首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An enzyme synthesizing stachyose, galactinol-raffinose galactosyltransferase (EC2.4.1.67), has been purified ca 40-fold from mature leaves of Cucurbita pepo using ammonium sulphate precipitation, Sephadex gel filtration and DEAE-Sephadex gel chromatography. The purified enzyme fraction was separated from all but 2 % of the total,α-galactosidase activity extracted from the tissue. The enzyme was optimally active at pH 6.9 and was stable for at least a month at 4° in the presence of 20 mM 2-mercaptoethanol. The enzyme displayed high specificity for the donor galactinol (Km 7.7 mM) and the acceptor raffinose (Km 4.6 mM) and was unable to effect synthesis of any other member of the raffinose series of galactosyl-sucrose oligosaccharides. Co2+, Hg2+, Mn2+ and Ni2+ ions were particularly inhibitory; no metal ion promotion was observed and 5 mM EDTA was ineffective. Myo-inositol was strongly inhibitory (Ki 2 mM), melibiose weakly so. Tris buffer (0. 1 M) was also inhibitory. Galactinol hydrolysis occurred in the absence of the acceptor raffinose but there was no hydrolysis of either raffinose or stachyose in the absence of the donor galactinol. The reaction was readily reversible and exchange reactions were detected between substrates and products. It is proposed that the synthesis of stachyose in mature leaves ofC. pepo proceeds via this galactosyltransferase and not via α-galactosidase.  相似文献   

2.
Theo Fahrendorf  Erwin Beck 《Planta》1990,180(2):237-244
Two different forms of acid invertase (EC 3.2.1.26) were extracted from expanding leaves of the stinging nettle (Urtica dioica L.). One form was soluble and could be localized within the cytosol, whereas the other was ionically bound to the cell-wall and could not be detected in protoplasts. Both forms were purified, the latter to homogeneity. Western blotting with antibodies against the pure enzyme from cell walls was positive with the cell-wall enzyme but negative with the soluble form of acid invertase. Both forms are glycoproteins with identical molecular weights of 58 kDa. The Km values for sucrose (raffinose) are 5 mM (4.8 mM) for the soluble and 1.2 mM (3.6 mM) for the cell-wall-bound enzyme. The pH optimum of the latter is slightly more acidic (4.5) than that of the soluble invertase (5.5). Both forms could easily be distinguished by their isoelectric points which were determined at pH 4.6 for the soluble and pH 9.3 for the wall-bound enzyme. When extraction and purification were carried out in the absence of protease inhibitors, both acid invertases showed microheterogeneity (multiple forms). However, with benzamidine and phenylmethylsulfonylfluoride as protease inhibitors each invertase produced only one protein band upon isoelectric focusing and gel electrophoresis, respectively.Abbreviations B benzamidine - Con A concanavalin A - FPLC fast protein liquid chromatography - IEF isoelectric focusing - kDa kilodalton - pI isoelectric point - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecyl sulfate This work was supported by the Deutsche Forschungsgemeinschaft within the scope of the Sonderforschungsbereich 137.  相似文献   

3.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified 43-fold from Amaranthus viridis leaves by using a combination of ammonium-sulphate fractionation, chromatography on O-(diethylaminoethyl)-cellulose and hydroxylapatite, and filtration through Sepharose 6B. The purified enzyme had a specific activity of 17.1 mol·(mg protein)-1·min-1 and migrated as a single band of relative molecular weight 100000 on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. A homotetrameric structure was determined for the native enzyme. Phosphoenolpyruvate carboxylase from Zea mays L. and A. viridis showed partial identity in Ouchterlony two-dimensional diffusion. Isoelectric focusing showed a band at pI 6.2. Km values for phosphoenolpyruvate and bicarbonate were 0.29 and 0.17 mM, respectively, at pH 8.0. The activation constant (Ka) for Mg2+ was 0.87 mM at the same pH. The carboxylase was activated by glucose-6-phosphate and inhibited by several organic acids of three to five carbon atoms. The kinetic and structural properties of phosphoenolpyruvate carboxylase from A. viridis leaves are similar to those of the enzyme from Zea mays leaves.Abbreviations MW molecular weight - PEP (Case) phosphoenolpyruvate (carboxylase) - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

