首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous investigations, performed on isolated rat atria, showed that the lipophylic spin-trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) is able to prevent the acute cardiotoxic effects produced by doxorubicin (DXR), whereas the hydrophylic compound 5,5-dimethyl-pyrroline-N-oxide (DMPO) is inactive. The present study was designed to ascertain whether differences in the pharmacological effects of the two spin traps are related to their different subcellular distribution. Langendorff rat hearts were perfused for 60 minutes with [I4C]-DXR and either PBN or DMPO. The subcellular mapping of the three compounds was performed by measuring DXR by liquid scintillation counting, PBN by GC/MS, and DMPO by HPLC in the following isolated fractions: nuclei, mitochondria, sarcoplasmic reticulum, sarcolemma, cytosol. DMPO was shown to accumulate in the cytosolic compartment; both PBM and DXR are taken up by nuclei and mitochondria, while only trace amounts of DXR were detected in the sarcoplasmic reticulum. These results suggest that mitochondrial (and not sarcoplasmic) enzymes are mainly involved in DXR-induced free radical production, which is thought to cause the acute cardiotoxic effects of DXR. An involvement of DXR-induced free radical generation in the nuclear compartment seems unlikely in the short-term “in vitro” effects observed with the experimental model adopted for these studies, although it may play a role in the delayed pathology.  相似文献   

2.
Magnetic resonance imaging (MRI) and localized magnetic resonance spectroscopy (MRS) were used to study the effects of a single dose of ethanol, given 18 h prior to experiments, on CC14-induced acute hepatotoxicity in rats in situ. Localized edema in the centrilobular region of the liver, following exposure to ethanol and CCl4, was detected by 1H-MRI techniques. The edema was characterized by a volume selective spectroscopy (VOSY) method, which measured an increase in water concentration from ethanol and CCl4-treated rat livers, in comparison to control livers. Electron microscopy (EM) of the high intensity regions of the ethanol/CCl4 treated liver sections revealed dramatic subcellular changes such as fragmentation of the granular endoplasmic reticulum (ER), formation of large vacuoles and lipid droplets in the cytoplasmic matrix and extensive swelling of the mitochondria as well as disruption of the cristae. Pretreatment with alpha-phenyl tert-butyl nitrone (PBN), a free radical spin trap, prior to halocarbon exposure, was found to reduce the CC14-mediated high intensity region in the liver images. Electron microscopy of the PBN pretreated CCl4 exposed rat liver sections revealed only minor observable differences in subcellular organization, such as some swelling of the mitochondria, when compared to controls. In addition, these data suggest that ethanol may potentiate CCl4 hepatotoxicity by increased formation of free radical intermediates. Inhibition of the CCl4-induced edematous response in rat liver by PBN demonstrates that free radical intermediates, arising from the metabolism of CCl4, are possibly the causal factor in the initiation of the edema.  相似文献   

3.
Doxorubicin (DXR) is a widely used and efficient anticancer drug. However, its application is limited by the risk of severe cardiotoxicity. Impairment of cardiac high-energy phosphate homeostasis is an important manifestation of both acute and chronic DXR cardiotoxic action. Using the Langendorff model of the perfused rat heart, we characterized the acute effects of 1-h perfusion with 2 or 20 microM DXR on two key kinases in cardiac energy metabolism, creatine kinase (CK) and AMP-activated protein kinase (AMPK), and related them to functional responses of the perfused heart and structural integrity of the contractile apparatus as well as drug accumulation in cardiomyocytes. DXR-induced changes in CK were dependent on the isoenzyme, with a shift in protein levels of cytosolic isoenzymes from muscle-type CK to brain-type CK, and a destabilization of octamers of the mitochondrial isoenzyme (sarcometric mitochondrial CK) accompanied by drug accumulation in mitochondria. Interestingly, DXR rapidly reduced the protein level and phosphorylation of AMPK as well as phosphorylation of its target, acetyl-CoA-carboxylase. AMPK was strongly affected already at 2 microM DXR, even before substantial cardiac dysfunction occurred. Impairment of CK isoenzymes was mostly moderate but became significant at 20 microM DXR. Only at 2 microM DXR did upregulation of brain-type CK compensate for inactivation of other isoenzymes. These results suggest that an impairment of kinase systems regulating cellular energy homeostasis is involved in the development of DXR cardiotoxicity.  相似文献   

