首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
2.
Heat shock proteins (Hsps) are a class of highly conserved proteins produced in virtually all living organisms from bacteria to humans. Hsp60 and Hsp10, the most important mitochondrial chaperones, participate in environmental stress responses. In this study, the full-length complementary DNAs (cDNAs) of Hsp60 (PmHsp60) and Hsp10 (PmHsp10) were cloned from Penaeus monodon. Sequence analysis showed that PmHsp60 and PmHsp10 encoded polypeptides of 578 and 102 amino acids, respectively. The expression profiles of PmHsp60 and PmHsp10 were detected in the gills and hepatopancreas of the shrimps under pH challenge, osmotic stress, and heavy metal exposure, and results suggested that PmHsp60 and PmHsp10 were involved in the responses to these stimuli. ATPase and chaperone activity assay indicated that PmHsp60 could slow down protein denaturation and that Hsp60/Hsp10 may be combined to produce a chaperone complex with effective chaperone and ATPase activities. Overall, this study provides useful information to help further understand the functional mechanisms of the environmental stress responses of Hsp60 and Hsp10 in shrimp.  相似文献   

3.
Combining ease of genetic manipulation and fermentation with the ability to secrete and to glycosylate proteins in the basic eukaryotic manner, Arxula adeninivorans provides an attractive expression platform. Based on a redesign of the basic vector, a new Arxula vector system, Xplor® 2, for heterologous gene expression was established, which allows (1) the construction of expression plasmids for supertransformation of A. adeninivorans strains secreting target proteins of biotechnological interest and (2) the integration of small vector cassettes consisting of yeast DNA sequences only. For this purpose, a set of modules including the ATRP1m selection-marker module, expression modules for constitutive expression of the genes phyK (Klebsiella-derived phytase) and IFNα2a (human interferon α), the HARS (Hansenula polymorpha autonomous replication sequence) for autonomous replication and the chaperone module AHSB4 promoter –HpCNE1 gene (calnexin) –PHO5 terminator to improve secretion efficiency were constructed and integrated in various combinations in the basic vector Xplor® 2. After removal of the complete Escherichia coli-based plasmid parts (resistance marker, ColE1 ori and f1(?) origin), the remaining yeast-based linear vector fragment with or without rDNA targeting sequences were transformed as yeast rDNA integrative expression cassettes and yeast integrative expression cassettes (YICs), respectively, and the resulting strains were tested for their capacity to secrete PhyK or IFNα2a. Maximal expression levels were consistently obtained using YICs for transformation irrespective of whether or not they carry HARS and/or calnexin modules. It is recommended that at least 50 such transformants be analyzed to ensure selection of the best transformants.  相似文献   

4.
Amyloid contents were quantitatively assayed in crude yeast lysates treated with thioflavin T that specifically stained amyloid fibrils. We demonstrated that guanidine hydrochloride (GuHCl) treatment and overexpression of Hsp104p chaperone resulted in the elimination of the [PSI +] factor and that the stable decline in amyloid contents followed from the reduced fluorescence intensity (IF) of thioflavin T. Overexpression of the SUP35 gene coding the protein prionizable to [PSI +] results in the generation of [PSI +] clones with increased thioflavin T IF. Transmission of [PSI +] factor by cytoduction in crossings of recipients with low IF was also accompanied by stable IF enhancement in cytoductants, indicating enriched amyloid contents. Thus, in model experiments, modifying the quantity of [PSI +] factor, a yeast prion amyloid, the change in thioflavin T IF corresponds to the expected shift in amyloid contents, the IF shift behaving as a cytoplasm hereditary determinant. It is concluded that thioflavin T IF allows for the quantitative estimation of amyloid contents in cells. The stable mitotic IF shift induced by agents affecting the prion composition permits the quantitative evaluation of prion contribution into amyloid pool. It is possible to assume that the monitoring of thiophlavin T IF shifts under the exposure of agents affecting prion pattern may be helpful to disclose previously unknown prions in yeast strains.  相似文献   

