首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor function of galactosyltransferase during cellular interactions   总被引:1,自引:0,他引:1  
Summary The molecular mechanisms that underly cellular interactions during development are still poorly understood. There is reason to believe that complex glycoconjugates participate in cellular interactions by binding to specific cell surface receptors. One class of carbohydrate binding proteins that could serve as receptors during cellular interactions are the glycosyltransferases. Glycosyltransferases have been detected on a variety of cell surfaces, and evidence suggests that they may participate during cellular interactions by binding their specific carbohydrate substrates on adjacent cells or in extracellular matrix (see Refs. 1–4 for review).This review will focus on the receptor function of galactosyltransferase, in particular, during fertilization, embryonic cell adhesion and migration, limb bud morphogenesis, immune recognition and growth control. In many of these systems, the galactosyltransferase substrate has been characterized as a novel, large molecular weight glycoconjugate composed of repeating N-acetyllactosamine residues. The function of surface galactosyl-transferase during cellular interactions has been examined with genetic and biochemical probes, including the T/t-complex morphogenetic mutants, enzyme inhibitors, enzyme modifiers, and competitive substrates. Collectively, these studies suggest that in the mouse, surface galactosyltransferase is under the genetic control of the T/t-complex, and participates in multiple cellular interactions during development by binding to its specific lactosaminoglycan substrate.  相似文献   

2.
《The Journal of cell biology》1993,120(4):1045-1057
In addition to its traditional location within the Golgi complex, beta 1,4-galactosyltransferase (GalTase) is also present on the cell surface, where it is thought to function as a cell adhesion molecule by binding to extracellular oligosaccharide ligands. Recent studies suggest that cells contain two forms of GalTase with distinct cytoplasmic domains. The longer form of GalTase contains a 13-amino acid cytoplasmic extension and is preferentially targeted to the plasma membrane, relative to the shorter GalTase protein that is confined primarily to the Golgi compartment. In this study, we created a dominant negative mutation that interferes with the function of cell surface GalTase by transfecting into cells cDNAs encoding truncated versions of the long form of GalTase containing the complete cytoplasmic and transmembrane domains, but devoid of the catalytic domain. In both F9 embryonal carcinoma cells and Swiss 3T3 fibroblasts, overexpressing the truncated long GalTase (TLGT) protein displaced the endogenous cell surface GalTase from its association with the cytoskeleton, resulting in a loss of intercellular adhesion and cell spreading specifically on matrices that use GalTase as a cell surface receptor. In contrast, overexpressing the analogous truncated short GalTase (TSGT) protein did not affect cell morphology or GalTase activity. In control assays, inducing the TLGT protein had no effect on cell interactions with fibronectin (which is independent of GalTase), or on the cytoskeleton attachment of another matrix receptor (beta 1 integrin), or on overall glycoprotein synthesis, thus eliminating nonspecific effects of the TLGT protein on cellular adhesion and metabolism. These results represent the first molecular manipulation of cell surface GalTase expression and confirm its function as a cell adhesion molecule. These studies further suggest that the cytoskeleton contains a defined, saturable number of binding sites for GalTase, which enables it to function as an adhesion molecule.  相似文献   

3.
Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum GalTase. The antibodies specifically recognized two embryonic proteins of 77 and 67 kD, both of which express GalTase activity. The antibodies also immunoprecipitated and inhibited chick embryo GalTase activity, and inhibited neural crest cell migration on laminin matrices in vitro. Anti-GalTase antibodies were microinjected into the head mesenchyme of stage 7-9 chick embryos or cranial to Henson's node of stage 6 embryos. Anti-avian GalTase IgG decreased cranial neural crest cell migration on the injected side but did not cross the embryonic midline and did not affect neural crest cell migration on the uninjected side. Anti-avian GalTase Fab crossed the embryonic midline and perturbed cranial neural crest cell migration throughout the head. Neural fold elevation and neural tube closure were also disrupted by Fab fragments. Cell surface GalTase was localized to migrating neural crest cells and to the basal surfaces of neural epithelia by indirect immunofluorescence, whereas GalTase was undetectable on neural crest cells prior to migration. These results suggest that, during early embryogenesis, cell surface GalTase participates during neural crest cell migration, perhaps by interacting with laminin, a major component of the basal lamina. Cell surface GalTase also appears to play a role in neural tube formation, possibly by mediating neural epithelial adhesion to the underlying basal lamina.  相似文献   

