首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
The concentrations of Fe, Mn, Ni, Pb and V in water, sediment and the gill, liver and muscle tissues of Synodontis resupinatus, Heterotis niloticus and Clarias gariepinus, all commercially important fish species of the lower Niger River, were investigated in 2015. Water, sediment and fish samples were collected for six months and heavy metals were determined using an Atomic Absorption Spectrometer. Fe ranked highest in water and sediment, with concentrations of 2.74 mg l?1 and 61.60 mg kg?1, respectively. Metals followed the magnitude of Fe > Mn > Ni > V > Pb in the water and Fe > Mn > V > Ni > Pb in the sediments. Metal concentrations were higher in the tissues of S. resupinatus compared with H. niloticus and C. gariepinus. Fe was also highest in the gills, liver and muscle of the three fish species. Its highest concentration of 132.97 mg kg?1 dry weight was recorded in the gills of S. resupinatus. Bioconcentration factors of metals ranged from 8.79 for Mn in H. niloticus muscle to 67.99 for Ni in S. resupinatus gills. The fish species studied pose no health risk for all metals studied, because the target hazard quotient was less than 1 and the estimated daily intakes of the metals were below the reference doses.  相似文献   

2.
Concentrations of aluminium, cadmium, chromium, cobalt, copper, iron, lead, nickel and zinc were determined in surface water, benthic sediments, and the gills, liver and stomach muscle tissues of Oreochromis niloticus and Clarias gariepinus in peri-urban lakes Chivero and Manyame, Zimbabwe. Five sites were sampled in each lake once per month in November 2015, February, May, August and November 2016. Pollution load index detected no metal contamination, whereas the geo-accumulation index reflected heavy to extreme sediment pollution, with Fe, Cd, Zn, Cr, Ni and Cu present in both lakes. Significant spatial temporal variations were detected for Al, Cr, Cu and Pb across sites within and between the two lakes. High Fe, Al and Cr concentrations in water and sediments in lakes Chivero and Manyame derive from geogenic background sources in addition to anthropogenic loads and intensity. Elevated concentrations of Al, Pb, Cu, Cd, Fe and Zn detected in gills, liver and stomach tissue of catfish corroborate concentrations in water and sediments, and pose the highest ecological and health risk for hydrobionts in lakes Chivero and Manyame. Contiguity of peri-urban lakes exposes them to similar threats, necessitating creative water management strategies, which ensure ecological continuity.  相似文献   

3.
Trace metal (Zn, Pb, Cu, Cr and Cd) concentrations in the water column and in the liver, muscle and gill tissues of Parachanna obscura and Clarias gariepinus in Agulu Lake, Nigeria, were investigated in June 2014 and compared with WHO and FAO safe limits for water and fish. Hazard index (HI) values were estimated to assess the potential public health risk of consuming contaminated fish. Lead and cadmium exceeded WHO guideline values for drinking water. In most cases, variations in concentration of the metals in organs were liver > muscle > gill. Differences in tissue-specific concentrations between species were not significant, except for zinc in muscles and gills. Cadmium and chromium were not detected in the fish, but lead was above the FAO maximum value for consumption. Hazard index values were below 1, indicating a low risk to public health. However, trace metal contamination in Agulu Lake is increasing.  相似文献   

4.
Water and muscle tissue samples from two morphotypes of the African large barb Labeobarbus intermedius collected from three sites in Lake Hawassa in 2012–2013 were analysed for eight heavy metals, including Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Five metals (Cr, Cu, Mn, Ni and Zn) were detected in fish muscle samples, whereas only Cr, Cu and Ni were detected in water samples. Of the five metals detected in the muscle samples, Cu and Zn were present in higher concentrations in the golden morphotype, whereas Cr, Mn and Ni were found in higher concentrations in the silver morphotype. Bioaccumulation factor (BAF) values indicated that Cr, Cu and Ni have a tendency to accumulate in fish muscle in amounts exceeding those in water. In both morphotypes the highest concentrations of Zn and Mn were detected at the Hospital site, whereas the concentrations of Cr, Cu and Ni were highest at the Tikur Wuha site. Chromium, Cu and Ni concentrations recorded in fish muscle at all sampling sites exceeded the safe limits recommended by FAO/WHO and UNESCO, suggesting that water and fish from Lake Hawassa are contaminated with heavy metals originating from factories, a hospital and agricultural activities in proximity to the lake.  相似文献   

