首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Natural estrogens have much greater radical-scavenging antioxidant activity than has previously been demonstrated, with activities up to 2.5 times those of vitamin C and vitamin E. The biological significance of this finding remains to be elucidated. In this work the antioxidant activity of a range of estrogens (phenolic, catecholic and stilbene-derived) has been studied. The activity of these substances as hydrogen-donating scavengers of free radicals in an aqueous solution has been determined by monitoring their relative abilities to quench the chromogenic radical cation 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS*+). The results show that the order of reactivity in scavenging this radical in the aqueous phase is dependent on the precise estrogenic structure, with phenolic estrogens being more potent antioxidants than catecholestrogens or diethylstilbestrol. The ability of the same estrogens to scavenge lipid phase radicals has also been assessed, determined by the ex vivo enhancement of the resistance of low-density lipoprotein (LDL) to oxidation; the order of efficacy is different from that in the aqueous phase, with the phenolic estrogens estriol, estrone and 17beta-estradiol being less potent than 2-hydroxyestradiol, 4-hydroxyestradiol, or diethylstilbestrol. In this lipid-based system, phenolic estrogens were found to be unable to regenerate alpha-tocopherol from LDL subjected to oxidative stress, while at the same time 2- and 4-hydroxyestradiol significantly delayed alpha-tocopherol loss. These results indicate that the various estrogens are good scavengers of free radicals generated in both the aqueous and the lipophilic phases. The antioxidant activity of an estrogen depends not only on the hydrophilic or lipophilic nature of the scavenged radical, but also on the phenol and catechol structures of the estrogen compound.  相似文献   

2.
The Na+,K(+)-ATPase is a membrane-bound, sulfhydryl-containing protein whose activity is critical to maintenance of cell viability. The susceptibility of the enzyme to radical-induced membrane lipid peroxidation was determined following incorporation of a purified Na+,K(+)-ATPase into soybean phosphatidylcholine liposomes. Treatment of liposomes with Fenton's reagent (Fe2+/H2O2) resulted in malondialdehyde formation and total loss of Na+,K(+)-ATPase activity. At 150 microM Fe2+/75 microM H2O2, vitamin E (5 mol%) totally prevented lipid peroxidation but not the loss of enzyme activity. Lipid peroxidation initiated by 25 microM Fe2+/12.5 microM H2O2 led to a loss of Na+,K(+)-ATPase activity, however, vitamin E (1.2 mol%) prevented both malondialdehyde formation and loss of enzyme activity. In the absence of liposomes, there was complete loss of Na+,K(+)-ATPase activity in the presence of 150 microM Fe2+/75 microM H2O2, but little effect by 25 microM Fe2+/12.5 microM H2O2. The activity of the enzyme was also highly sensitive to radicals generated by the reaction of Fe2+ with cumene hydroperoxide, t-butylhydroperoxide, and linoleic acid hydroperoxide. Lipid peroxidation initiated by 150 microM Fe2+/150 microM Fe3+, an oxidant which may be generated by the Fenton's reaction, inactivated the enzyme. In this system, inhibition of malondialdehyde formation by vitamin E prevented loss of Na+,K(+)-ATPase activity. These data demonstrate the susceptibility of the Na+,K(+)-ATPase to radicals produced during lipid peroxidation and indicate that the ability of vitamin E to prevent loss of enzyme activity is highly dependent upon both the nature and the concentration of the initiating and propagating radical species.  相似文献   