4.
Neurite outgrowth from PC12 pheochromocytoma cells, as well as from peripheral and central nervous system neurons in vitro, is mediated by the extracellular matrix molecule, laminin. We have recently shown that mesenchymal cell spreading and migration on laminin is mediated, in part, by the cell surface enzyme, beta 1,4 galactosyltransferase (GalTase). GalTase is localized on lamellipodia of migrating cells where it functions as a laminin receptor by binding to specific N-linked oligosaccharides in laminin (Runyan et al., 1988; Eckstein and Shur, 1989). In the present study, we examined whether GalTase functions similarly during neutrite outgrowth on laminin using biochemical and immunological analyses. PC12 neurite outgrowth was inhibited by reagents that perturb cell surface GalTase activity, including anti-GalTase IgG and Fab fragments, as well as the GalTase modifier protein alpha-lactalbumin. Control reagents had no effect on neurite outgrowth. Furthermore, blocking GalTase substrates on laminin matrices by earlier galactosyltion or enzymatic removal of GalTase substrates also inhibited neurite outgrowth. Conversely, neurite outgrowth was enhanced by the addition of UDP-galactose, which completes the GalTase enzymatic reaction, while inappropriate sugar nucleotides had no effect. The effects of all these treatments were dose and/or time dependent. Surface GalTase was shown to function during both neurite initiation and elongation, although the effects of GalTase perturbation were most striking during the initiation stages of neurite formation. Consistent with this, surface GalTase was localized by indirect immunofluorescence to the growth cone and developing neurite. Collectively, these results demonstrate that GalTase mediates the initiation of neurite outgrowth on laminin, and to a lesser extent, neurite elongation. Furthermore, this study demonstrates that process extension from both mesenchymal cells and neuronal cells is partly dependent upon specific oligosaccharide residues in laminin.  相似文献   

5.
根据mRNA转录子的大小,β-1,4-半乳糖基转移酶分为短型和长型两类半乳糖基转移酶.短型的位于高尔基体的成熟面.长型的主要表达在细胞表面,通过与相邻细胞表面或细胞外基质上的适当的糖苷底物的结合介导细胞-细胞和细胞-基质间的相互作用,如精子发生、精卵结合、早期胚胎细胞间粘附、次生滋养层巨细胞迁移和神经轴突向外生长等,或作为胞外寡糖链配基的信号传递受体影响G蛋白信号途径.另外,表面半乳糖基转移酶通过调节表皮生长因子受体信号传导能力向胞内传递生长抑制信号,在细胞增殖控制中起重要作用.  相似文献   

6.
Cell surface beta-1,4-galactosyltransferase (GalTase) partially mediates a variety of cell interactions with laminin-containing matrices, including mesenchymal cell spreading and migration and neurite initiation, by binding to N-linked oligosaccharides within the E8 domain of laminin. Previous studies using indirect immunofluorescence have suggested that some surface GalTase colocalizes with actin-containing microfilaments in migrating cells. In this study, we present more direct biochemical evidence showing that surface GalTase is associated with the detergent-insoluble cytoskeleton and that this association is dependent upon the integrity of the cytoskeleton, valency of the anti-GalTase antibody, and migratory status of the cell. Two-thirds of the surface GalTase was associated with the detergent-insoluble cytoskeleton when assayed either by monovalent anti-GalTase Fab fragments or by extracting any detergent-soluble GalTase prior to labeling with intact anti-GalTase IgG. However, 80-100% of the surface GalTase could be induced to associate with the cytoskeleton when cross-linked with anti-GalTase IgG prior to detergent extraction. Destabilizing cytoskeleton-protein interactions with high levels of KCl, elevated pH, or cytochalasin B reduced the amount of surface GalTase retained in the detergent-insoluble cytoskeleton fraction. Finally, we have shown previously that laminin induces the expression of GalTase onto lamellipodia of migrating cells, and in this study, we show that the laminin-induced increase in surface GalTase is cytoskeletally associated. Collectively, these data suggest that cell surface GalTase participates in cell spreading and migration on laminin by virtue of its association with the cytoskeleton.  相似文献   