4.
Morphologic changes in Doxorubicin (DXR)-induced cardiomyopathy are characterized by marked dilatation of the sarcoplasmic reticulum (SR). DXR was administered to New Zealand White rabbits for 5 or 8 weeks and the three-dimensional structure of the sarcotubular system in cardiac muscle cells from each rabbit was examined under a field-emission type scanning electron microscope (SEM) after removal of cytoplasmic matrices by the osmium-DMSO-osmium procedure. Five weeks after the initial injection of DXR, partial dilatation of the SR and damaged mitochondria with lysis of cristae were observed three-dimensionally. After 8 weeks, the three-dimensional structure of the SR showed extensive spherical ballooning which could be seen clearly in bold relief. Thus, we could directly visualize structural alterations of the sarcotubular system in DXR-induced cardiomyopathy using the SEM.  相似文献   

5.
The addition of hydralazine (1-hydrazinophthalazine) to rat liver mitochondria metabolizing malate/glutamate causes formation of a carbon-centered free radical which was spin-trapped with phenyl-t-butylnitrone (PBN) or dimethylpyrrolidine-N-oxide (DMPO). The coupling constants of the spin-trapped free radical were AN = 16.1, AH beta = 4.6 G for PBN and AN = 15.9, AH beta = 18.9 G for DMPO-trapped radical in aqueous solution. The spin-trapped free radical was shown to be the carbon dioxide anion free radical by independent synthesis, high pressure liquid chromatography separation, and electron paramagnetic resonance characterization. The amount of carbon dioxide anion free radical produced was absolutely dependent upon the presence of hydralazine and varied depending on mitochondrial substrate, with by far the highest amount produced by pyruvate. Studies with 13C-labeled pyruvate demonstrated that the carbon dioxide free radical came from C-1 of this compound.  相似文献   

6.
Previous studies suggested that one possible mechanism of doxorubicin (DXR)-induced cardiomyopathy involves the depletion of high-energy phosphate stores. In this study, we used 31P nuclear magnetic resonance to assess the high-energy phosphate content in Langendorff perfused rat hearts. Hearts were perfused in normoxic conditions (spontaneous flow) or in partially hypoxic conditions obtained by perfusing at 50% of the spontaneous flow. DXR was used at the subtoxic conditions of 50 mg/l for 15 min and at the cardiotoxic concentration of 100 mg/l for 60 min. Left ventricular pressure (dP/dt), heart rate, myocardial ATP and PCr levels and PCr/ATP ratio were measured. We found that, in normoxic conditions, DXR (50 mg/l, 15 min) does not impair cellular high-energy phosphate metabolism. However, in mild hypoxic conditions, DXR induces a significant decrease in PCr/ATP ratio, due to a decrease in PCr and to a simultaneous increase in ATP. Similar results are obtained after 60 min perfusion with the cardiotoxic dose of DXR. This study suggests that hypoxia may represent a risk factor for the development of DXR-induced acute cardiotoxicity.  相似文献   

7.
The effect of CardiPro, a polyherbal formulation, with an antioxidant property, has been studied on doxorubicin (DXR)-induced cardiotoxicity in mice. CardiPro (150 mg/kg b.w., twice daily was administered orally for 7 weeks along with four equal injections (each containing 4.0 mg/kg b.w., DXR) intraperitoneally, once weekly (cumulative dose 16 mg/kg). After a 3-week post DXR treatment period, cardiotoxicity was assessed by noting mortality, volume of ascites, liver congestion, changes in heart weight, myocardial lipid peroxidation, antioxidant enzymes and histology of heart. DXR-treated animals showed higher mortality (50%) and more ascites. Myocardial SOD and glutathione peroxidase activity were decreased and lipid peroxidation was increased. Histology of heart of DXR-treated animals showed loss of myofibrils and focal cytoplasmic vacuolization. CardiPro significantly protected the mice from DXR-induced cardiotoxic effects as evidenced by lower mortality (25%), less ascites, myocardial lipid peroxidation, normalization of antioxidant enzymes and minimal damage to the heart histologically. Our data confirm the earlier reports that DXR cardiotoxicity is associated with the free radical-induced tissue damage. Administration of CardiPro, with an antioxidant property, protected the DXR-induced cardiotoxicity in mice.  相似文献   