3.
It is generally accepted that the protection effect of biological tissues by vitamin E is due to its radical scavenging potency in membranes, thereby being transformed to a vitamin E radical. A deficiency of appropriate reductants, which recycle vitamin E radicals back to its antioxidative active form, causes an irreversible degradation of vitamin E leading to tocopheryl quinone (TQ). TQ-like compounds were shown to result from both vitamin E and corresponding hydrophilic analogues of this antioxidant in vitro. In vivo elevated concentrations of tocopheryl quinones were detected after oxidative stress and TQ supplementation as well. Quinones in general are known to be efficient one-electron donors and acceptors. Therefore the question arises whether TQ-like compounds can undergo redox-cycling in conjunction with redox-active enzymes in the heart, thereby producing harmful oxygen radicals, or whether these compounds exhibit antioxidant properties. In order to elucidate this question we focused our interest on the interaction of TQ and a corresponding short-chain homologue (TQ(0)) with xanthine oxidase and heart mitochondria. Furthermore, we tested the influence of TQ on the recovery of isolated perfused rat hearts after ischemia/reperfusion. Our experiments revealed that hydrophilic TQ(0) was univalently reduced by xanthine oxidase (XOD) yielding semiquinone radicals in the absence of oxygen. However, under aerobic conditions TQ(0) enhanced the O(2)(*)(-) radical output of XOD. In the mitochondrial respiratory chain TQ was shown to interact with high potential cytochrome b in the bc(1) complex specifically. In contrast to the system XOD/TQ(0), lipophilic TQ in submitochondrial particles decreased the O(2)(*)(-) radical release during regular respiration possibly due to its interaction with b-cytochromes in the mitochondrial respiratory chain. In isolated rat hearts perfused with liposomes containing lipophilic TQ, it was efficiently accumulated in the heart tissue. When hearts were subjected to conditions of ischemia/reperfusion, infusion of TQ prior to ischemia significantly improved the recovery of hemodynamic parameters. Our results demonstrate that TQ derivatives may induce pro-oxidative and antioxidative effects depending on the distribution of TQ derivatives in the heart tissue and the interacting redox system.  相似文献   

4.
With increasing evidence showing the involvement of oxidative stress induced by free radicals in the development of various diseases, the role of radical-scavenging antioxidants has received much attention. Although many randomized controlled clinical trials do not support the beneficial effects of indiscriminate supplementation of antioxidants, more recent studies suggest that antioxidants such as vitamin E may be effective for prevention and treatment of some diseases when given to the right subjects at the right time. Many studies on the antioxidant capacity assessed by various available methods showed inconsistent results and the assessment of antioxidant capacity has been the subject of extensive studies and arguments. This study was performed to elucidate the basic chemistry required for the development of a reliable method for the assessment of antioxidant capacity for radical scavenging in vitro. In this study, the capacity of α-tocopherol and its related compounds, ascorbic acid, and uric acid for scavenging radicals was assessed from their effects on the rate of decay of hydrophilic and lipophilic probes with various reactivities toward free radicals induced by hydrophilic and lipophilic radicals in homogeneous solution and heterogeneous micelle systems. Fluorescein, pyranine, and pyrogallol red were used as hydrophilic probes, and BODIPY and N,N-diphenyl-p-phenylenediamine were used as lipophilic probes. We show that the rate and amount of radical scavenging by antioxidants, termed the antioxidant radical absorbance capacity, could be assessed by an appropriate combination of radical initiator and probe. This method was applied to the assessment of radical-scavenging capacity of human plasma, wine, and green tea powder.  相似文献   

5.
Paraoxonase (PON1) is a high-density lipoprotein (HDL)-associated enzyme believed to protect against the early events of atherogenesis by its ability to hydrolyze oxidized phospholipids. A transgenic mouse overexpressing PON1 (mPON1) was developed to address the question of whether overexpression of PON1 is important in protecting HDL function during oxidative stress. Transgenic mice were obtained that have up to a 5-fold increase in mPON1 activity measured as arylesterase activity [52.7 +/- 17.3 U/ml versus 251.7 +/- 25.1 U/ml for wild-type (WT) and mPON1 high expressers, respectively]; this increase in mPON1 activity was reflected by a 5.3-fold increase in relative mass of the enzyme. Excess mPON1 was associated solely with HDL but did not alter HDL composition, size, or charge. Lecithin:cholesterol acyltransferase (LCAT) on HDL is a sensitive indicator of oxidative stress; exposure of plasmas from both WT and mPON1 overexpresser mice to 0.4 mM copper ions for 2 h showed a 30-40% protection of LCAT activity in mPON1 overexpressers compared to WT. Excess mPON1 also inhibited lipid hydroperoxide formation on HDL. These data strongly suggest that overexpression of mPON1 protects HDL integrity and function.  相似文献   