4.
The biochemical pathway of stachyose synthesis was localized by immunocytochemical and 14C-labeling techniques in mature Cucurbita pepo L. leaves. Galactinol synthase (GaS; EC 2.4.1.123), the first unique enzyme in this pathway, was immunolocalized within the intermediary cells of minor veins in conventionally fixed and cryo-fixed, resin-embedded sections using polyclonal anti-GaS antibodies and protein A-gold. Intermediary cells are specialized companion cells with extensive symplastic connections to the bundle sheath. Gold particles were not seen over the non-specialized companion cells of larger veins or over intermediary cells in young leaves prior to the sink-source transition. In another approach to localization, radiolabel was measured in isolated mesophyll tissue and whole tissue of leaves that were lyophilized following a 90-s exposure to 14CO2. Mesophyll, obtained by abrasion of the leaf surface, contained labeled sucrose, galactinol, raffinose and stachyose. However, the latter three labeled compounds constituted a smaller proportion of the neutral fraction than in whole-tissue samples, which also contained minor veins. We conclude that synthesis of galactinol, raffinose, and stachyose occurs in both mesophyll and intermediary cells, predominantly the latter.Abbreviations GaS galactinol synthase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We thank John Pierce, Phillip Kerr, and Brace Schweiger for the gift of anti-GaS antibody and M.K. Kandasamy for helpful discussions. This research was supported by National Science Foundation grant DCB-9104159, U.S. Department of Agriculture Competetive Grant 90000854, and Hatch funds.  相似文献   

5.
Glycerate kinase (GK; EC 2.7.1.31) from maize (Zea mays L.) leaves was purified by a sequence of ammonium-sulfate precipitations and chromatography on diethylaminoethyl-cellulose, hydroxyapatite, Sephadex G-75SF and dye ligand (Green A) columns. The purest preparation was almost 1300-fold enriched and had a specific activity of 68 mol · min-1 · (mg protein) -1. The enzyme was a monomer of a relative molecular mass (Mr) of 44 kDa (kdalton) as determined by gel filtration, electrophoresis in dissociating conditions and by immunoblots. The enzyme was only weakly recognized by polyclonal antibodies against purified spinach GK, indicating substantial differences in molecular structure of the two proteins. Highly reducing conditions stabilized GK activity and were required for activation of crude leaf enzyme. The enzyme had a broad pH optimum of 6.8–8.5, and formed 3-phosphoglycerate and ADP as reaction products. Apparent K ms for D-glycerate and Mg-ATP were 0.11 and 0.25 mM, respectively. The enzyme was strongly affected by a number of phosphoesters, especially by 3-phosphoglycerate (K i= 0.36 mM), fructose bisphosphates and nucleoside bisphosphates. Inhibition by 3-phosphoglycerate was competitive to Mg-ATP and noncompetitive to D-glycerate. Pyruvate was found noncompetitive to D-glycerate (K is=4 mM). The ratio of stromal concentration of Mg-ATP to phosphoesters, particularly to 3-phosphoglycerate, may be of importance in the regulation of GK during C4-photosynthesis.Abbreviations DEAE diethylaminoethyl - kDa kdalton - GAP-DH glyceraldehyde phosphate dehydrogenase - GK glycerate kinase - LDH lactate dehydrogenase - 2-ME 2-mercaptoethanol - Mr relative molecular mass - PEP phosphoenolpyruvate - PGA(PK) phosphoglycerate (phosphokinase) - PK pyruvate kinase - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis  相似文献   