8.
《Free radical research》2013,47(1-3):145-151
The effects of two sulfhydryl compounds, glutathione (GSH) and N-acetylcysteine (NAC), on the cardiotoxicity of doxorubicin (DXR) were tested on in vitro and in vivo models. DXR was administered to rats as 4 weekly i.v. doses of 3mg/kg. GSH (1.5 mmoles/kg), given i.v. 10 min before and 1 hr after DXR, was found to prevent the development of the delayed cardiotoxic effects of DXR, as assessed by electrocardiographic and mechanical parameters, as well as by histological examination of left ventricular preparations. In contrast, equimolar oral doses of NAC (1 hr before and 2hrs after DXR) were found to be ineffective. Both GSH and NAC prevented the negative inotropic effect produced by DXR on isolated rat atria. A good correlation exists between the cardioprotective effects of the two agents and their ability to enhance the non-protein sulfhydryl group content of the myocardium. Differences observed in vivo between GSH and NAC might be accounted for by pharmacokinetic factors.  相似文献   

9.
《Free radical research》2013,47(4):213-222
Metabolism of ethanol to 1-hydroxyethyl radicals by rat liver microsomes was studied with three nitrone spin trapping agents (POBN, PBN, and DMPO) under essentially comparable conditions. The data indicate that POBN was the superior spin trapping agent for 1-hydroxyethyl radicals, and that DMPO was least efficient. Addition of deferoxamine completely prevented detection of 1-hydroxyethyl radicals with PBN or DMPO, but caused only 50% decrease in EPR signals when POBN was the spin trap. However, superoxide dismutase only decreased 1-hydroxyethyl radical formation when POBN was the spin trap. Other experiments demonstrated that POBN was the most effective of these nitrones for reduction of Fe(III) in aqueous solutions. Furthermore, 1-hydroxyethyl radical adducts were formed when POBN was added to mixtures of ethanol, phosphate buffer, POBN and FeCl3, but this effect did not occur with either PBN or DMPO. Thus, these data indicate that undesirable effects of POBN on iron chemistry may influence results of spin trapping experiments, and complicate interpretation of the resulting data.  相似文献   

10.
Summary

Detection of hydroxyl free radicals is frequently performed by electron spin resonance (ESR) following spin trapping of the radical using 5,5-dimethylpyrroline N-oxide (DMPO) to generate a stable free radical having a characteristic ESR spectrum. The necessary ESR equipment is expensive and not readily available to many laboratories. In the present study, a specific and sensitive gas chromatography—mass spectrometry (GC/MS) method for detection of hydroxyl and hydroxyethyl free radicals is described. The DMPO or N-t-butyl—α—phenylnitrone (PBN) radical adducts are extracted and derivatized by trimethylsylilation and analyzed by GC/MS. To standardize the method, .OH and 1-hydroxyethyl radicals were generated in two different systems: 1) a Fenton reaction in a pure chemical system in the absence or presence of ethanol and 2) in liver microsomal suspensions where ethanol is metabolized in the presence of NADPH. In the Fenton system both radicals were easily detected and specifically identified using DMPO or PBN. In microsomal suspensions DMPO proved better for detection of .OH radicals and PBN more suitable for detection of 1-hydroxyethyl radicals. The procedure is specific, sensitive and potentially as useful as ESR.  相似文献   