5.
In this study, we comparatively analyzed the 115 Hsp70 genes identified in Gossypium raimondii, Gossypium hirsutum and Gossypium arboreum genomes. Those Hsp70 genes unequally distributed among chromosomes in A and D genome of cotton (Gossypium spp.), and were classified into 29 groups according to the homology of them. Based on the localization information of the orthologs in Arabidopsis, the Hsp70 proteins were predicted to locate in cytosol, endoplasmic reticulum, mitochondrion or chloroplast. Homologous analysis indicated the evolutionary conservation of Hsp70 in cotton. In addition, those Hsp70 genes were differently expressed in Suyuan-045, Hai-7124 and TM-1, which were highly resistant, resistant, and sensitive to Verticillium dahliae respectively. The expressions of 26 Hsp70 genes were induced by Verticillium dahliae except for Hsp70-07/16/25/26, and the result suggested the potential involvement of them in responding to Verticillium wilt. Hsp70-08/30/31 was highly expressed in both Suyuan-045 and Hai-7124, and it was hypothesized that they might be involved in the resistance to the invasion of Verticillium dahliae. 144h after inoculation with Verticillium dahliae, the expression of Hsp70-13/14/15 was only up-regulated in Suyuan-045, and it was assumed that they might be involved in resistance to the extension of Verticillium dahliae. Further study on those Hsp70 genes would be valuable to reveal the role of them in Verticillium wilt resistance.  相似文献   

6.
7.
Prions consist of misfolded proteins that have adopted an infectious amyloid conformation. In vivo, prion biogenesis is intimately associated with the protein quality control machinery. Using electron tomography, we probed the effects of the heat shock protein Hsp70 chaperone system on the structure of a model yeast [PSI+] prion in situ. Individual Hsp70 deletions shift the balance between fibril assembly and disassembly, resulting in a variable shell of nonfibrillar, but still immobile, aggregates at the surface of the [PSI+] prion deposits. Both Hsp104 (an Hsp100 disaggregase) and Sse1 (the major yeast form of Hsp110) were localized to this surface shell of [PSI+] deposits in the deletion mutants. Elevation of Hsp104 expression promoted the appearance of this novel, nonfibrillar form of the prion aggregate. Moreover, Sse1 was found to regulate prion fibril length. Our studies reveal a key role for Sse1 (Hsp110), in cooperation with Hsp104, in regulating the length and assembly state of [PSI+] prion fibrils in vivo.  相似文献   

8.
A third generation promoter probe shuttle vector pKG was constructed, using the green fluorescent protein as a reporter, for in situ evaluation of Deinococcal promoter activity in Escherichia coli or Deinococcus radiodurans. The construct yielded zero background fluorescence in both the organisms, in the absence of promoter sequences. Fifteen Deinococcal promoters, either harbouring Radiation and Desiccation Response Motif (RDRM) or not, were cloned in vector pKG. Only the RDRM-promoter constructs displayed (i) gamma radiation inducible GFP expression in D. radiodurans, following gamma irradiation, (ii) DdrO-mediated repression of GFP expression in heterologous E. coli, or (iii) abolition in GFP induction following gamma irradiation, in pprI mutant of D. radiodurans. Utility of pKG vector for real-time in situ assessment of Deinococcal promoter function was, thus, successfully demonstrated.  相似文献   

9.
10.

Objective

To develop a new expression system regulated by a ferric uptake regulator in which silicic acid is used as an inducer.

Results

Fur box (binding site for Fur) was substituted for the lac operator to regulate the expression of GFP with the lac promoter. Since the addition of supersaturated silicic acid invokes iron deficiency, supersaturated silicic acids were used as an inducer. GFP expression was dependent on silica concentration, and the expression level without silica was negligible. Basal expression level of this lac-Fur system was extremely low and, hence, lytic enzyme gene E from bacteriophage ?X174 could be retained in this system. Furthermore, the expression of genes of interest was spontaneously initiated as the cell density increased and the costs of the inducer are considerably less than IPTG.