6.
Sixteen different steroid hormones were individually tested in equilibrium dialysis against plasma high-density, low-density and very-low-density lipoproteins (HDL, LDL, VLDL) under physiological conditions. Six steroid hormones (androstenediol (AEDOL), estradiol (E2), dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), pregnenolone (P5), and progesterone (P4)) demonstrated metabolic interaction with HDL, particularly HDL3. In four cases (AEDOL-HDL, E2-HDL, DHEA-HDL and P5-HDL) the interaction products were more lipophilic, while in the other two cases (DHT-HDL, P4-HDL) they were hydrophilic compared to the original steroid hormone substrates. The lipophilic products appeared to be long-chain fatty acid steroid hormone esters at the C-3 position of the steroid hormone. This was confirmed, in preparative incubations, for the two strongest steroid hormone reactants (DHEA and P5) by gas chromatography-mass spectroscopy (GC-MS). Naturally occurring DHEA and P5 esters were identified in normal fresh human plasma by GC-MS, and their fatty acid compositions were similar to that of native HDL3 cholesterol esters. It was deduced that lecithin-cholesterol acyl transferase enzyme was responsible for the lipophilic type conversion activity with P5 greater than DHEA greater than AEDOL greater than E2. For DHT and P4, which exhibit a fundamentally different (hydrophilic) type of metabolic conversion, a totally different form of HDL-associated metabolic activity is indicated. These newly discovered steroid hormone-lipoprotein interactions may be important for steroid hormone processing in plasma and/or steroid hormone delivery to cells.  相似文献   

7.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 microM) and lazaroid (IC50 = 5.0 microM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 x 10(3) microM) and trolox (IC5 = 1.2 x 10(3) microM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2'-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2'azobis(2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

8.
Paraoxonase 1 (PON1) is a lipo-lactonase which is associated with HDL and possesses antioxidative properties. Diabetes is characterized by increased oxidative stress and by decreased PON1 activity. We aimed to analyze whether oxidative status and PON1 levels in mouse sera and macrophages could affect streptozotocin (STZ)-induced diabetes development. We have used two models of mice under low oxidative stress: STZ-injected apolipoprotein E-deficient mice supplemented with the antioxidant vitamin E, and P47(phox) knockout mice. In both mice models the decreased serum basal oxidative stress, was associated with a decreased rate of diabetes development, compared with control STZ-injected apolipoprotein E-deficient mice or with C57BL mice respectively. These data suggest that oxidative stress accelerates diabetes development. Next, we analyzed the effect of PON1 on macrophage oxidative stress and on diabetes development in STZ-injected C57BL mice, PON1 knockout mice, and PON1 transgenic mice. PON1 overexpression was associated with decreased diabetes-induced macrophage oxidative stress, decreased diabetes development, and decreased mortality, in comparison to C57BL mice, and even more so when compared to PON1KO mice. We thus concluded that on increasing PON1 expression in mice, diabetes development is attenuated, a phenomenon which could be attributed to the antioxidative properties of PON1, as decrement of oxidative stress significantly attenuated STZ-induced diabetes development.  相似文献   