11.
A study of the intracellular transport of calcium in rat heart   总被引:4,自引:0,他引:4  
The distribution of in vivo injected 45Ca++ in the subcellular fractions of rat heart has been studied. Most of the radioactivity of the cell was found to be associated with the subcellular organelles; only a small fraction was recovered in the soluble phase. Mitochondria contained the greatest part of the total radioactivity associated with the subcellular organelles. After injection of 45Ca++ the specific activity of the mitochondrial calcium pool was several times higher than that of the calcium of the sarcoplasmic reticulum. Pentachlorophenol has been administered to rats to uncouple oxidative phosphorylation in heart mitochondria in vivo and its effect on the distribution of 45Ca++ in the heart studied. Under these conditions, it has been found that mitochondria contained much less 45Ca++ than the controls; this decrease was paralleled by an increase of the radioactivity associated with the microsomes and with the final supernatant. Experiments in which 45Ca++ was added to heart homogenates at 0° indicated that 45Ca++ also became bound to mitochondria and the other subcellular structures at 0°. However, PCP had no effect on the distribution of radioactivity among the subcellular fractions under these conditions. The results suggest that (1) energy-linked movements of Ca++ take place in mitochondria of the intact rat heart, (2) a part of the uptake of 45Ca++ by mitochondria does not depend on metabolism, and, (3) the movements of Ca++ in heart mitochondria in vivo are probably more active than those in the sarcoplasmic reticulum.  相似文献   

12.
Metabolism of ethanol to 1-hydroxyethyl radicals by rat liver microsomes was studied with three nitrone spin trapping agents (POBN, PBN, and DMPO) under essentially comparable conditions. The data indicate that POBN was the superior spin trapping agent for 1-hydroxyethyl radicals, and that DMPO was least efficient. Addition of deferoxamine completely prevented detection of 1-hydroxyethyl radicals with PBN or DMPO, but caused only 50% decrease in EPR signals when POBN was the spin trap. However, superoxide dismutase only decreased 1-hydroxyethyl radical formation when POBN was the spin trap. Other experiments demonstrated that POBN was the most effective of these nitrones for reduction of Fe(III) in aqueous solutions. Furthermore, 1-hydroxyethyl radical adducts were formed when POBN was added to mixtures of ethanol, phosphate buffer, POBN and FeCl3, but this effect did not occur with either PBN or DMPO. Thus, these data indicate that undesirable effects of POBN on iron chemistry may influence results of spin trapping experiments, and complicate interpretation of the resulting data.  相似文献   

13.
The clinical use of doxorubicin (DXR) is limited by cardiotoxicity partially due to interference with intracellular Ca(2+) homeostasis and involving the activation of the sarcoplasmic reticulum (SR) Ca(2+) release channels. It is known that docosahexaenoic acid (DHA) is able to potentiate the sensitivity of cancer cells to DXR. The aim of our study was to further evaluate the effects of DHA on [Ca(2+)](i) overload induced by DXR in adult rat ventricular cardiomyocytes in order to verify if DHA interferes with DXR-induced cardiotoxicity too. [Ca(2+)](i) was measured by microfluorimetry. Our data demonstrated that 100 microM DXR induced a statistically significant [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 560.2 +/- 49 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 551.1 +/- 35 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min significantly suppressed DXR [Ca(2+)](i)- increase in cells perfused with CaCl(2) Krebs solution (142.3 +/- 12 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (100.4 +/- 12 nM, n = 9, p < 0.01). Caffeine 10 mM significantly increased [Ca(2+)](i) in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 979.2 +/- 17.8 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 891.1 +/- 30 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min suppressed caffeine [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (174.2 +/- 28 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (161.9 +/- 34 nM, n = 9, p < 0.01). In conclusion, our results suggest that DHA is able to prevent acute modifications of calcium homeostasis induced by DXR probably interfering with SR Ca(2+) release channels.  相似文献   

