳态机制,另一方面调节秆N、P含量的协变来应对海拔和生长阶段变化中养分的利用策略。  相似文献   

17.
We investigated mechanical dietary properties of sympatric bamboo lemurs, Hapalemur g. griseus, H. aureus, and H. (Prolemur) simus, in Ranomafana National Park, Madagascar. Each lemur species relies on bamboo, though previous behavioral observations found that they specialize on different parts of a common resource (Tan: Int J Primatol 20 1999 547–566; Tan: PhD dissertation 2000 State University of New York, Stony Brook). On the basis of these earlier behavioral ecology studies, we hypothesized that specialization on bamboo is related to differences in mechanical properties of specific parts. We quantified mechanical properties of individual plant parts from the diets of the bamboo lemur species using a portable tester. The diets of the Hapalemur spp. exhibited high levels of mechanical heterogeneity. The lemurs, however, could be segregated based on the most challenging (i.e., mechanically demanding) foods. Giant bamboo culm pith was the toughest and stiffest food eaten, and its sole lemur consumer, H. simus, had the most challenging diet. However, the mechanical dietary properties of H. simus and H. aureus overlapped considerably. In the cases where lemur species converged on the same bamboo part, the size of the part eaten increased with body size. Plant parts that were harvested orally but not necessarily masticated were the most demanding, indicating that food preparation may place significant loads on the masticatory apparatus. Finally, we describe how mechanical properties can influence feeding behavior. The elaborate procurement processes of H. simus feeding on culm pith and H. griseus and H. aureus feeding on young leaf bases are related to the toughnesses of protective coverings and the lemurs' exploitation of mechanical vulnerabilities in these plants. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
The phenology and morphology of Mediterranean plants are constrained by drought in summer and cold temperatures in winter. In this study we examine how climatic factors and phylogenetic constraints have shaped variation in the phenology and morphology of 17 species of the genus Cyclamen cultivated in uniform garden conditions. We quantify the extent to which traits differ among subgenera and thus represent conserved traits within evolutionary lineages. We also explore whether leaf, flowering and seed-release phenology are correlated among species, and thus whether variation in flowering phenology results from selection on dispersal phenology. Our results show a significant influence of subgenus membership on leaf and flowering phenology but not on morphological traits or the timing of seed release. Among-species variation in foliage height, leaf size and seed mass (but not in floral traits) is correlated with chromosome number. Leaf traits show that species with a shorter vegetative period have a higher capacity for resource acquisition. Major phenological shifts, i.e. spring vs. autumn flowering and a decoupling of leaf and flower phenology in autumnal flowering species, thus occurred prior to the diversification of species in each subgenus and not as a response to selection on dispersal timing. Leaf and flowering phenology illustrate a gradient of strategies from autumn flowering in the absence of leaves (hysteranthous species) to spring flowering with fully developed foliage (synanthous species). In the former, flowering is uncoupled from resource acquisition by simultaneous photosynthesis, indicative that hysteranthy is a response to temporal unpredictability in the onset of rain after the summer drought. Our results support the idea that whereas leaf development is controlled primarily by moisture availability and secondarily by temperature, flowering is temperature dependent, above a minimum moisture threshold. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145 , 469–484.  相似文献   

19.
Yeh SH  Lin CS  Wu FH  Wang AY 《Planta》2011,234(6):1179-1189
A cDNA, BohLOL1, encoding a protein containing three zf-LSD1 (zinc finger-Lesions Simulating Disease resistance 1) domains was cloned from growing bamboo (Bambusa oldhamii) shoots. A phylogenetic analysis revealed that BohLOL1 is a homolog of Arabidopsis LSD1 and LOL1 (LSD-one-like 1), which have been reported to act antagonistically in controlling cell death via the maintenance of reactive oxygen species homeostasis. The BohLOL1 gene was differentially expressed in various bamboo shoot tissues and was upregulated in shoots with higher rates of culm elongation. The expression level of this gene in multiple shoots of bamboo, which were cultured in vitro, was also upregulated by auxins, cytokinins, pathogen infection, 2,6-dichloroisonicotinic acid (a functional analog of salicylic acid), and hydrogen peroxide. The results suggest that BohLOL1 participates in bamboo growth and in the response to biotic stress. The DNA-binding assays and subcellular localization studies demonstrated that BohLOL1 is a nuclear DNA-binding protein. BohLOL1 might function through protein-DNA interactions and thus affect the expression of its target genes. The results of this study extend the role of plant LSD1 and LOL1 proteins from the regulation of cell death to cell growth. The growth-dependent up-regulation of BohLOL1 expression, which uniquely occurs in growing bamboo, might be one of the critical factors that contribute to the rapid growth of this remarkable plant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号