9.
《Free radical research》2013,47(4):257-267
Abstract

In the current study, we analysed free radicals scavenging activity of monocytes-macrophages in the absence or presence of antioxidants such as polyphenols or paraoxonase 1 (PON1). THP-1 human monocytic cell line, murine J774A.1 macrophages, as well as human primary monocytes have the capability to scavenge free radicals, as measured by the 1-diphenyl-2-picryl-hydrazyl (DPPH) assay. This effect (which could be attributed to the cell's membrane) was cell number and incubation time dependent. Upon incubation of J774A.1 macrophages with acetylated LDL (Ac-LDL), with VLDL, or with the radical generator, AAPH, the cells’ lipid peroxides content, and paraoxonase 2 (PON2) activity were significantly increased. While non-treated cells decreased DPPH absorbance by 65%, the Ac-LDL-, VLDL- or AAPH-treated cells, decreased it by only 33%, 30%, or 45%, respectively. We next analysed the effect of J774A.1 macrophage enrichment with antioxidants, such as polyphenols or PON1 on the cells’ free radicals scavenging activity. Non-treated cells decreased DPPH absorbance by 50%, whereas vitamin E-, punicalagin- or PJ-treated cells significantly further decreased it, by 75%. Similarly, in PON1-treated cells DPPH absorbance was further decreased by 63%, in association with 23% increment in PON1 catalytic activity. In cells under oxidative stress [treated with AAPH-, or with oxidized LDL], PON1 activity was decreased by 31% or 40%, as compared to the activity observed in PON1 incubated with non-treated cells. We conclude that monocytes-macrophages possess free radicals scavenging activity, which is decreased under atherogenic conditions, and increased upon cell enrichment with potent antioxidants such as nutritional polyphenols, or PON1.  相似文献   

10.
Gaidukov L  Tawfik DS 《Biochemistry》2005,44(35):11843-11854
Serum paraoxonase (PON1) is a high-density lipoprotein (HDL)-associated enzyme exhibiting antiatherogenic properties. This study examined the interaction of recombinant PON1 with reconstituted HDL comprised of PC, cholesterol, and various apolipoproteins (apoA-I, -II, and -IV). The affinity, stability, and lactonase activity were strongly correlated, with apoA-I exhibiting the strongest effects, apoA-IV exhibiting weaker yet significant effects, and apoA-II having a negative effect relative to protein-free particles. We found that PON1 binds apoA-I HDL with sub-nanomolar affinities (K(d) < 10(-)(9) M) and slow dissociation rates (t(1/2) > 80 min), while binding affinity for other particles was dramatically lower. A truncated form of PON1 lacking the N-terminal helix maintains considerable binding to apoA-I HDL (K(d) = 1.2 x 10(-)(7) M), validating the structural model which indicates additional parts of the enzyme involved in HDL binding. Kinetic inactivation assays revealed the existence of an equilibrium between two forms of PON1 differing in their stability by a factor of 100. Various lipoproteins and detergent preparations shift this equilibrium toward the more stable conformation. Consistent with its highest affinity, only apoA-I HDL is capable of totally shifting the equilibrium toward the stable form. The paraoxonase and arylesterase activities were stimulated by HDL by 2-5-fold as previously reported, almost independently of the apoliporotein content. In contrast, only apoA-I is capable of stimulating the lactonase activity by 相似文献   

11.
Human carotid atherosclerotic plaque is in direct contact with circulatory blood components. Thus, plaque and blood components may affect each other. The current study presents the effects of plaque chloroform:methanol (C:M) extract on the HDL-associated enzyme paraoxnase 1 (PON1). This study is part of our investigation on the mutual effects of the interactions between atherosclerotic lesions and blood components. Recombinant PON1 (rePON1) was incubated with the human carotid plaques C:M extract and PON1 activities were analyzed. Lactonase and paraoxonase activities were elevated due to C:M treatment, by 140 and by 69%, respectively. Analytical chemistry analyses revealed specific phosphatidylcholines (PCs) as the plaque active components. Tryptophan fluorescence quenching assay, together with molecular docking, shows that PON1 activity is enhanced in correlation with the level of PC affinity to PON1. Molecular docking revealed that PCs interact specifically with H2-PON1 α-helix, which together with H1 enzyme α-helix links the protein to the HDL surface. These findings are supported by additional results from the PON1 ∆20 mutant that lack its H1-α-helix. Incubation of this mutant with the plaque C:M extract increased PON1 activity by only 20%, much less than the wild-type PON1 that elevated PON1 activity at the same concentration by as much as 95%. Furthermore, as much as the affinity of the enzyme to the PC was augmented, the ability of PON1 to bind to the HDL particle decreased. Finally, PON1 interaction with PC enhance its uptake into the macrophage cytoplasm. In conclusions, Specific lesion phosphatidylcholines (PCs) present in the human carotid plaque significantly enhance PON1 catalytic activities due to their interaction with the enzyme. Such a lesion׳s PC–PON1 interaction, in turn, competes with HDL PCs and enhances PON1 uptake by macrophage at the expense of PON1 binding to the HDL.  相似文献   