7.
Mouse sperm surface galactosyltransferase (GalTase) mediates fertilization by binding to its appropriate glycoconjugate substrate in the egg zona pellucida. GalTase is present throughout all stages of spermatogenesis, during which time it redistributes within the plasma membrane from a uniform, diffuse distribution on primary spermatocytes to a restricted domain overlying the dorsal surface of the acrosome. Previously, we have shown that GalTase activity is elevated on transmission-distorting t-bearing sperm populations, relative to normal sperm, and in this paper, we define the stage when surface GalTase activity becomes elevated during t spermatogenesis. GalTase specific activity is equal between normal and t-bearing primary spermatocytes, but following meiosis, surface GalTase activity becomes elevated nearly fourfold on t-bearing round spermatids. The increased GalTase activity on t-bearing spermatids is not due to decreased hydrolysis of the GalTase substrates, and is appropriately localized over the acrosomal region, even on misshapen sperm heads occasionally seen in t-sperm populations. These studies define the stage when a specific biochemical defect associated with mutant alleles of the T/t complex first becomes detectable. The t factors that elevate GalTase activity on round spermatids may be similar to previously identified t-specific testicular proteins that are maximally expressed at the same developmental stage, and which map to the same portion of the T/t complex.  相似文献   

8.
The mouse t-complex, located on chromosome 17, contains genes known to influence male, but not female, fertility. Although some t-complex genes are recessive lethals, t-chromosomes are maintained in the population by transmission ratio distortion. When male mice heterozygous for the t-chromosome mate with wild-type females, most offspring will possess the t-chromosome, indicating a link between t-complex genes and sperm function. Several proteins coded for by t-complex genes have been localised in the sperm flagellum, suggesting roles relating to motility. Another t-complex protein appears able to regulate the adenylyl cyclase/cAMP signal transduction pathway, known to play an important role in capacitation. Defective motility and/or failure to capacitate (“switch on”) would result in poorly fertile or infertile spermatozoa. Given the existence of human homologues for many genes in the t-complex and the prevalence of “male factor” infertility, information obtained about the t-complex not only will provide insight into basic biological mechanisms but may be of future clinical relevance as well. BioEssays 21:304–312, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

9.
Mouse t-complex located on chromosome 17 contains genes affecting only male fertility. Some genes of this complex are recessive lethals; nonetheless, the high frequency of the t-complex carriers in a population is maintained due to a mechanism referred to as transmission ratio distortion (TRD), i.e., after crosses with wild-type females, males heterozygous for the t-complex transmit the t-bearing chromosome to nearly all their offspring, which suggests that the t-complex genes control sperm function. Analysis of this phenomenon shows that the resultant TRD is determined by the ratio between the distorter genes (Tcd) and a responder gene (Tcr) located within the t-complex region. Many authors believe that two to six distorter genes currently known have an additive effect. A genetic model of the non-Mendelian inheritance in the progeny of heterozygous male mice specifically explains sterility of animals carrying the t-complex with complementary lethal genes. The model suggests that some distorter gene products interacting with the responder gene have a selective effect on motility of both mutant and wild-type sperm. Insufficient sperm motility and/or their unsuccessful capacitation result in poor if any fertilization. Information on the t-complex genes is necessary for understanding the biological mechanisms of male sterility and may be used in medical practice.  相似文献   

10.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300–1000 μg/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300–1000 μg/ml), which mimics a binding domain of LM, and α-lactalbumin (1–10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and α-lactalbumin inhibited cell migration 50%. Antibodies agasinst integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