5.
Background and aimMetals and metalloids have been found in several streams and rivers from the Atlantic Rainforest (ARF), one of the world´s leading biodiversity hotspot, which may represent a risk for environmental and human health. The aims of this study were: 1) to evaluate the accumulation and distribution of 24 trace elements in water, sediments and fish tissues (muscle and gills) of sixteen species from the Atlantic Rainforest, 2) to explore bioaccumulation patterns in fish tissues and abiotic matrices, and 3) to assess the impact of metal and metalloids on the human health from water and fish consumption.MethodsWater, sediments and fish samples were collected from Ramos Stream (Misiones Province, Argentina). The concentrations of Ag, Al, As, Ba, Be, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg, Li, Mg, Mn, Ni, Pb, Se, Sr, Ti, U, V and Zn were determined by Quadrupole Inductively Coupled Plasma Mass Spectrometry. Bioaccumulation factors (BAFs) were used to evaluate bioaccumulation of metals and metalloids in relation to water and sediment. The Hazard Quotient (HQ), Hazard Index (HI) and Target Hazard Quotient (THQ, general and fisherman populations) were calculated to assess the non-carcinogenic human health risk from water and fish consumption.ResultsThe concentrations of several elements in water and sediment were higher than the international guidelines for aquatic biota protection. Levels of As, Pb and Zn in muscle and gills were above national and international guidelines for human consumption. The bioaccumulation factors ranged from 749 to 13,029 being higher in gills than in muscle. The HQ and HI ranged from 0.001 to 0.015. The THQ for each element and total THQ values were lower than 0.1.ConclusionBioaccumulation factor suggests that several species have a moderate capacity to incorporate some metals and metalloids from the abiotic matrices. According to the HI and THQ values found, there is no risk to human health from consumption of water and fish.  相似文献   

6.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

7.
In this study, concentrations of trace metals such as As, Cd, Cu, Cr, Fe, Pb, Ni, Sn, Se, and Zn were determined in sediments, water, and a kind of fish (Mugil cephalus) of the central Black Sea coasts by employing Inductively Coupled Plasma Mass Spectrometry and microwave digestion technique. Gill, muscle, liver, and other tissues were analyzed separately for each sample. The accuracy of the results were checked by using a certified reference material (DORM-4). In water samples, the metal determined at highest concentrations was Cu (1645.44 µg/L). In sediment samples, the metal determined at highest concentrations was Fe (12223.50 mg/kg). The levels of trace metals found in the different parts of the fish were: Zn in muscle tissue (30393.28 mg/kg), Sn in gill tissue (5140.08 mg/kg), and Cu in liver tissue (289.31 mg/kg). These results were also compared with various relevant guidelines and literature.  相似文献   

8.
Concentration of heavy metals (lead (Pb), cadmium (Cd), chromium (Cr), and copper (Cu)) was determined in the liver, gills, kidneys, and muscles of eight edible fish species (Channa punctata, Cirrhinus reba, Labeo rohita, Heteropneustes fossilis, Mystus cavasius, Oreochromis niloticus, Puntius sophore, and Wallago attu) from upstream and downstream zones of the Nullah Aik and Palkhu tributaries of the River Chenab located in the Sialkot district known for its tanning industries worldwide. The pattern of metal accumulation in studied organs was in the order: Cr > Pb > Cu > Cd. Liver showed greater metal accumulation, followed by gills, kidneys, and muscles. Accumulation of Pb and Cr was significantly different in organs between upstream and downstream zones. Accumulation was greater in fish species dwelling downstream, indicating impairment of ambient stream water due to untreated discharge of industrial and municipal effluents into studied streams. Highest concentration of Pb and Cr and lowest of Cd was detected in H. fossilis whereas Cu showed higher concentration and Cr lowest concentration in P. sophore. In contrast, lower concentration of Pb and Cu was recorded in M. cavasius, O. niloticus, and W. attu. Mean concentrations of Cd, Cr, and Cu were higher in pre-monsoon compared to post-monsoon season. Measured concentrations of Pb, Cd, and Cr in muscles of species such as C. punctata, W. attu, L. rohita, P. sophore, and O. niloticus were above permissible limits of heavy metals for human consumption, indicating potential health risks. Therefore, these fish species from studied locations should be avoided for human diet.  相似文献   

