首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Actin, myosin, and the actin-associated proteins tropomyosin, alpha-actinin, vinculin, and villin were localized in acinar cells of rat and bovine pancreas, parotid, and prostate glands by means of immunofluorescent staining of both frozen tissue sections and semithin sections of quick-frozen, freeze-dried, and plastic-embedded tissues. Antibodies to actin, myosin, tropomyosin, alpha-actinin, and villin reacted strongly with a narrow cytoplasmic band extending beneath the luminal border of acinar cells. The presence of villin, which has so far been demonstrated only in intestinal and kidney brush border, was further confirmed by antibody staining of blotted electrophoresis gels of whole acinar cell extracts. Fluorescently labelled phalloidin, which reacts specifically with F-actin, gave similar staining, within the cell apex to that obtained with antibodies to actin, myosin, tropomyosin, alpha-actinin, and villin. In contrast, immunostaining with antibodies to vinculin was restricted to the area of the junctional complex. Ultrastructurally, the apical immunoreactive band corresponded to a dense web composed of interwoven microfilaments, which could be decorated with heavy meromyosin. Outside this apical terminal web, antibodies to myosin and tropomyosin gave only a weak immunostaining (confined to the lateral cell borders) whereas antibodies to actin and alpha-actinin led to a rather strong bead-like staining along the lateral and basal cell membrane most probably marking microfilament-associated desmosomes. Anti-villin immunofluorescence was confined to the apical terminal web. It is suggested that the apical terminal web is important for the control of transport and access of secretory granules to the luminal plasma membrane and that villin, which is known to bundle or sever actin filaments in a Ca(++)-dependent manner, might participate in the regulation of actin polymerization within this strategically located network of contractile proteins.  相似文献   

2.
We have explored the development of the brush border in adult chicken enterocytes by analyzing the cytoskeletal protein and mRNA levels as enterocytes arise from crypt stem cells and differentiate as they move toward the villus. At the base of the crypt, a small population of cells contain a rudimentary terminal web and a few short microvilli with long rootlets. These microvilli appear to arise from bundles of actin filaments which nucleate on the plasma membrane. The microvilli apparently elongate via the addition of membrane supplied by vesicles that fuse with the microvillus and extend the membrane around the actin core. Actin, villin, myosin, tropomyosin and spectrin, but not myosin I (previously called 110 kD; see Mooseker and Coleman, J. Cell Biol. 108, 2395-2400, 1989) are already concentrated in the luminal cytoplasm of crypt cells, as seen by immunofluorescence. Using quantitative densitometry of cDNA-hybridized RNA blots from cells isolated from crypts, villus middle (mid), or villus tip (tip), we found a 2- to 3-fold increase in villin, calmodulin and tropomyosin steady-state mRNA levels; an increase parallel to morphological brush border development. Actin, spectrin and myosin mRNA levels did not change significantly. ELISA of total crypt, mid and tip cell lysates show that there are no significant changes in actin, myosin, spectrin, tropomyosin, myosin I, villin or alpha-actinin protein levels as the brush border develops. The G-/F-actin ratio also did not change with brush border assembly. We conclude that, although the brush border is not fully assembled in immature enterocytes, the major cytoskeletal proteins are present in their full concentration and already localized within the apical cytoplasm. Therefore brush border formation may involve reorganization of a pool of existing cytoskeletal proteins mediated by the expression or regulation of an unidentified key protein(s).  相似文献   

3.
A fast and convenient method for the purification of microvilli from chicken intestinal brush borders is described. The microvilli appear morphologically very similar to those found on intact brush borders. Removal of the microvillus membrane from the microvilli by Triton X-100 treatment reveals compact bundles of microfilaments with small regularly spaced projections along their length. SDS-polyacrylamide gel analysis of the protein components of the brush border, the microvilli and the microvillus core bundles shows that little or no tropomyosin, myosin or filamin is found in the microvillus, whereas polypeptide chains with mobilities characteristic for these proteins are present in the whole brush border. The majority of the microvillus core protein is actin, and the other major protein present has a polypeptide molecular weight of 95 000. Total actin from both brush borders and microvilli, characterized by isoelectric focussing analysis, contained about 40% β actin and 60% γ actin. The presence of both the β and γ cytoplasmic actins in the highly ordered parallel arrays of microfilaments of the microvilli is discussed in light of hypotheses for different functional roles of these two actin species.  相似文献   