14.
Rat hearts pulse-labeled by perfusion in vitro with 9,10-oleic acid-3H for 15 or 30 sec were shown to take up the fatty acid extensively. In hearts postperfused with unlabeled medium for 15 sec or more, 90% of the radioactivity was recovered in esterified lipids. The radioautographic reaction was localized initially over elements of the sarcoplasmic reticulum and mitochondria. After longer periods of postperfusion (2–20 min), there was concentration of silver grains over lipid droplets. In mitochondria and sarcoplasmic reticulum isolated from hearts postperfused for 1 min or more, most of the esterified lipid was in the form of triglyceride. The ratio of the specific activity of isolated sarcoplasmic reticulum triglyceride to mitochondrial triglyceride changed from a value of 3.2 to 1.3 during 5 min of postperfusion. Under conditions of hypothermia, considerable uptake of free fatty acid occurred. The radioactivity recovered in the heart was mostly in the form of free fatty acid, and the radioautographic reaction was seen over sarcoplasmic reticulum and mitochondria, but not over lipid droplets or myofibrils. The results are interpreted to show that intracellular transport of free fatty acid, which occurs also when esterification is repressed, proceeds through intracellular channels, i.e. the sarcoplasmic reticulum. Esterification of fatty acid into triglycerides occurs mostly in the sarcoplasmic reticulum, especially in the region of the dyad, in the vicinity of which lipid is stored in the form of droplets.  相似文献   

15.
Free radicals produced during myocardial post-ischemic reperfusion are aggravating factors for functional disturbances and cellular injury. The aim of our work was to investigate the significance of the secondary free radical release during non ischemic perfusion and post-ischemic reperfusion and to evaluate the cardiovascular effects of the spin trap used. For that purpose, isolated perfused rat hearts underwent 0, 20, 30 or 60 min of a total ischemia, followed by 30 min of reperfusion. The spin trap: α-phenyl N-tert-butylnitrone (PBN) was used (3 mM). Functional parameters were recorded and samples of coronary effluents were collected and analyzed using Electron Paramagnetic Resonance (EPR) to identify and quantify the amount of spin adducts produced. During non ischemic perfusion, almost undetectable levels of free radical release were observed. Conversely, a large and long-lasting (30 min) release of spin adducts was detected from the onset of reperfusion. The free radical species were identified as alkyl and alkoxyl radicals with amounts reaching 40 times the pre-ischemic values. On the other hand, PBN showed a cardioprotective effect, allowing a significant reduction of rhythm disturbances and a better post-ischemic recovery for the hearts which were submitted to 20 min of ischemia. When the duration of ischemia increased, the protective effects of PBN disappeared and toxic effects became more important. Our results have therefore confirmed the antioxidant and protective properties of a spin trap agent such as PBN. Moreover, we demonstrated that the persistent post-ischemic dysfunction was associated with a sustained production and release of free radical species.  相似文献   

16.
Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin–Gd-DTPA–albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants.  相似文献   

17.
《Free radical research》2013,47(3-6):337-342
The purpose of this study was to use electron paramagnetic resonance (EPR) spectroscopy to determine if ibuprofen, [2–(4-isobutylphenyl) propanoic acid], a potent nonsterodial anti-inflammatory agent, could modify hydroxyl radicals generation in vim. Ibuprofen (IBU; 0.1–50 mM) in water or water alone was added to EPR tubes containing ferrous sulfate (0.5–2.0mM). and either 5.5-dimethyl-l-pyrroline-N-oxide (DMPO; 40mM) or a-phenyl N-tert-butyl nitrone (PBN; 48 mM). Hydrogen peroxide (l mM) was added to inititate the Fenton reaction, and the systems were then analyzed by EPR spectroscopy to determine the type and relative quantity of free radical(s) produced. IBU caused a dose-dependent decrease of signal intensity of the hydroxyl radical adduct of DMPO (DMPO-OH) which is an indication that IBU either scavenges the hydroxyl radical and/or chelates iron. In addition, other radicals (presumably IBU radicals) produced in these systems were trapped by both DMPO (aN = 16.1G, aHβ = 24.0G) and PBN (aN = 15.7G. aHβ = 4.4G and aN = 17.0G, aHβ = 2.1 G). The signal height of these IBU radicals increased in systems containing ferrous sulfate (l mM), hydrogen peroxide (lmM), PBN (48mM), and increasing IBU concentrations. Therefore. we conclude that IBU scavenges the hydroxyl radical. If IBU chelated iron, then less hydroxyl radicals would be generated, less IBU radicals formed and the signal height of IBU radicals trapped by PBN would have decreased. However, these data do not fully exclude the possiblity that IBU may, to some extent. also chelate iron. Scavenging of hydroxyl radicals may be one of the mechanisms responsible for the beneficial action of IBU during the management of several rheumatic diseases. However, the IBU radicals produced when IBU scavenges hydroxyl radicals are reactive. and may be associated with the reported toxicity of this therapeutic agent.  相似文献   