9.
Tajan River is among the most significant rivers of the Caspian Sea water basin. In this study, the concentration of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in brain, heart, liver, gill, bile, and muscle of Rutilus frisii kutum which has great economic value in the Mazandaran state. Trace element levels in fish samples were analyzed by means of atomic absorption spectrometry. Nearly all non-essential metals levels (Ni, Pb, Cd) detected in tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, non-essential metals (Ni, Pb) were so much higher in muscle than the essential metals (Cu, Zn, and Mn) except Fe, which was higher than other metals in nearly all parts, except in gills. Fe distribution pattern in tissues was in order of heart > brain > liver > muscle > bile > gill. Distribution patterns of metal concentrations in the muscle of fish as a main edible part followed the sequence: Fe > Pb > Ni > Cu > Mn > Zn > Cd.  相似文献   

10.
We analysed the concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, fish and plants of the River Hindon, U.P., India, at seven sampling stations, in the year 1982. Considerable variation in concentration between water, sediments, fish and plants were noted. The concentration in the water was in the order Fe > Zn > Cr > Mn > Cu > Pb > Ni > Co > Cd, in the sediments, Fe > Mn > Zn > Ni > Cr > - Co > Cu > Pb > Cd; in a fish (Heteropnuestes fossilis) Fe > Zn > Mn > Pb > Ni > Co > Cu > Cd > Cr, and in a plant (Eicchornia crassipes) Fe > Mn > Zn > Ni > Cu > Cr > Pb > Co > Cd.  相似文献   

11.
The plasmas of breast cancer patients and healthy donors were analyzed for selected trace metals by a flame atomic absorption spectrophotometric method. In the plasma of breast cancer patients, mean concentrations of macronutrients/essential metals, Na, K, Ca, Mg, Fe, and Zn were 3584, 197.0, 30.80, 6.740, 5.266, and 6.170 ppm, respectively, while the mean metal levels in the plasma of healthy donors were 3908, 151.0, 72.40, 17.70, 6.613, and 2.461 ppm, respectively. Average concentrations of Cd, Cr, Cu, Mn, Ni, Pb, Sb, Sr, and Zn were noted to be significantly higher in the plasma of breast cancer patients compared with healthy donors. Very strong mutual correlations (r > 0.70) in the plasma of breast cancer patients were observed between Cd–Pb, Cr–Li, Li–K, Li–Cd, K–Cr, Li–Pb, Cr–Co, Cu–Ni, Co–K, Cd–K, and K–Pb, whereas, Al–Cr, Ca–Zn, Cd–Sb, Cd–Zn, Ca–Mg, Fe–Zn, and Na–Mn exhibited strong relationships (r > 0.60) in the plasma of healthy donors. The cluster analysis revealed considerably different apportionment of trace metals in the two groups of donors. The average metal concentrations of different age groups of the two donor categories were also evaluated, which showed the build-up of Al, Cd, Co, Cr, Mn, Li, Pb, Sb, and Zn in the plasma of breast cancer patients. The role of some trace metals in carcinogenesis is also discussed. The study indicated appreciably different patterns of metal distribution and correlation in the plasma of breast cancer patients in comparison with the healthy population.  相似文献   