4.
Cytoskeletal proteins of the rat kidney proximal tubule brush border   总被引:3,自引:0,他引:3  
Cytoskeletal components backing the brush border of the rat kidney proximal tubule cell were identified and compared with those of the well characterized intestinal brush border by immuneoverlay and immunocytochemistry. Antibodies reactive against the intestinal microvillus core components, villin and fimbrin, as well as against the terminal web components, spectrin (fodrin) and myosin, were used. Proteins of similar molecular weight to these intestinal brush border cytoskeletal components were identified in isolated kidney brush borders by immuneoverlay. Spectrin, a major component of the terminal web region of both cell types, was more concentrated in the kidney brush border relative to both actin and myosin. By immunofluorescence, villin and fimbrin were localized in the microvilli, and spectrin and myosin were localized to the terminal web region of the brush border. In addition, spectrin was found along the basolateral membranes of the proximal tubule cell, and myosin was detected in a punctate staining pattern throughout its cytoplasm. By immunoelectron microscopy using immunogold labeling procedures, fimbrin and villin were localized in the terminal web as well as in microvilli, and spectrin and myosin were localized to fibrils in the terminal web. A key difference between the epithelia of the two organs is the extensive network of clathrin coated pits found in the terminal web region of the kidney but not the intestinal brush border. The clathrin-rich terminal web region of the kidney, like the intestinal brush border, proved to be quite stable and resistant to disruption by non-ionic detergents and harsh mechanical treatment.  相似文献   

5.
The brush border of intestinal epithelial cells consists of an array of tightly packed microvilli. Within each microvillus is a bundle of 20-30 actin filaments. The basal ends of the filament bundles are embedded in and interconected by a filamentous meshwork, the terminal web, which lies directly beneath the microvilli. When calcium and ATP are added to isolated brush borders that have been treated with the detergent, Triton X-100, the microvillar filament bundles rapidly retract into and through the terminal web region. Biochemical studies of brush border contractile proteins suggest that the observed microvillar contraction is actomyosin mediated. We have shown previously that the major protein of the brush border's actin (Tilney, L. G., and M. S. Mooseker. 1971. Proc. Natl. Acad. Sci. U. S. A. 68:2611-2615). The brush border also contains a protein with the same molecular weight as the heavy chain subunit of myosin (200, 000 daltons). In addition, preparations of demembranated brush borders exhibit potassium-EDTA ATPase activity of 0.02 mumol phosphate/mg-min (22 degrees C); this assay is diagnostic for myosin-like ATPase isolated from vertebrate sources. Other proteins of the brush border include a 30,000 dalton protein with properties similar to those of tropomyosin, and a protein with the same molecular weight as the Z band protein, alpha-actinin (95,000 daltons). How these observations bear on the basis for microvillar movements in vivo is discussed within the framework of our recent model for the organization of actin and myosin in the brush border (Mooseker, M. S., and L. G. Tilney. 1975. J. Cell Biol. 67:725-743).  相似文献   

6.
The localization of actin, myosin, tropomyosin, alpha-actinin, vinculin, and desmoplakin I/II was visualized by immunofluorescence microscopy. Antibodies against myosin, tropomyosin, and alpha-actinin and rhodamine-phalloidin labeled strongly the proximal and distal terminal webs which ultrastructurally consist of dense microfilament bundles. In the distal terminal web, the staining by these reagents occurred mostly perpendicular to the long axis of the incisor. Antivinculin stained the general area where the distal terminal web is located in the ameloblast. Anti-desmoplakin I/II labeled the junctional area associated with the proximal and distal terminal webs. The anti-desmoplakin staining was stronger along the cell border perpendicular to the long axis of the incisor. Comparison of the rhodamine-phalloidin staining pattern of the distal terminal web and the enamel secretion pattern by ameloblasts revealed that a change in the distal terminal web staining pattern preceded a change in the secretion pattern. These observations suggest that the cytoskeletal organization in the ameloblast is involved in the formation of the enamel matrix pattern in the rat incisor.  相似文献   

