首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
2.
3.
4.
The Tie receptor tyrosine kinases and their angiopoietin (Ang) ligands play central roles in developmental and tumor-induced angiogenesis. Here we present the crystal structures of the Tie2 ligand-binding region alone and in complex with Ang2. In contrast to prediction, Tie2 contains not two but three immunoglobulin (Ig) domains, which fold together with the three epidermal growth factor domains into a compact, arrowhead-shaped structure. Ang2 binds at the tip of the arrowhead utilizing a lock-and-key mode of ligand recognition-unique for a receptor kinase-where two complementary surfaces interact with each other with no domain rearrangements and little conformational change in either molecule. Ang2-Tie2 recognition is similar to antibody-protein antigen recognition, including the location of the ligand-binding site within the Ig fold. Analysis of the structures and structure-based mutagenesis provide insight into the mechanism of receptor activation and support the hypothesis that all angiopoietins interact with Tie2 in a structurally similar manner.  相似文献   

5.
6.
2'-Amino-2'-deoxyadenosine and 2'-chloro-2'-deoxycoformycin (2'-CldCF) are two nucleoside antibiotics produced by Actinomadura. The biosynthesis of these two nucleoside antibiotics has been studied by the addition of [U-14C]adenosine with or without unlabeled adenine to cultures of Actinomadura. By this experimental approach, it is possible to demonstrate that adenosine is the direct precursor for the biosynthesis of 2'-amino-2'-deoxyadenosine and 2'-CldCF. These conclusions are based on the observation that the percentage distribution of 14C in the aglyconic and pentofuranosyl moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were similar to the distribution of 14C in the adenine and ribosyl moieties of the [U-14C]adenosine (i.e., 48:52) added to cultures of Actinomadura. Experimentally, the percentage distribution of 14C in the (i) adenine:2-amino-2-deoxy-beta-D-ribofuranose of 2'-amino-2'-deoxyadenosine is 51:49; (ii) 8-(R)-3,6,7,8-tetrahydroimidazo[4,5-d]-[1,3-diazepin-8-o1]:2 -chloro-2- beta-D-ribofuranose of 2'-CldCF is 45:55; and (iii) adenine:ribose of the adenosine isolated from the RNA of Actinomadura is 42:58. Further proof that adenosine is the direct precursor for the biosynthesis 2'-amino-2'-deoxyadenosine and 2'-CldCF was demonstrated by the addition of 75 mumol of unlabeled adenine together with [U-14C]adenosine to nucleoside-producing cultures of Actinomadura. The percentage distribution of 14C in the aglycon and the sugar moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were 46:54 and 47:53, respectively; the percentage distribution of 14C in the adenine and ribose moieties of the adenosine isolated from the RNA of Actinomadura was 51:49. These data show that the hydroxyl on C-2' of the ribosyl moiety of adenosine undergoes a replacement by a 2'-amino or a 2'-chloro group to form 2'-amino-2'-deoxyadenosine or 2'-CldCF with retention of stereconfiguration at C-2'. Finally, Actinomadura can utilize inorganic chloride from the medium as demonstrated by the isolation of [36Cl]2'-CldCF following the addition of [36Cl]chloride to the culture medium. Mechanisms for the regioselective modification of the C-2' hydroxyl group and stereospecific insertion of the amino and chloro groups are discussed.  相似文献   

7.
A reduced activity of the sarcoplasmic reticulum Ca2+ pump SERCA2a is a hallmark of cardiac dysfunction in heart failure. In SERCA2b/b mice, the normal SERCA2a isoform is replaced by SERCA2b, displaying a higher Ca2+ affinity. This elicited decreased cardiac SERCA2 expression and cardiac hypertrophy. Here, the interplay was studied between the increased Ca2+ affinity and a reduced expression of the pump and its role in the cardiac remodeling was investigated. First, SERCA2b/b mice were crossed with SERCA2b transgenes to boost cardiac SERCA2b expression. However, the enforced expression of SERCA2b was spontaneously countered by an increased inhibition by phospholamban (PLB), reducing the pump's Ca2+ affinity. Moreover, the higher SERCA2 content did not prevent hypertrophy. Second, we studied heterozygous SERCA2b/WT mice, which also express lower SERCA2 levels compared to wild-type. Hypertrophy was not observed. In heterozygotes, SERCA2b expression was specifically suppressed, explaining the reduced SERCA2 content. The SERCA2b/WT model strikingly differs from the homozygote models because SERCA2a (not SERCA2b) is the major isoform and because the inhibition of the pump by PLB is decreased instead of being increased. Thus, a tight correlation exists between the SERCA2 levels and Ca2+ affinity (controlled by PLB). This compensatory response may be important to prevent cardiac remodeling.  相似文献   