12.
In a study aimed to determine the histopathology, component parasite communities and level of selected heavy metals, African catfish Clarias gariepinus from three rivers in Zimbabwe (Gwebi, Manyame and Mukuvisi) were analysed for heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) in the gills, liver, kidney and muscles. The histopathology of these tissues was assessed by microscopic examination of stained thin sections. Metazoan parasite diversity and species composition in fish along different sites of the rivers were determined and compared. Levels of Cd, Fe, Pb and Zn were lowest in the Gwebi, Cr and Cu in the Manyame, and Ni in the Mukuvisi River. There were significant differences (P < 0.5) in concentration of iron and nickel in the gill and liver tissues of fish among the three rivers while significant differences in concentration of iron and lead were observed in muscle tissue. Gill chronic inflammation and ossification were significantly different (P < 0.5) in fish from among the three rivers. Chronic inflammation, hemosiderin deposits and bile accumulation in the liver were also significantly different (P < 0.5) among the three rivers and so was the extent of chronic inflammation in the kidney tissue. Lamellar fusion was slightly more present in gills of catfish from the Mukuvisi than the Gwebi River. The parasite community of C. gariepinus comprised three monogenean, two cestode and three nematode species. The least polluted Gwebi River had the highest parasite community diversity while the most polluted Mukuvisi River had the lowest diversity. Fish parasite community structure is thus a potential indicator of river pollution, while heavy metal pollution is a potential threat to fish and human health in the system.  相似文献   

13.
The study measured the concentration of Cd, Cr, Pb, Cu, and Zn in various fish tissues (muscle, gills, and liver) of 18 fish species (C. gachua, C. marulius, C. punctatus, C. nama, C. ranga, H. fossilis, C. batrachus, P. ticto, P. phutunio, L. rohita, L. calbasu, L. gonius, T. putitora, T. tor, R. rita, G. chapra, H. ilisa, and N. botia) collected from Ganga river. It is the survey regarding metal concentration in fish tissues increasing day by day. The metal concentration in different fish tissues varied on the following range: Cu (0.45–8.54 µg/g wet wt), Zn (0.07–2.2 µg/g wet wt), Pb (0.20–2.62 µg/g wet wt), Cd (0.07–2.32 µg/g wet wt), and Cr (0.09–1.74 µg/g wet wt). The results show the concentration of Pb, Cd, and Cr metals to be higher than internationally recommended standard limits (as determined by the WHO and FAO) and other similar studies. Generally, higher concentrations of metals were found in liver and gills than muscles. Despite lower estimated daily intake (EDI) of fish in the area (per recommended daily allowance guidelines), values of daily average consumption were lower than the recommended values by FAO/WHO/EFSA, and in fish samples these were below the provisional permissible levels for human consumption. The continuous exposure to heavy metals has been linked to the development of mental retardation, kidney damage, various cancers, and even death in instances of very high exposure in human body.  相似文献   

14.
BackgroundFish are an important source of nutrition for humans. Artisanal fishing plays a fundamental role in Brazil fish production. In Brazil, the unrestrained increase, diffusion, and little importance for environmental causes of other economic activities, such as the agricultural industry, has caused irreparable damage, leading to the contamination of water bodies. Among the countless pollutants that reach water bodies, trace metals are extremely problematic. Here, we evaluated the bioaccumulation and health risk of trace metal contamination in the musculature of the trahira fish (Hoplias malabaricus), collected from two rivers in southeastern Brazil.MethodsDuring the period from May 2017 to November 2019, 90 fish were collected, 45 from each river. River water samples were also taken during the same collection periods. From fish, muscle tissue samples were taken, and together with river water samples, analyzed for the recovery of trace metals (Al, Cr, Mn, Fe, Ni, Cu, As, Cd, and Pb) through the technique of Inductively Coupled Plasma Mass Spectrometry (ICP-MS).ResultsIn general, fish as well as the waters of the Jacaré-Guaçú River had higher concentrations of metals. The elements Al, Cr and Cd stood out from the others analyzed metals for having a hazard index (HQ) above 1 (Al), for being up to 10 times above the concentrations allowed by Brazilian legislation (Cr) and for having a high bioconcentration factor (Cd), indicating a biomagnification process through the food chain.ConclusionIn general, trace metal concentrations in the waters and fish of the Jacaré‐Guaçú were higher than in the Jacaré-Pepira, which shows that the Jacaré‐Guaçú is the one that suffers more anthropogenic action between the two rivers. In addition, some elements such as Al, Cr and Cd, due to its high concentrations, should receive some attention as they can pose risks to the health of fish, which can jeopardize the survival of their populations, and especially to humans who use these animals as a food source.  相似文献   