7.
Various models have been put forward suggesting ways in which brush borders from intestinal epithelial cells may be motile. Experiments documenting putative brush border motility have been performed on isolated brush borders and have generated models suggesting microvillar retraction or microvillar rootlet interactions. The reported Ca++ ATP- induced retraction of microvilli has been shown, instead, to be microvillar dissolution in response to Ca++ and not active brush border motility. I report here studies on the reactivation of motility in intact sheets of isolated intestinal epithelium. Whole epithelial sheets were glycerinated, which leaves the brush border and intercellular junctions intact, and then treated with ATP, PPi, ITP, ADP, GTP, or delta S-ATP. Analysis by video enhanced differential interference-contrast microscopy and thin-section transmission electron microscopy reveals contractions in the terminal web region causing microvilli to be fanned apart in response to ATP and delta S-ATP but not in response to ADP, PPi, ITP, or GTP. Electron microscopy reveals that the contractions occur at the level of the intermediate junction in a circumferential constriction which can pull cells completely apart. This constriction occurs in a location occupied by an actin- containing circumferential band of filaments, as demonstrated by S-1 binding, which completely encircles the terminal web at the level of the intermediate junction. Upon contraction, this band becomes denser and thicker. Since myosin, alpha-actinin and tropomyosin, in addition to actin, have been localized to this region of the terminal web, it is proposed that the intestinal epithelial cell can be motile via a circumferential terminal web contractile ring analogous to the contractile ring of dividing cells.  相似文献   

8.
Monoclonal antibodies binding to the rod portion of brush border myosin were used to localize myosin in chicken intestinal brush border cells by indirect immunofluorescence. Isolated cells, or cells still attached in a sheet, were analyzed by conventional epifluorescence microscopy, which showed that most of the immunoreactive myosin is localized in the apical brush border (terminal web), and in a basal region. In addition, a weak, diffuse granular and rod-like labeling was detected throughout the cell body. Using the laser-scanning confocal microscope (White et al., 1987), a more precise localization of the myosin within the terminal web and the cell body was obtained. In the terminal web, most of the myosin was concentrated in a circumferential ring, below the plasma membrane, and the remaining myosin was found in the inter-rootlet area. These two populations of myosin were topologically strictly related, since they were found in the same optical sections. In the cell body, as well as in the basal region, the myosin was found to be associated with the outer limiting membrane of the cell, in a cortical location, whereas essentially no myosin was detected in the cytoplasm.  相似文献   

9.
Stereo immunofluorescence microscopy avoids the problem of juxtaposition of structures often encountered in normal fluorescence microscopy. The procedure has been used in conjunction with antibodies against microfilament associated proteins to reveal the arrangement of microfilaments in a rat mammary cell line both in the fully spread state and in cells during the process of spreading on the substratum. use of antibodies to myosin, tropomyosin, alpha-actinin and filamin emphasizes that at early times during the spreading process these proteins are abundantly present underneath the upper plasma membrane, suggesting that the cortical layer present underneath this membrane may be contractile. In addition the results emphasize that even in well spread cells microfilament bundles are expressed both above and below the nucleus, in agreement with the assumption that microfilaments may form a supporting layer underneath the plasma membrane.  相似文献   

10.
The brush border of intestinal epithelial cells consists of a tightly packed array of microvilli, each of which contains a core of actin filaments. It has been postulated that microvillar movements are mediated by myosin interactions in the terminal web with the basal ends of these actin cores (Mooseker, M.S. 1976. J. Cell. Biol. 71:417-433). We report here that two predictions of this model are correct: (a) The brush border contains myosin, and (b) myosin is located in the terminal web. Myosin is isolated in 70 percent purity by solubilization of Triton-treated brush borders in 0.6 M KI, and separation of the components by gel filtration. Most of the remaining contaminants can be removed by precipitation of the myosin at low ionic strength. This yield is approximately 1 mg of myosin/30 mg of solubilized brush border protein. The molecule consists of three subunits with molecular weights of 200,000, 19,000, and 17,000 daltons in a 1:1:1 M ratio. At low ionic strength, the myosin forms small, bipolar filaments with dimensions of 300 X 11nm, that are similar to filaments seen previously in the terminal web of isolated brush borders. Like that of other vertebrate, nonmuscle myosins, the ATPase activity of isolated brush border myosin in 0.6 M KCI is highest with EDTA (1 μmol P(i)/mg-min; 37 degrees C), intermediate with Ca++ (0.4 μmol P(i)/mg-min), and low with Mg++ (0.01 μmol P(i)/mg-min). Actin does not stimulate the Mg-ATPase activity of the isolated enzyme. Antibodies against the rod fragment of human platelet myosin cross-react by immunodiffusion with brush border myosin. Staining of isolated mouse or chicken brush borders with rhodamine-antimyosin demonstrates that myosin is localized exclusively in the terminal web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号