Conclusion

The combination of lac promoter and Ferric uptake repressor allowed the protein expression by supersaturated silicic acid as an inducer in an easy and cost-effective way.
  相似文献   

11.
12.

Objectives

To investigate gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8, a potential high-ethanol producer, in response to various stresses during high-temperature ethanol fermentation using sweet sorghum juice (SSJ) under optimal conditions.

Results

The maximal ethanol concentration obtained by S. cerevisiae KKU-VN8 using SSJ at 40 °C was 66.6 g/l, with a productivity of 1.39 g/l/h and a theoretical ethanol yield of 81%. Quantitative RT-PCR assays were performed to investigate the gene expression profiles of S. cerevisiae KKU-VN8. Differential expression of genes encoding heat-shock proteins (HSP82, HSP104, SSA4), genes involved in trehalose metabolism (TPS1, TPS2, NTH1) and genes involved the glycolytic pathway (ADH1, ADH2, CDC19) at various time points during fermentation was observed. The expression levels of HSP82, HSP104, SSA4, ADH1 and CDC19 were significantly higher than those of the controls (10.2-, 4-, 8-, 8.9- and 5.9-fold higher, respectively). In contrast, the expression levels of TPS1, TPS2, NTH1 and ADH2 were approx. 2-fold less than those of the controls.

Conclusions

The highly expressed genes encoding heat-shock proteins, HSP82 and SSA4, potentially play an important role in helping S. cerevisiae KKU-VN8 cope with various stresses that occur during high-temperature fermentation, leading to higher ethanol production efficiency.
  相似文献   

13.
Heat-shock protein (Hsp) 27 is a major intracellular molecular chaperone and controller of intracellular responses to inflammatory signals. In the extracellular space, recombinant Hsp27 has been described to exert anti-inflammatory activities. The aim of this study was to assess the association between circulating levels of Hsp27 and different types of periodontitis. Pro- and anti-inflammatory cytokines and the stress proteins Hsp27 and Hsp60 with proposed anti- and pro-inflammatory properties, respectively, were measured by two-site ELISA in the serum of patients with aggressive periodontitis (AgP, n?=?30), chronic periodontitis (CP, n?=?29) and periodontally healthy controls (H, n?=?28). Furthermore, Hsp27 and Hsp60 levels were also measured longitudinally in 12 AgP patients at 6 time points up to 3 months after treatment. AgP patients had lower levels of Hsp27 compared to CP patients and healthy subjects (adjusted one-way ANOVA, p?<?0.001, followed by post hoc Tukey HSD comparisons), while no differences in levels of Hsp60 or cytokines between the three groups were detected. In CP patients and H subjects, the systemic Hsp27 levels correlated with Hsp60 (r?=?0.43, p?<?0.001; r?=?0.59, p?<?0.001, respectively) and with pro-inflammatory cytokines TNF-α (r?=?0.48, p?<?0.001; r?=?0.55, p?<?0.001, respectively) and IL-6 (r?=?0.44, p?<?0.01). However, no such correlations were detected in AgP cases. No consistent temporal patterns of changes of Hsp27 concentration were detected across AgP patients following periodontal treatment. This study provides the first evidence that Hsp27 may be differentially expressed and regulated in AgP patients as compared with CP patients and healthy individuals.  相似文献   