15.
The concentration of Mn, Fe, Zn, Cu, Cd, Cr, Ni, Ag, Mo, Nd, Al, Ce, As, Sr, Pb, Pt and Hg was analysed in water, sediments, and aquatic organisms from the San Roque Reservoir (Córdoba-Argentina), sampled during the wet and dry season, to evaluate their transfer through the food web. Stable nitrogen (δ15N) isotopes were used to investigate trophic interactions. According to this, samples were divided into three trophic groups: plankton, shrimp (Palaemonetes argentinus) and fish (Silverside, Odontesthes bonariensis). Liver and gills are the main heavy metal storage tissues in fish. Hg and As concentrations in the muscle of O. bonariensis exceed the Oral Reference doses for metals established by USEPA (2009). Trophic magnification factors (TMFs) for each element were determined from the slope of the regression between trace element concentrations and δ15N. Calculated TMFs showed fundamental differences in the trophodynamics of the studied elements during the wet and dry season in the San Roque Reservoir. Concentrations of Ni, Cd, Cr, Al, Mn, Fe, Mo, Ce, Nd, Pt and Pb during both seasons, and Sr during the dry season, showed statistically significant decreases (TMF < 1) with increasing trophic levels. Thus these elements were trophically diluted in the San Roque food chain. Conversely, Cu, Ag and As (dry season) showed no significant relationships with trophic levels. Among the elements studied, Hg in the wet season, and Zn in the dry season were the only ones showing a statistically significant increase (TMF > 1) in concentration with trophic level. Current results trigger the need for further studies to establish differential behaviour with different species within the aquatic web, particularly when evaluating the transfer of toxic elements to edible organisms, which could pose health risks to humans.  相似文献   

16.
Abstract

Kolkata wetlands are the largest sewage fed wetlands in the world. They have been used for aquaculture since 1960. Geochemical distribution of heavy metals (Cr, Cu, Mn, Fe, Zn, Pb, Ni and Al) has been studied in surface sediments using single and sequential extractions techniques. The metal concentrations in sediments were in the following order: Fe>Al> Mn>Zn>Cu> Pb>Cr> Ni, and the average concentrations were 29 μg g?1, 54 μg g?1, 328 μg g?1, 32747 μg g?1, 169 μg g?1, 38 μg g?1, 25 μg g?1 and 23371 μg g?1 dry weights for Cr, Cu, Mn, Fe, Zn, Pb, Ni and Al, respectively. Water-soluble percentages of the trace elements are quite low (<0.01–3.75%) but in the presence of chelating agents in the sediments increase the bioavailability of trace elements (2–58%). About 40% of trace elements are in the stable form as a residual fraction of the sediment and more than 50% (nonresidual fraction) metal contamination of the Kolkata wetland sediments were from anthropogenic inputs. The contamination risks of Cr, Mn, Zn, Pb, and Ni are high as their potential availabilities are 70.96%, 58.01%, 63.13%, 55.62%, and 52.15% respectively. The mean concentration of most of the heavy metals in sediments does not exceed the recommended reference values. Zinc and lead concentrations were greater than background level and Interim Sediment Quality Guidelines but lower than Probable Effect Level. Therefore a regular program for monitoring the distribution of heavy metals in water, sediments and biota should be imposed on sewage fed fish ponds of the Kolkata wetland ecosystem.  相似文献   

17.
Faro Lake is a coastal meromictic lagoon with singular characteristics in the Mediterranean (Messina, Sicily – Italy). It is part of the Natural Oriented Reserve of Capo Peloro (38° 15′ 57″ N; 15° 37′ 50″ E). In this area, traditional mollusc farming activity persists, producing ‘autochthonous’ mussels. This study reports of the Mytilus galloprovincialis haemolymph chemical profile and water variables determination of 1 year‐lasted survey (April 2016 – March 2017). The determinations of electrolytes (Na+, Cl, K+, Ca2+, Mg2+, P inorganic) and heavy metals in both Faro lake water and haemolymph have been carried out. Heavy metals are elements with high density and are quite toxic in low concentrations, such as Aluminum (Al), Arsenic (As), Cobalt (Co), Chrome (Cr), Copper (Cu), Iron (Fe), Magnesium (Mg), Manganese (Mn), Lead (Pb), Tin (Sn), Zinc (Zn). Heavy metals toxicity depends, principally, on bioaccumulation processes. M. galloprovincialis is a good bio‐indicator, ideal for assess levels of environmental pollution thanks to its biological, ecological and physiological characteristics. The results of this study showed a typical fluctuation range in haemolymph and water parameters, related to the water ones; chemical‐physical parameters affected the ions (electrolytes and metals) levels in some period of the year. The study reports the interactions between biotic (Mytilus galloprovincialis) and abiotic (water parameters) components of Faro Lake, and creates reference data for further future study on the same area or on similar ones.  相似文献   