6.
Trigonelline (TRG), which act as a cell cycle regulator and a compatible solute in response to salinity and water-stress, is the N-methyl conjugate of nicotinic acid the formation of which is catalyzed by S-adenosyl-L-methionine nicotinic acid-N-methyltransferase. The enzyme was purified 2650-fold from soybean (Glycine max L.) leaves with a recovery of 4 %. The purification procedure included ammonium sulfate (45 – 60 %) precipitation, linear gradient DEAE-Sepharose chromatography, adenosine-agarose affinity chromatography, hydroxyapatite chromatography and gel filtration (Sephacryl-S-200). The purified enzyme preparation showed a major band with a molecular mass of 41.5 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis that is related to the enzyme activity. The native enzyme had a molecular mass of about 85 kDa as estimated by gel filtration. The Km values for S-adenosyl-L-methionine and nicotinic acid were 31 and 12.5 M, respectively. The purified enzyme showed optimum activity at pH 6.5 and temperature of 40 – 45 °C. High concentration of dithiothreitol (10 mM) and glycerol (20 %) stabilize the enzyme during purification and storage. Hg2+ strongly inhibits enzyme activity.  相似文献   

7.
Two l-threonine (l-serine) dehydratases (EC 4.2.1.16) of the thermophilic phototrophic bacterium Chloroflexus aurantiacus Ok-70-fl were purified to electrophoretic homogeneity by procedures involving anion exchange and hydrophobic interaction chromatography. Only one of the two enzymes was sensitive to inhibition by l-isoleucine (K i=2 M) and activation by l-valine. The isoleucine-insensitive dehydratase was active with l-threonine (K m=20 mM) as well as with l-serine (K m=10 mM) whereas the other enzyme, which displayed much higher affinity to l-threonine (K m=1.3 mM), was inactivated when acting on l-serine. Both dehydratases contained pyridoxal-5-phosphate as cofactor. When assayed by gel filtration techniques at 20 to 25° C, the molecular weights of both enzymes were found to be 106,000±6,000. In sodium dodecylsulfate-polyacrylamide gel electrophoresis, the two dehydratases yielded only one type of subunit with a molecular weight of 55,000±3,000. The isoleucine-insensitive enzyme was subject to a glucose-mediated catabolite repression.Abbreviations A absorbance - ile isoleucine - PLP pyridoxal-5-phosphate - SDS sodium dodecyl sulfate - TDH threonine dehydratase - U unit  相似文献   

8.
An aromatic amino acid aminotransferase (aromAT) was purified over 33 000-fold from the shoots and primary leaves of mung beans (Vigna radiata L. Wilczek). The enzyme was purified by ammonium sulfate precipitation, gel filtration and anion exchange followed by fast protein liquid chromatography using Mono Q and Phenylsuperose. The relative amino transferase activities using the most active amino acid substrates were: tryptophan 100, tyrosine 83 and phenylalanine 75, withK m values of 0.095, 0.08 and 0.07 mM, respectively. The enzyme was able to use 2-oxoglutarate, oxaloacetate and pyruvate as oxo acid substrates at relative activities of 100, 128 and 116 andK m values of 0.65, 0.25 and 0.24 mM, respectively. In addition to the aromatic amino acids the enzyme was able to transaminate alanine, arginine, aspartate, leucine and lysine to a lesser extent. The reverse reactions between glutamate and the oxo acids indolepyruvate and hydroxyphenylpyruvate occurred at 30 and 40% of the forward reactions of tryptophan and tyrosine, withK m, values of 0.1 and 0.8 mM, respectively. The enzyme was not inhibited by indoleacetic acid, although -naphthaleneacetic acid did inhibit slightly. Addition of the cofactor pyridoxal phosphate only slightly increased the activity of the purified enzyme. The aromAT had a molecular weight of 55–59 kDa. The possible role of the aromAT in the biosynthesis of indoleacetic acid is discussed.Abbreviations AAT aspartate aminotransferase - aromAT aromatic amino acid aminotransferase - FPLC fast protein liquid chromatography - IPyA indolepyruvate - OHPhPy hydroxyphenylpyruvate - PLP pyridoxal phosphate - TAT tryptophan aminotransferase  相似文献   