11.
Migrating embryonic cells have high levels of cell surface galactosyltransferase (GalTase) activity. It has been proposed that GalTase participates during migration by recognizing and binding to terminal N-acetylglucosamine (GlcNAc) residues on glycoconjugates within the extracellular matrix (Shur, B. D., 1982, Dev. Biol. 91:149-162). We tested this hypothesis using migrating neural crest cells as an in vitro model system. Cell surface GalTase activity was perturbed using three independent sets of reagents, and the effects on cell migration were analyzed by time-lapse microphotography. The GalTase modifier protein, alpha-lactalbumin (alpha-LA), was used to inhibit surface GalTase binding to terminal GlcNAc residues in the underlying substrate. alpha-LA inhibited neural crest cell migration on basal lamina-like matrices in a dose-dependent manner, while under identical conditions, alpha-LA had no effect on cell migration on fibronectin. Control proteins, such as lysozyme (structurally homologous to alpha-LA) and bovine serum albumin, did not effect migration on either matrix. Second, the addition of competitive GalTase substrates significantly inhibited neural crest cell migration on basal lamina-like matrices, but as above, had no effect on migration on fibronectin. Comparable concentrations of inappropriate sugars also had no effect on cell migration. Third, addition of the GalTase catalytic substrate, UDPgalactose, produced a dose-dependent increase in the rate of cell migration. Under identical conditions, the inappropriate sugar nucleotide, UDPglucose, had no effect. Quantitative enzyme assays confirmed the presence of GalTase substrates in basal lamina matrices, their absence in fibronectin matrices, and the ability of alpha-LA to inhibit GalTase activity towards basal lamina substrates. Laminin was found to be a principle GalTase substrate in the basal lamina, and when tested in vitro, alpha-LA inhibited cell migration on laminin. Together, these experiments show that neural crest cells have at least two distinct mechanisms for interacting with the substrate during migration, one that is fibronectin-dependent and one that uses GalTase recognition of basal lamina glycoconjugates.  相似文献   

12.
A number of cell surface receptors bind to distinct laminin domains, thereby mediating laminin's diverse biological activities. Cell surface beta 1,4-galactosyltransferase (GalTase) functions as one of these laminin receptors, facilitating mesenchymal cell migration and PC12 cell neurite outgrowth on laminin. In this study, the GalTase binding site within laminin was identified as the E8 fragment by assaying purified fragments and by immunoprecipitating and immunoblotting galactosylated laminin using E8-reactive antibodies. Compared with intact laminin and other laminin fragments, E8 possessed the highest GalTase binding activity, using both membrane-bound and solubilized GalTase. More significantly, the neurite-promoting activity of fragment E8 was shown to be dependent upon its interaction with GalTase. Pregalactosylating purified E8 eliminated subsequent GalTase binding and consequently inhibited neurite initiation; parallel studies on laminin fragments E1-4 or E1 failed to affect neurite outgrowth. Furthermore, anti-GalTase IgG inhibited neurite initiation on purified E8 substrates; control IgG had no effect. These results localize the predominant GalTase binding domain in laminin to fragment E8 and demonstrate that the neurite-promoting activity of E8 is dependent upon its interaction with GalTase.  相似文献   

13.
《The Journal of cell biology》1988,107(5):1863-1871
The molecular mechanisms underlying cell attachment and subsequent cell spreading on laminin are shown to be distinct form one another. Cell spreading is dependent upon the binding of cell surface galactosyltransferase (GalTase) to laminin oligosaccharides, while initial cell attachment to laminin occurs independent of GalTase activity. Anti-GalTase IgG, as well as the GalTase modifier protein, alpha-lactalbumin, both block GalTase activity and inhibited B16-F10 melanoma cell spreading on laminin, but not initial attachment. On the other hand, the addition of UDP galactose, which increases the catalytic turnover of GalTase, slightly increased cell spreading. None of these reagents had any effect on cell spreading on fibronectin. When GalTase substrates within laminin were either blocked by affinity- purified GalTase or eliminated by prior galactosylation, cell attachment appeared normal, but subsequent cell spreading was totally inhibited. The laminin substrate for GalTase was identified as N-linked oligosaccharides primarily on the A chain, and to a lesser extent on B chains. That N-linked oligosaccharides are necessary for cell spreading was shown by the inability of cells to spread on laminin surfaces pretreated with N-glycanase, even though cell attachment was normal. Cell surface GalTase was distinguished from other reported laminin binding proteins, most notably the 68-kD receptor, since they were differentially eluted from laminin affinity columns. These data show that surface GalTase does not participate during initial cell adhesion to laminin, but mediates subsequent cell spreading by binding to its appropriate N-linked oligosaccharide substrate. These results also emphasize that some of laminin's biological properties can be attributed to its oligosaccharide residues.  相似文献   