12.
The subfraction distribution of HDL-associated peptides has implications for their functions and the impact of pathological modifications to lipoprotein metabolism on these functions. We have analyzed the subfraction distribution of paraoxonase-1 (PON1) and the consequences for enzyme activity and stability. HDL subfractions were defined by the presence (LpA-I,A-II) or absence (LpA-I) of apolipoprotein A-II (apoA-II). PON1 was present in both subfractions, although increased concentrations of HDL were associated with significantly increased PON1 in LpA-I. ApoA-II did not modify the capacity of native human HDL or reconstituted HDL to promote PON1 secretion from cells or to stabilize enzyme activity, nor did apoA-II decrease PON1 activity when added to rabbit serum normally devoid of the apolipoprotein. LpA-I,A-II particles isolated from human serum or reconstituted HDL (LpA-I,A-II) showed a significantly greater capacity than HDL(LpA-I) to stabilize secreted PON1 and purified recombinant PON1 added to such particles. PON1 associated with apoA-II-containing particles showed greater resistance to inactivation arising from oxidation. ApoA-I, apoA-II, and LpA-I,A-II, but not LpA-I, were independent determinants of serum PON1 concentration and activity in multivariate analyses. PON1 is at least equally distributed between LpA-I and LpA-II,A-II HDL particles. This dichotomous distribution has implications for PON1 activity and stability that may impact on the physiological role of the enzyme.  相似文献   

13.
The association of paraoxonase-1 (PON1) with high-density lipoproteins (HDL) is a prerequisite for maintaining normal serum activity of the enzyme. The lipoprotein furnishes an amphipathic environment to shield the hydrophobic, N-terminal region of the enzyme, and such an environment may also be necessary for interaction of PON1 with its substrates. HDL provides the optimal physiological acceptor complex, in terms of both stimulating PON1 secretion and stabilizing the secreted peptide. Lipid and peptide components of HDL contribute to these effects, such that modulating HDL composition influences PON1 activity and function. In this context, understanding how PON1 associates with HDL, what governs the association, and the mechanism by which the PON1–HDL complex exerts its antioxidant function is of particular physiological relevance. Moreover, HDL is subject to substantial compositional variations under both normal and pathological metabolic conditions. It has implications for the influence of the enzyme on cardiovascular risk, as normal enzyme activity may not correlate with optimal functional (antioxidant) efficiency. We review evidence that HDL lipid and protein components interact to promote PON1 secretion and maintain serum enzyme activity. Emerging data on how the enzyme associates with HDL are discussed, and the consequences for PON1 function of modifications to HDL are outlined. Finally, we highlight questions concerning the HDL–PON1 association that remain unanswered but are of particular importance in defining PON1 efficiency.  相似文献   