8.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.  相似文献   

9.
10.
11.

Background

Heparan sulfate proteoglycans are ubiquitously expressed on cell surfaces and in extracellular matrices, and are engaged in heparin-binding growth factor-related signal transduction. Thus, changes in the amounts, structures, and chain lengths of heparan sulfate have profound effects on aspects of cell growth controlled by heparin-binding growth factors such as FGF2. Exostosin glycosyltransferases (EXT1, EXT2, EXTL1, EXTL2, and EXTL3) control heparan sulfate biosynthesis, and the expression levels of their genes regulate the amounts, chain lengths, and sulfation patterns of heparan sulfate. Unlike EXT1, EXT2, and EXTL3, EXTL2 functions chain termination of heparan sulfate. Here, we examined the importance of EXTL2 in FGF2-dependent signaling.

Methods

We investigated heparan sulfate biosynthesis and FGF2 signaling using four cell lines, EXT1-deficient cells, EXT2-, EXTL2-, or EXTL3-knockdown cells, by HPLC, qRT-PCR, flow cytometry, and western blotting.

Results

Reduced expression of either EXT1, EXT2, or EXTL3 decreased heparan sulfate biosynthesis, and consequently suppressed the FGF2-dependent proliferation of mouse L fibroblasts. In contrast, although knockdown of EXTL2 increased the amounts of heparan sulfate, FGF2-dependent proliferation was significantly inhibited because the increased heparan sulfate enhanced the incorporation of FGF2 into the cells.

Conclusions

EXTL2 controls FGF2 signaling through regulation of heparan sulfate biosynthesis in a manner distinct from that of other exostosins.

General significance

This study provides new insights into the regulatory mechanisms of FGF2 signaling by EXTL2.  相似文献   

12.
We have previously presented evidence which suggests that casein kinase-2 phosphorylates a serine residue near the N-terminus of the beta-subunit of the initiation factor eIF-2 (Clark, S.J. et al. Biochim. Biophys. Acta 968, 211-219). We now report further data which confirm that it is serine-2 which is phosphorylated by casein kinase-2. This data includes (1) the electrophoretic mobilities of the phosphopeptides produced by different cleavage techniques, (2) the amino acid composition of the principal phosphopeptide generated by treatment with cyanogen bromide and (3) the resistance of this phosphopeptide to Edman degradation.  相似文献   

13.
14.
The lipopolysaccharide (LPS) of Klebsiella serotype O2 is antigenically heterogeneous; some strains express multiple antigenic factors. To study this heterogeneity, we determined the structure of the O-antigen polysaccharides in isolates belonging to serotypes O2(2a), O2(2a,2b), and O2(2a,2c), by using composition analysis, methylation analysis, and both 1H and 13C nuclear magnetic resonance spectroscopy. The repeating unit structure of the 2a polysaccharide was identified as the disaccharide [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] and was identical to D-galactan I, one of two O polysaccharides present in the LPS of Klebsiella pneumoniae serotype O1 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). LPS from serotype O2(2a,2b) also contained D-galactan I as the only O polysaccharide, suggesting that the 2b antigen is not an O antigen. The LPS of serotype O2(2a,2c) contained a mixture of two structurally distinct O polysaccharides and provides a second example of this phenomenon in Klebsiella spp. One polymer was identical to D-galactan I, and the other polysaccharide, the 2c antigen, was a polymer with a disaccharide repeating unit structure, [----3)-beta-D-GlcpNAc-(1----5)-beta-D-Galf-(1----]. The 2c structure does not resemble previously reported O polysaccharides from Klebsiella spp. Periodate oxidation confirmed that D-galactan I and the 2c polysaccharide are distinct glycans, rather than representing domains within a single polysaccharide chain. Monoclonal antibodies against the 2c antigen indicated that only LPS molecules with the longest O-polysaccharide chains contained the 2c epitope.  相似文献   