14.
We have previously shown that cell surface galactosyltransferase (GalTase) mediates cell spreading and migration on basal lamina matrices by binding N-linked oligosaccharide substrates within laminin. In this study we have examined the distribution and expression of cell surface GalTase during mesenchymal cell migration on various extracellular matrices. Antisera raised against affinity-purified beta 1,4 GalTase, as well as anti-GalTase Fab fragments, inhibited cell migration on laminin-containing matrices, whereas under identical conditions, anti-GalTase IgG had no effect on the rate of cell migration on fibronectin substrates. Cells migrating on laminin had three times the level of surface GalTase, assayed by 125I-antibody binding and by direct enzyme assay, than similar cells migrating on fibronectin. On the other hand, total cellular GalTase, assayed either enzymatically or by Northern blot analysis, was similar when cells were grown on laminin or fibronectin. The laminin-dependent increase in surface GalTase was due to its expression onto the leading and trailing edges of migrating cells in association with actin-containing microfilaments assayed by double-label indirect immunofluorescence. On stationary cells, surface GalTase levels were low, but as cells began to migrate on laminin GalTase became polarized to the growing lamellipodia. GalTase was not detectable on lamellipodia or filopodia when cells migrated on fibronectin substrates. These results show that laminin-containing matrices induce the stable expression of GalTase onto cell lamellipodia and filopodia where it mediates subsequent cell spreading and migration. Since fibronectin was unable to induce GalTase expression onto lamellipodia, these studies also suggest that the extracellular matrix can selectively influence which intracellular components are maintained on the cell surface.  相似文献   

15.
When plated at appropriate densities in serum-free media, the COMMA-D mammary epithelial cell line rapidly reorganizes into multicellular spheres on the basement membrane matrix derived from Engelbreth-Holm-Swarm murine tumor. Using time-lapse video-microscopy, four stages of reorganization were discerned during the first 24 h of culture. In the first few hours, cells attached to the matrix, elongated, migrated, and formed chains. In the next 6 h, chains of cells linked together in anastomosing networks. In the period between 8 and 18 h postplating, the networks contracted, resulting in dense cords radiating from central aggregates. During the final 6 h, the cords were drawn into the aggregates, which condensed further into spheres. The events occurring during mammary epithelial cell reorganization on the matrix were shown to be mediated by cell surface beta-1,4-galactosyltransferase (GalTase), a receptor that binds N-acetylglucosamine residues on glycosylated proteins. GalTase activity was evident at the surface of cells cultured on reconstituted matrix for 3 h but was absent from cells on glass. The protein alpha-lactalbumin (alpha-LA) inhibits the association of GalTase with N-acetylglucosamine. alpha-LA present from the beginning of culture on reconstituted matrix had no effect on cell attachment but caused concentration-dependent inhibition of the first two steps of reorganization, i.e., cell elongation and network formation, which then interfered with subsequent events. These observations were replicated using polyclonal antibodies to GalTase. Reorganization was impaired when alpha-LA was added during the first two stages but no effect was observed when it was added during the last two stages. Cells cultured on plastic, which lack surface GalTase activity, were unperturbed by incubation with alpha-LA. Thus certain events (cell elongation and network elaboration) during mammary epithelial cell reorganization on reconstituted matrix are GalTase dependent, while others (attachment, network contraction, and compaction) are not. The functional and temporal specificity of GalTase involvement indicates that GalTase mediates cell-matrix, but not cell-cell, interactions during epithelial morphogenetic events in culture.  相似文献   

16.
The effects of t-haplotypes on embryonic morphology in house mouse Mus musculus were described. Lethal mutations, t-haplotypes, in homozygotes induce abnormal embryogenesis and zygotic death at different developmental stages, which depends on the time of their action in ontogeny. Death commonly occurs in the first semester of pregnancy from the morula to the mature embryo stage (day 9–10), and the embryogenetic abnormalities and their timing were Specific for each t-haplotype. Such mutations were analyzed to identify the gene products (proteins) affecting the nervous system development. The t-complex proved to contain tandem repeats coding for regulatory factors modulating the expression of specific structural genes in mouse neurons.  相似文献   