9.
An α-galactosidase from tubers of S. affinis was purified about 130 fold by ammonium sulfate fractionation, chromatography on DEAE-cellulose and gel filtration on Sephadex G-75. The purified enzyme showed a single protein band on disc gel electrophoresis. The molecular weight of the enzyme was determined to be approximately 42,000 by gel filtration and 44,000 by SDS disc gel electrophoresis. The optimum reaction pH was 5.2. The enzyme hydrolyzed raffinose more rapidly than planteose. The activation energy of raffinose and planteose by the enzyme was estimated to be 7.89 and 11.4 kcal/mol, respectively. The enzyme activity was inhibited by various galactosides and structural analogs of d-galactose. Besides hydrolytic activity, the enzyme also catalyzed the transfer reaction of d-galactosyl residue from raffinose to methanol.  相似文献   

10.
Polyphosphatase, an enzyme which hydrolyses highly polymeric polyphosphates to Pi, was purified 77-fold fromAcinetobacter johnsonii 210A by Q-Sepharose, hydroxylapatite and Mono-Q column chromatography. The native molecular mass estimated by gel filtration and native gel electrophoresis was 55 kDa. SDS-polyacrylamide gel electrophoresis indicated that polyphosphatase ofAcinetobacter johnsonii 210A is a monomer. The enzyme was specific for highly polymeric polyphosphates and showed no activity towards pyrophosphate and organic phosphate esters. The enzyme was inhibited by iodoacetamide and in the presence of 10 mM Mg2+ by pyro- and triphosphate. The apparent Km-value for polyphosphate with an average chain length of 64 residues was 5.9 µM and for tetraphosphate 1.2 mM. Polyphosphate chains were degraded to short chain polymers by a processive mechanism. Polyphosphatase activity was maximal in the presence of Mg2+ and K+.  相似文献   

11.
Ahlert Schmidt 《Planta》1981,152(2):101-104
Fructose-1,6-bisphosphatase was isolated from the cyanobacterium Synechococcus 6301 by acid precipitation, ammonium-sulfate fractionation, and Sephadex gel chromatography. The purified enzyme needed thiols and MgCl2 for activity. The following Km-values were obtained: a) for fructose-1,6-bisphosphate: 1.7 mM; b) for MgCl2: 12.5 mM; c) for dithiocrythritol: 0,56 mM; d) for glutathione: 14 mM; e) for mercaptoethanol: 22 mM; f) for cysteine: 50 mM. Thioredoxin B isolated from this organism will activate this fructose-1,6-bisphosphatase. The Km of thioredoxin B for this fructose-1,6-bisphosphatase was determined to be 1.7 M, endicotiy that thioredoxin might activate the fructose-1,6-bisphosphatase in Synechococcus in vivo.  相似文献   

12.
Summary NADP-dependent glutamate dehydrogenase from Dictyostelium discoideum was purified 9300 fold with a yield of 4.6%. The enzyme is a hexamer of apparent molecular weight 294 kDa on Sephacryl S400 and a subunit molecular weight of 52 kDa as determined by SDS gel electrophoresis. The apparent KmS for -ketoglutarate, NADPH and NH inf4 sup+ are 1.2 mM, 9.7 µM and 2.2 mM respectively, and the purified enzyme has a broad pH optimum with a peak at pH 7.75. GTP has a slight stimulatory effect (22% at 83 µM) as does ADP (11% at 1 mM), and AMP is slightly inhibitory (9% at 1 mM) whereas adenosine, ATP and cAMP have little or no effect. Neither the Zn2+ chelating compound 1,10-phenanthroline nor EDTA have any effect on the enzyme while p-hydroxymercuribenzoic acid inhibits enzyme activity (50% at 80 µM) yet N-ethylmaleimide does not.In addition, the NADP-GDH activity varies little during the various stages of morphogenesis.Abbreviations EDTA Ethylenediamine Tetraacetic Acid - Tris Tris(hydroxymethyl)aminomethane - Bis-tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - TRITON X-100 iso-octylphenoxypoly-ethoxyethanol - pHMB p-Hydroxymercuribenzoic acid  相似文献   