14.
15.
16.
The yeast AAA+ chaperone Hsp104 is essential for the development of thermotolerance and for the inheritance of prions. Recently, Hsp104, together with the actin cytoskeleton, has been implicated in the asymmetric distribution of carbonylated proteins. Here, we investigated the interplay between Hsp104 and actin by using a dominant-negative variant of Hsp104 (HAP/ClpP) that degrades substrate proteins instead of remodeling them. Coexpression of HAP/ClpP causes defects in morphology and the actin cytoskeleton. Taking a candidate approach, we identified Spa2, a member of the polarisome complex, as an Hsp104 substrate. Furthermore, we provided genetic evidence that links Spa2 and Hsp104 to Hof1, a member of the cytokinesis machinery. Spa2 and Hof1 knockout cells are affected in the asymmetric distribution of damaged proteins, suggesting that Hsp104, Spa2, and Hof1 are members of a network controlling the inheritance of carbonylated proteins.The ensemble of molecular chaperones and proteases constitutes the cellular system that repairs and eliminates misfolded proteins. The activity of this system ensures not only the recovery of cells from protein-damaging stress conditions, but also the maintenance of protein homeostasis under normal growth conditions. The concomitant involvement of members of the Hsp70 and Hsp90 chaperone families in stress-related, regulatory, and housekeeping functions allows the integration of environmental stimuli into regulatory networks (4, 24, 39, 40). However, it has remained unclear whether other chaperones are also involved in regulatory processes.One chaperone which so far has been connected only to stress-related protein quality functions is the oligomeric AAA+ chaperone Hsp104 of Saccharomyces cerevisiae. Hsp104 is essential for the development of thermotolerance by reactivating aggregated proteins after severe stress conditions and for prion propagation by severing prion fibrils (31). Yeast cells, when grown at 30°C, harbor approximately 5,000 copies of Hsp104 hexamers per cell, a number that is minor compared to other cytosolic chaperone machineries (e.g., Hsp70 and Hsp90) that are involved in general protein-folding events (10). The known cellular functions of Hsp104, however, cannot provide a rationale for the determined Hsp104 levels, since protein aggregation is hardly detectable in yeast cells at 30°C even in mutant cells lacking Hsp104 function. Furthermore, yeast prions occur de novo at a very low rate of 10−6 per cell. In consequence, both well-characterized Hsp104 activities are barely required at 30°C, suggesting that Hsp104 has additional, so far unknown housekeeping functions. On the other hand, an S. cerevisiae hsp104 knockout exhibits no obvious phenotype at 30°C (27), giving no clues to a potential involvement of Hsp104 in other cellular processes.Recently, Hsp104 was demonstrated to influence the asymmetric distribution of oxidatively damaged (carbonylated) proteins (8). It remained unclear whether the role of Hsp104 in this process relies on its known activities in protein quality control or on an unknown involvement in other cellular processes. Here, we provide evidence that Hsp104 is part of a network that controls the inheritance of damaged proteins under physiological growth conditions.  相似文献   

17.
18.
19.
20.
Cereal grains offer great potential as a storage system for production of highly valuable proteins using biotechnological approaches, but such applications require tight temporal and spatial control of transgene expression. Towards this aim, we have undertaken a detailed analysis of α-kafirin (α-kaf) promoter and α-kaf signal peptide (sp) in transgenic sorghum plants, using green fluorescent protein gene (gfp) as a reporter. Constructs containing either the α-kaf promoter or the constitutive maize ubiquitin-1 (ubi) promoter driving either gfp or sp-gfp translational fusion were introduced into Sorghum bicolor inbred line Tx430 by particle bombardment. We show for the first time that the α-kaf promoter directs endosperm-specific transgene expression, with activity first detected at 10 days post-anthesis (dpa), peaking at 20 dpa, and remaining active through to physiological maturity. Furthermore, we demonstrate for the first time that the α-kafirin sp is sufficient to direct foreign protein to protein bodies in the endosperm. The evidence is also provided for possible mis-targeting by α-kaf sp in vegetative tissues of transgenic lines with ubi-sp-gfp, resulting in loss of reporter gene translational activity that no GFP signal was observed. These results demonstrate that α-kaf promoter and α-kaf sp are well suited for seed bioengineering to produce recombinant proteins in sorghum endosperm or deposit foreign proteins into sorghum protein bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号