17.
beta-1,4-Galactosyltransferase (GalTase) has two functionally distinct subcellular distributions. In the Golgi apparatus, GalTase participates in the glycosylation of secretory and membrane-bound glycoproteins, whereas on the cell surface it mediates specific aspects of intercellular adhesion. For this study, a murine GalTase clone was obtained by screening a lambda gt10 cDNA library made from F9 embryonal carcinoma cells with a heterologous bovine GalTase cDNA probe. The murine GalTase cDNA probe was used in conjunction with assays of GalTase activity to investigate the expression and distribution of GalTase during differentiation of F9 stem cells into secretory endodermal epithelium. During the initial phase of F9 cell differentiation, GalTase mRNA levels remained relatively constant; however, as differentiation progressed, as assayed by expression of the differentiation-specific marker laminin B1, GalTase mRNA levels and enzyme activity rose dramatically. Furthermore, subcellular fractionation of these cells showed that the increased GalTase levels were specifically associated with the Golgi apparatus, whereas GalTase specific activity on the plasma membrane remained constant. These results show that levels of cell surface and Golgi GalTase change relative to one another during F9 cell differentiation and suggest that these functionally distinct pools of GalTase are independently and differentially regulated.  相似文献   

18.
《The Journal of cell biology》1994,126(6):1573-1583
Sperm surface beta 1,4-galactosyltransferase (GalTase) mediates fertilization in mice by binding to specific O-linked oligosaccharide ligands on the egg coat glycoprotein ZP3. Before binding the egg, sperm GalTase is masked by epididymally derived glycosides that are shed from the sperm surface during capacitation. After binding the egg, sperm- bound oligosaccharides on ZP3 induce the acrosome reaction by receptor aggregation, presumably involving GalTase. In this study, we asked how increasing the levels of sperm surface GalTase would affect sperm-egg interactions using transgenic mice that overexpress GalTase under the control of a heterologous promoter. GalTase expression was elevated in many tissues in adult transgenic animals, including testis. Sperm from transgenic males had approximately six times the wild-type level of surface GalTase protein, which was localized appropriately on the sperm head as revealed by indirect immunofluorescence. As expected, sperm from transgenic mice bound more radiolabeled ZP3 than did wild-type sperm. However, sperm from transgenic animals were relatively unable to bind eggs, as compared to sperm from wild-type animals. The mechanistic basis for the reduced egg-binding ability of transgenic sperm was attributed to alterations in two GalTase-dependent events. First, transgenic sperm that overexpress surface GalTase bound more epididymal glycoside substrates than did sperm from wild-type mice, thus masking GalTase and preventing it from interacting with its zona pellucida ligand. Second, those sperm from transgenic mice that were able to bind the zona pellucida were hypersensitive to ZP3, such that they underwent precocious acrosome reactions and bound to eggs more tenuously than did wild-type sperm. These results demonstrate that sperm-egg binding requires an optimal, rather than maximal, level of surface GalTase expression, since increasing this level decreases sperm reproductive efficiency both before and after egg binding. Although sperm GalTase is required for fertilization by serving as a receptor for the egg zona pellucida, excess surface GalTase is counterproductive to successful sperm-egg binding.  相似文献   

19.
Cell migration is a fundamental process occurring during embryonic development and tissue morphogenesis. In the nematode Caenorhabditis elegans, morphogenesis of the body-wall musculature involves short-range migrations of 81 embryonic muscle cells from the lateral surface of the embryo towards the dorsal and ventral midlines. This study shows that mutations in ina-1 (α-integrin), as well as vab-1 (Eph receptor), and vab-2 (ephrin), display defects in embryonic muscle cell migration. Furthermore, an RNAi-based enhancer screen in an ina-1 weak loss-of-function background identified mnp-1 (matrix non-peptidase homologue-1) as a previously uncharacterized gene required for promoting proper migration of the embryonic muscle cells. mnp-1 encodes a membrane associated metalloproteinase homologue that is predicted to be catalytically inactive. Our data suggest that MNP-1 is expressed in migrating muscle cells and localizes to the plasma membrane with the non-peptidase domain exposed to the extra-cellular environment. Double-mutant analysis between mnp-1(RNAi), ina-1, and vab-1 mutations; as well as tissue specific rescue experiments; indicated that each of these gene products function predominantly independent of each other and from different cell types to affect muscle cell migration. Together these results suggest complex interactions between the adjacent epidermal, neuronal, and muscle cells are required to promote proper muscle cell migration during embryogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号