13.
Intracellular frustosyl transferase was purified fromAureobasidium pullulans C-23 by ethanol fractionation, CM-Sephadex chromatography and preparative disc gel electrophoresis. It was shown to be homogeneous on disc polyacrylamide gel electrophoresis, with a molecular size of 190kDa. The pI value of the enzyme was about 3.7. The enzyme has aK m value of 0.43 mM for sucrose and was optimally active at pH 5.0 and 60°C. The enzyme was stable from pH 2.5 to 12. It was almost completely inhibited by 5mM Hg2+ but was not significantly affected by other cations. The transferase was inactivated by treatment with the tryptophan-specific reagentN-bromosuccinimide and the tyrosine-specific reagent, I2, suggesting that tryptophan and tyrosine residues are probably located at or near the active site of the enzyme.  相似文献   

14.
Alanine dehydrogenase was purified to near homogeneity from cell-free extract of Streptomyces aureofaciens, which produces tetracycline. The molecular weight of the enzyme determined by size-exclusion high-performance liquid chromatography was 395 000. The molecular weight determined by sodium dodecyl sulfate gel electrophoresis was 48 000, indicating that the enzyme consists of eight subunits with similar molecular weight. The isoelectric point of alanine dehydrogenase is 6.7. The pH optimum is 10.0 for oxidative deamination of L-alanine and 8.5 for reductive amination of pyruvate. K M values were 5.0 mM for L-alanine and 0.11 mM for NAD+. K M values for reductive amination were 0.56 mM for pyruvate, 0.029 mM for NADH and 6.67 mM for NH4Cl.Abbreviation AlaDH alanine dehydrogenase  相似文献   

15.
A simple procedure for the isolation of cathepsin-B from bovine pancreas employing ammonium sulphate fractionation, DEAE cellulose chromatography and Sephadex G-200 gel filtration is described. The purified enzyme gave a single band on polyacrylamide gel electrophoresis. The molecular weight as determined by gel filtration of the enzyme was 26,850. ItsK m andV max values were 12.8 mM and 0.303 Μmol/min/mg, respectively. TheK i for iodoacetamide was 0.16 mM.  相似文献   

16.
Summary Candida wickerhamii growing on cellobiose produced -glucosidase with high activity against -nitrophenyl glucoside (PNPG) but low activity against cellobiose. -glucosidase production was constitutive, and was repressed by -glucosides and glucose. -glucosides containing an aromatic moiety in the aglycon were the best substrates for -glucosidase indicating that the enzyme is an aryl--glucosidase. A -glucosidase from C. wickerhamii cells was purified by (NH4)2SO4 precipitation, dialysis, ion-exchange chromatography and gel filtration. The purified enzyme was homogeneous as shown by sodium-dodecyl-sulphate polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme hydrolysed PNPG but not cellobiose. The Km of the enzyme was 0.185 mM. Glucose inhibited the enzyme competitively and the Ki was 7.5 mM. The apparent molecular mass was 97,000. The optimum pH and temperature for enzyme activity were between pH 7 and 7.4 and 40°C respectively. At temperatures of 45°C and greater the enzyme was inactivated. The activation energy of the enzyme was 29.4 kJ · mol-1.  相似文献   

17.
Coenzyme A-linked acetaldehyde dehydrogenase (ACDH) of ethanol-grown cells of Acetobacterium woodii was purified to apparent homogeneity; a 28-fold purification was achieved with 13% yield. The enzyme proved to be oxygen-sensitive and was inactive in the absence of dithioerythritol. During the purification procedure addition of 1 mM MgCl2 was necessary to maintain enzyme activity. Alcohol dehydrogenase (ADH) activity was separated from ACDH during anion exchange chromatography using DEAE Sephacel. A part of the ACDH activity coeluted with ADH, but both could be separately eluted from a Cibacron Blue 3GA-Agarose column, revealing the same subunit structure and activity band for ACDH as found before and, thus, indicating an aggregation of the enzyme. The remaining ADH activity could be separated by gel filtration. For the native ACDH a molecular mass of 255 kDa was determined by polyacrylamide gel electrophoresis and of 272 kDa by gel filtration using Superose 12. The enzyme subunit sizes were 28 kDa and 40 kDa, respectively, indicating a 44 structure for the active form. The enzyme catalyzed the oxidation of several straight chain aldehydes although it was most active with acetaldehyde. NADH strongly inhibited oxidation of acetaldehyde whereas NADPH had no effect. The inhibition was noncompetitive.Non-standard abbrevations ACDH acetaldehyde dehydrogenase - ADH alcohol dehydrogenase - CHES 2-(N-cyclohexylamino)-ethanesulfonate - DTE dithioerythritol - KP-buffer 25 mM K-PO4, pH 7.5, containing, 4 mM DTE - MES 2-(N-morpholino)-ethanesulfonate - TAPS N-Tris-(hydroxymethyl)-methyl-3-aminopropa-nesulfonate  相似文献   