14.
Paraoxonase 1 (PON1) is a serum enzyme closely associated with high-density lipoprotein (HDL), which may protect against atherosclerosis by hydrolyzing lipid peroxides and several organophosphorus compounds. The purpose of the present study was to test the hypothesis that lipid peroxidation modifies the activity and protein mass of PON1 in humans and rats. Our findings revealed that the bulk of the activity monitored by the hydrolysis of paraoxon and phenyl acetate was confined to liver intracellular endoplasmic reticulum-derived microsomes and was mostly recovered in circulating HDL3. Confirmation was obtained by the determination of PON1 expression by Western blot. It is noteworthy that PON1 levels were consistently decreased in human sera, HDL, and liver microsomes compared with rat counterparts. Concomitant with iron-ascorbate-mediated lipid peroxidation, there was a decline in PON1 activity and protein in both HDL3 and microsomes, which was attenuated by butylated hydroxytoluene antioxidant treatment. The current data indicate that PON1 localization in microsomes and HDL3 could represent a selective cellular and lipoprotein response to oxidative stress. This was tested by the iron-ascorbate oxygen-radical generating system. It is also proposed that the increased PON1 level may have a function related to the well-known atherosclerosis resistance of rats.  相似文献   

15.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 μM) and lazaroid (IC50 = 5.0 μM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 × 103 μM) and trolox (IC5 = 1.2 × 103 μM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2′-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2′azobis (2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

16.
Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrupole time-of-flight MS after being digested by endoproteinase Glu-C. L-FABP was observed to have better antioxidative activity when free radicals were generated by the hydrophilic generator than by the lipophilic generator. Oxidative modification of L-FABP included up to five methionine oxidative peptide products with a total of ∼80 Da mass shift compared with native L-FABP. Protection against lipid peroxidation of L-FABP after binding with palmitate or α-bromo-palmitate by the AAPH or AMVN free radical generators indicated that ligand binding can partially block antioxidant activity. We conclude that the mechanism of L-FABP''s antioxidant activity is through inactivation of the free radicals by L-FABP''s methionine and cysteine amino acids. Moreover, exposure of the L-FABP binding site further promotes its antioxidant activity. In this manner, L-FABP serves as a hepatocellular antioxidant.  相似文献   

17.
Oda MN  Bielicki JK  Berger T  Forte TM 《Biochemistry》2001,40(6):1710-1718
Paraoxonase (PON) is transported primarily on apolipoprotein A-I (apoA-I) -containing high-density lipoprotein (HDL) and is thought to protect against early atherogenic events including low-density lipoprotein (LDL) oxidation and monocyte migration. It has been proposed that apoA-I may be necessary for PON's association with plasma HDL. On the basis of this, we examined the effect of apoA-I on PON's enzymatic activity and its ability to associate with HDL. Additionally, we examined whether changes in apoA-I primary structure (cysteine substitution mutations) could modulate these effects. Chinese hamster ovary cells stably transfected with human PON1A cDNA were incubated in the presence and absence of recombinant wild-type apoA-I (apoA-I(WT)) and specific Cys substitution mutations. Extracellular accumulation of PON activity in the presence of apoA-I(WT) was 0.095 +/- 0.013 unit/mg of cell protein (n = 7) compared to 0.034 +/- 0.010 unit/mg of cell protein in the absence of apoA-I (n = 7), a 2.79-fold increase in activity when apoA-I was incubated with the cells. Lipid-free apoA-I did not increase PON activity, while preformed nascent HDL increased PON activity only 30%, suggesting that maximal PON activity is lipid-dependent and requires coassembly of PON and apoA-I on nascent HDL. The cysteine mutations R10C, R27C, and R61C significantly increased (p < 0.01) PON activity 32.6% +/- 14.7%, 31.6% +/- 18.9%, and 27.4% +/- 20%, respectively, over that of wild type (WT). No changes in PON activity were observed with apoA-I cysteine substitution mutations in the C-terminal portion of the protein. The data suggest that, for optimal PON activity, coassembly of the enzyme onto nascent HDL is required and that the N-terminal region of apoA-I may be important in the assembly process.  相似文献   