15.
The mammalian ATP2A2 gene encodes a P-type cation pump located in the sarcoplasmic or endoplasmic reticula of muscle cells. We isolated one bacterial artificial chromosome (BAC) clone containing the equine ATP2A2 gene and determined the complete coding sequence of this gene. Cloning and characterization of the equine ATP2A2 gene revealed that the equine ATP2A2 gene consists of 20 exons. In total, 32 horses out of 16 breeds were analyzed for single nucleotide polymorphisms (SNPs). A mutation scan for SNPs included ten exons and their flanking introns. We detected in total 17 SNPs, 14 of which were located in introns, one in exon 9 and two in exon 20. In this report we provide the genomic organization and the equine ATP2A2 coding sequence and an association analysis for chronic pastern dermatitis using a sample of South German draft horses.  相似文献   

16.
Nek2A is a cell-cycle-regulated protein kinase that localizes to the centrosome and kinetochore. Our recent studies provide a link between Nek2A and spindle checkpoint signaling [J. Biol. Chem. 279 (2004) 20049]. Extracellular signal-regulated kinase 2 (Erk2) is an important kinase, which belongs to mitogen activating protein (MAP) kinase family. Here we demonstrated that Nek2A binds specifically to Erk2. Erk2 interacts with Nek2A via a conserved Erk2 docking site located to the C-terminus of Nek2A. Our studies indicate this docking site is essential and sufficient for a direct Nek2A-Erk2 interaction. In addition, our immunocytochemical studies show that Nek2A and Erk2 are co-localized to centrosome. Significantly, elimination of Nek2A by RNA interference delocalized Erk2 from its centrosomal location, while inhibition of Erk2 kinase activity did not affect the localization of Nek2A in centrosome. We propose that Erk2 links extracellular signaling to centrosome dynamics by Nek2A.  相似文献   

17.
Highly potent inhibitors of the Grb2-SH2 domain have been synthesized. They share the common sequence: Ac-Pmp-Ac6c-Asn-NH-(3-indolyl-propyl). Different substituents at the 3-indolyl-propylamine C-terminal group were explored to further improve the activity. This is the first example of inhibitors of SH2 domains with sub-nanomolar affinity reported to date.  相似文献   

18.
How proteins achieve high-affinity binding to a specific protein partner while simultaneously excluding all others is a major biological problem that has important implications for protein design. We report the crystal structure of the ultra-high-affinity protein-protein complex between the endonuclease domain of colicin E2 and its cognate immunity (Im) protein, Im2 (K(d)~10(-)(15)?M), which, by comparison to previous structural and biophysical data, provides unprecedented insight into how high affinity and selectivity are achieved in this model family of protein complexes. Our study pinpoints the role of structured water molecules in conjoining hotspot residues that govern stability with residues that control selectivity. A key finding is that a single residue, which in a noncognate context massively destabilizes the complex through frustration, does not participate in specificity directly but rather acts as an organizing center for a multitude of specificity interactions across the interface, many of which are water mediated.  相似文献   

19.
20.
Peptide recognition by class I products of the major histocompatibility complex requires association of the class I heavy chain with β2-microglobulin. We present results of Monte Carlo simulations of the β-pleated sheet floor of the human class I MHC molecule, HLA-A2, with and without β2-microglobulin. We find a significant effect of β2-microglobulin on the side chains of residues near a region that would accommodate the C-terminus of a bound peptide. By modeling simultaneously each loop and its neighboring strand at either end of the class I cleft, we find that β2-microglobulin restricts the conformational space of residues that are central to binding peptides. The effect is most pronounced for R97 and H114 and somewhat less important for Y99 and Y116, the latter forming strong hydrogen bonds with neighboring residues in the heavy chain itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号