18.
Pyruvate decarboxylase (EC 4.1.1.1) from the ethanol producing bacterium Zymomonas mobilis was purified to homogeneity. This enzyme is an acidic protein with an isoelectric point of 4.87 and has an apparent molecular weight of 200,000±10,000. The enzyme showed a single band in sodium dodecylsulfate gel electrophoresis with a molecular weight of 56,500±4,000 which indicated that the enzyme consists of four probably identical subunits. The dissociation of the cofactors Mg2+ and thiamine pyrophosphate at pH 8.9 resulted in a total loss of enzyme activity which could be restored to 99.5% at pH 6.0 in the presence of both cofactors. For the apoenzyme the apparent K m values for Mg2+ and thiamine pyrophosphate were determined to be 24 M and 1.28 M. The apparent K m value for the substrate pyruvate was 0.4 mM. Antiserum prepared against this purified pyruvate decarboxylase failed to crossreact with cell extracts of the reportedly pyruvate decarboxylase positive bacteria Sarcina ventriculi, Erwinia amylovora, or Gluconobacter oxydans, or with cell extracts of Saccharomyces cerevisiae.Abbreviations Tris-buffer 0,01 M tris-HCl buffer, containing 1 mM MgCl2 0.1 mM EDTA, 1.0 mM thiamine pyrophosphate, 2 mM mercaptopropanediol, pH 7.0  相似文献   

19.
Purification and characterization of barley-aleurone xylanase   总被引:1,自引:0,他引:1  
Xylanase (-1,4-D-xylan xylanohydrolase; EC 3.2.1.8) from aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) was purified and characterized. Purification was by preparative isoelectric focusing and a Sephadex G-200 column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme showed a single protein band with an apparent molecular weight (Mr)=34000 daltons. The isoelectric point of the enzyme was 4.6. The enzyme had maximum activity on xylan at pH 5.5 and at 35° C. It was most stable between pH 5 and 6 and at temperatures between 0 and 4° C. The Km was 0.86 mg xylan·ml-1.Abbreviations GA3 gibberellic acid - kDa kilodalton - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

20.
The extracellular -glucosidase has been purified from culture broth of Myceliophthora thermophila ATCC 48104 grown on crystalline cellulose. The enzyme was purified approximately 30-fold by (NH4)2SO4 precipitation and column chromatography on DEAE-Sephadex A-50, Sephadex G-200 and DEAE-Sephadex A-50. The molecular mass of the enzyme was estimated to be about 120 kD by both sodium dodecyl sulphate gel electrophoresis and gel filtration chromatography. It displayed optimal activity at pH 4.8 and 60°C. The purified enzyme in the absence of substrate was stable up to 60°C and pH between 4.5 and 5.5. The enzyme hydrolysed p-nitrophenyl--d-glucoside, cellobiose and salicin but not carboxymethyl cellulose or crystalline cellulose. The K m of the enzyme was 1.6mm for p-nitrophenyl--d-glucoside and 8.0mm for cellobiose. d-Glucose was a competitive inhibitor of the enzyme with a K of 22.5mm. Enzyme K activity was inhibited by HgCl2, FeSO4, CuSO4, EDTA, sodium dodecyl sulphate, p-chloromercurobenzoate and iodoacetamide and was stimulated by 2-mercaptoethanol, dithiothreitol and glutathione. Ethanol up to 1.7 m had no effect on the enzyme activity.The authors are with the Department of Microbiology, Bose Institute, 93/1, A.P.C. Road, Calcutta 700 009, India. S.K. Raha is presently with the Department of Medicine, University of Saskatchewan, Saskatoon, Canada S7N OXO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号