18.
Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated serum enzyme thought to make a major contribution to the antioxidant capacity of the lipoprotein. In previous studies, we proposed that HDL promoted PON1 secretion by transfer of the enzyme from its plasma membrane location to HDL transiently anchored to the hepatocyte. This study examined whether PON1 can be transferred into cell membranes and retain its enzymatic activities and functions. Using Chinese hamster ovary and human endothelial cells, we found that recombinant PON1 as well as PON1 associated with purified human HDL was freely exchanged between the external medium and the cell membranes. Transferred PON1 was located in the external face of the plasma membrane of the cells in an enzymatically active form. The transfer of PON1 led to a gain of function by the target cells, as revealed by significantly reduced susceptibility to oxidative stress and significantly increased ability to neutralize the bacterial virulence agent 3-oxo-C12-homoserine lactone. The data demonstrate that PON1 is not a fixed component of HDL and suggest that the enzyme could also exert its protective functions outside the lipoprotein environment. The observations may be of relevance to tissues exposed to oxidative stress and/or bacterial infection.  相似文献   

19.
Physical activity is known to play a cardioprotective role. Nevertheless, a paradox seems to arise when considering that aerobic exercise enhances oxidative stress. In previous works, we showed that free radical formation during physical activity was counteracted by an increase in antioxidant defenses. Low density lipoprotein (LDL) oxidation is a crucial step in atherosclerosis, process that can be inhibited by high density lipoprotein (HDL) through its oxidable components or associated enzymes like paraoxonase (PON) and platelet-activating factor acetylhydrolase (PAF-AH). In this study, we evaluated copper-induced oxidation in isolated LDL and HDL fractions, and the effect of HDL on LDL oxidation in samples from well trained amateur athletes who were participating in an ultra-distance triathlon (n=18) in comparison with healthy sedentary controls (n=18). PON and PAF-AH activities and PON phenotype were also evaluated. The oxidability of isolated lipoproteins, as well as HDL antioxidant capacity, was similar in both groups of subjects. After classification by paraoxonase phenotype, only sportsmen belonging to the QR phenotype showed higher HDL susceptibility to in vitro oxidation (thiobarbituric reactive substances, TBARS) than controls (p<0.05). HDL oxidability exhibited a positive correlation with its triglyceride content (r=0.58; p<0.01). Similarly, HDL capacity to inhibit LDL oxidation was increased in athletes (p<0.05) which was positively associated with HDL oxidability (HDL-TBARS: r=0.55, p<0.005; HDL-lag time: r=0.45, p<0.01; HDL-D max: r=0.35, p<0.05). In conclusion, regular aerobic exercise was associated to a more efficient antioxidant function played by HDL from PON-QR carriers, which could constitute an adaptive response to the increased oxidative stress.  相似文献   

20.
Red blood cells (RBC) from normal and vitamin E-deficient rats were incubated in a hypertonic solution of reduced glutathione adjusted to pH 8. Methemoglobin formation occurred in intact RBC from both normal and vitamin E-deficient rats. Hemolysis was significantly greater in RBC from vitamin E-deficient rats. Experiments with catalase, superoxide dismutase, and methional showed that H(2)O(2) was the primary extracellular source of oxidant stress. Extracellular superoxide and hydroxyl radical were not involved in oxidant stress. Experiments with dimethyl sulfoxide showed that intracellular hydroxyl radical, generated from H(2)O(2), was the hemolytic agent. Neither methemoglobin formation nor lipid peroxidation involved hydroxyl radical. Indeed, lipid peroxidation and hemolysis in RBC from vitamin E-deficient rats were concurrent rather than consecutive events. Phase contrast microscopy showed that rigid, crenated RBC with a precipitate around the interior periphery formed during glutathione-induced oxidant stress. The precipitate dissolved slowly as the crenated RBC were converted to smooth ghosts. It appeared that protein precipitates involving mixed disulfide bonds were reduced and solubilized when extracellular glutathione penetrated the ruptured cell. Comparisons between normal RBC and vitamin E-deficient RBC suggest that vitamin E has little effect on the inward diffusion of extra-cellular H(2)O(2). Vitamin E apparently interacts with different oxidant species derived from intracellular H(2)O(2) in preventing lipid peroxidation and the sulfhydryl group oxidation leading to hemolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号