18.
Doxorubicin cardiotoxicity: analysis of prevailing hypotheses   总被引:22,自引:0,他引:22  
R D Olson  P S Mushlin 《FASEB journal》1990,4(13):3076-3086
Anthracyclines, such as doxorubicin and daunorubicin, are highly effective anticancer agents that produce a well-described but incompletely understood cardiac toxicity. According to a popular hypothesis, anthracyclines injure the heart by generating oxygen-centered free radicals. This free radical hypothesis, however, appears to be inconsistent with many observations, such as the frequent failure of anthracyclines at cardiotoxic doses to produce evidence of increased free radical generation. Other explanations of cardiotoxicity involve platelet-activating factor, prostaglandins, histamine, calcium, and C-13 hydroxy anthracycline metabolites. These C-13 hydroxy metabolites, on the basis of in vitro data, are considerably more potent than parent compounds as myocardial depressants and as inhibitors of ATPases of sarcoplasmic reticulum, mitochondria, and sarcolemma. Further studies will be required to determine whether metabolites or the other putative injurious agents discussed contribute substantially to the cardiomyopathy of anthracycline therapy. The hypotheses presented in this paper should provide a useful framework for subsequent investigations into the mechanisms of anthracycline cardiotoxicity.  相似文献   

19.
Crude homogenates of rat cardiac muscle were fractionated in order to examine the subcellular location of adenylate cyclase in this tissue. The fractionation procedure employed differential centrifugation of homonized material, followed by collagenase treatment, centrifugation on a discontinuous sucrose density gradient and extraction with 1 M KCl. The particulate fraction obtained by this procedure contained a high specific activity and yield of adenylate cyclase, moderate levels of mitochondria and low levels of sarcoplasmic reticulum and contractile protein as judged by marker enzyme activities. Adenylate cyclase was purified 20-fold with a 33% yield from the crude homogenate, while mitochondrial, sarcoplasmic reticulum and contractile protein yields were 5, 0.4 and 0.7% respectively. The membrane fractions prepared in this manner were examined by sodium dodecyl sulfate · gel electrophoresis.Adenylate cyclase copurified with ouabain-sensitive (Na+ + K+)-ATPase, a plasma membrane marker enzyme, and not with Ca2+-accumulating activity, which is associated with the sarcoplasmic reticulum. The distribution of marker enzyme activities indicates that heart adenylate cyclase is not located in the sarcoplasmic reticulum but is localized predominantly, if not exclusively, in the plasma membrane.  相似文献   

20.
Several free radical intermediates formed during synthesis of prostaglandin H synthase (PGHS) catalyze the biosynthesis of prostaglandins from arachidonic acid (AA). We attempted to directly detect free radical intermediates of PGHS in cells. Studies were carried out using human platelets, which possess significant PGHS activity. Electron spin resonance (ESR) spectra showed a g = 2.005 signal radical, which was formed by the incubation of collagen, thrombin, AA, and a variety of peroxides with human platelets. The ESR spectra obtained using 5,5-dimethyl-1 pyrroline N-oxide (DMPO) and alpha-phenyl N-tert.-butylnitron (PBN) were typical of an immobilized nitroxide. Extensive Pronase digestion of both the DMPO and PBN adducts allowed us to deduce that it was a carbon-centered radical. The formation of this radical was inhibited by potassium cyanide and by desferroxamine. Peroxides stimulated formation of the g = 2.005 signal radical and inhibited platelet aggregation induced by AA. PGHS cosubstrates increased the intensity of the radical signal but inhibited platelet aggregation induced by AA. Both S-nitro-L-glutathione and reduced glutathione quenched the g = 2.005 radical but could not restore platelet aggregatory activity. These results suggest that the carbon-centered radical is a self-destructing free radical formed during peroxide-mediated deactivation of PGHS in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号