18.
The health hazard associated with the consumption of fish from the Gomti River in India, contaminated with the heavy metals Cr, Cu, Mn, Ni, Pb, and Zn was assessed in terms of target hazard quotients (THQs). The concentrations of metals (mg kg?1, wet weight basis) in the muscle tissues of different fish species Mastacembelus puncalus, Clupisona garua, Cyrinous carpio, Botia lochachata, Channa punctatus, Heteropneustise fossilis, Puntius sofore, and Clarious batrachus ranged as follows: Cr (2.2–21.4), Cu (0.3–14.3), Mn (2.3–5.5), Ni (0.5–10.9), Pb (1.0–3.9), and Zn (12.3–46.9). The accumulation of metals in fish muscle tissue was in the order: Zn > Cr > Ni > Mn > Cu > Pb. THQs indicated a potential health hazard to children due to the consumption of fish contaminated with Ni and Pb; their THQs were greater than 1 for almost all fish species except for Ni in C. garua (THQ, 0.07) and C. carpio (THQ, 0.90). For adults, insignificant health hazard was associated with THQs less than 1 for all metals in the different fish species, but long-term exposure to these metals and subsequent bioaccumulation in the body may require additional investigation.  相似文献   

19.
Abstract

This study investigated the airborne concentration of PM10 and 20 trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Na, Pb, Ti, V, Zn) in residential, industry, traffic road, coal mining, thermal power plant area of Bac Giang province. The average PM10 concentration was highest at coal site, followed by traffic 1 sites, industrial sites and traffic 2 sites, the residential sites, and lowest at the power plant site located in mountain area. While Al, Ca, Fe, K, Mg, Na were the most abundant elements in all sampling sites, accounting for 73–96% of total obtained elements, the concentration of As, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn occupied from 2.9 to 23.2%. Noticeably, the concentrations of Cd were from 7 to 65 times higher than the concentration limit for Cd (0.1?ng/m3) according the World Health Organization (WHO). Although, the Hazard Index (HI values) of all metals were found to be within the safe level for both children and adults, the Carcinogenic Risk (CR) of Cr and As in all sites were closed to the acceptable levels for children, implying a potential carcinogenic risks of these metals.  相似文献   

20.
The present study investigated the water quality index (WQI) of the Kshipra river at Dewas, Madhya Pradesh, India, using native fish Labeo rohita, and plant Eichhornia crassipes. The temperature, pH, dissolved oxygen, alkalinity, turbidity, and dissolved solids were found to be within the prescribed limits. However, heavy metals concentration exceeded the limit except for Cu and Zn. Their occurrence in river water was as follows: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Among these heavy metals, Cd was found to be highly bioavailable, whereas Zn was the least bioavailable metal. Based on WQI, the water was found to be unfit for drinking, and the high WQI value was due to the presence of Cr and Cd. In fish tissues (muscle, liver, gut, gills, and kidney), the highest and lowest metal pollution index was found in gills (45.03) and kidneys (12.21), respectively. Bioaccumulation of these metals resulted in significant depletion of energy reserves (protein, glucose, and glycogen) and also altered hematological parameters. Moreover, liver function tests showed hepatic damage in the exposed fish. In-plant, both the bioaccumulation and mobility factor exceeded 1 for all these metals. On the other hand, the translocation factor was found to be beyond 1 for Fe, Ni, and Zn. These high values make this plant fit for phytoextraction of Mn, Fe, Cu, Zn, and Cd and phytostabilization of Cr in water. Moreover, consumption of L. rohita from the Kshipra River does not pose a non-cancer risk as the target hazard quotient was below 1, but it may pose cancer risk because of the presence of Cr in the range of 1.402 × 10?3 to 1.599 × 10?3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号