首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
In this paper are given the methods for determining the suitability of certain dyes of the pyronin, thiazin, oxazin, azin and natural dye groups for certification by the Commission on Standardization of Biological Stains. These methods have been developed by the Commission in cooperation with the Color and Farm Waste Division, Bureau of Chemistry and Soils, U. S. Department of Agriculture. The dyes for which the methods are given in the present paper are: Pyronin G, pyronin B, neutral red, safranin, nigrosin water-soluble, brilliant cresyl blue, cresyl violet, Nile blue A, thionin, methylene blue, methylene azure (azure A), azure C, toluidine blue O, indigo carmin (indigotine) and carmin. For each of these dyes methods are discussed under the following headings: (1) identification or qualitative examination; (2) quantitative analysis; and (3) biological tests.  相似文献   

2.
Thin-layer chromatography will resolve impurities in commercial dyes, and will do so much faster than paper chromatography. Solvent systems consisting of (a) n-propanol: n-butanol: NH4OH (conc.): H2O—4:4:1:1; (b) n-propanol: NH4OH (conc.): H2O—8:1:1 on silica gel G plates; and (c) n-propanol: NH4OH (conc.): H2O-7:2:1 on Adsorbosil plates were found to be the most effective. Dyes studied were azure A, azure B, azure C, methylene blue, toluidine blue O, thionin, pyronin B, pyronin Y, methyl green, crystal violet amido black 10B and buffalo black (NBR).  相似文献   

3.
Twenty-four new Schiff-type reagents were discovered in a survey of 140 different dyes. These dyes include acid fuchsin, acridine yellow, acriflavine hydrochloride, azure C., Bismarck brown R, Bismarck brown Y, celestine blue B, chrysoidine 3R, chrysoidine Y extra, cresyl violet, crystal violet, gentian violet, methylene blue, neutral violet, phenosafranin, phosphine GN, proflavine, toluidine blue O, and toluylene blue. Positive results obtained with crystal violet and a few samples of methylene blue are considered due to impurities. Various chemical extractions, aldehyde blocking reagents, and enzymatic treatments were used to verify the aldehyde specificity of the above dye-SO2, reagents as well as azure A, brilliant cresyl blue, neutral red, safranin O, and thionin which have been mentioned by other workers. These reagents were tested in the Feulgen reaction for DNA and the PAS reaction for polysaccharides. Absorption curves were obtained from individual nuclei stained for DNA. The absorption peaks ranged from 450 mμ, to 630 mμ. depending on the dye studied. The Feulgen reaction could be followed by the PAS reaction or vice versa in mouse intestine using reactive dyes of complementary colors. The evidence indicates that a potential Schiff-type reagent must have at least one free NH2 group on the dye molecule.  相似文献   

4.
In this paper are given methods for determining the suitability of certain dyes of the triphenylmethane group for certification by the Commission on Standardization of Biological Stains. These methods have been developed by the Commission, in cooperation with the Color and Farm Waste Division, Bureau of Chemistry and Soils, U. S. Department of Agriculture. The dyes for which the methods are given in the present paper are: Malachite green, brilliant green, light green SF yellowish, fast green FCF, basic fuchsin (rosanilin and pararosanilin), acid fuchsia, methyl violet, crystal violet, gentian violet, methyl green and anilin blue. For each of these dyes, methods are discussed under the following headings: (1) identification or qualitative examination; (2) quantitative analysis; and (3) biological tests.  相似文献   

5.
Detailed schemes are described for the preparation of purified methylene blue and azure B from commercial samples of methylene blue. Purified methylene blue is obtained by extracting a solution of the commercial product in an aqueous buffer (pH 9.5) with carbon tetrachloride. Methylene blue remains in the aqueous layer but contaminating dyes pass into the carbon tetrachloride. Metal salt contaminants are removed when the dye is crystallized by the addition of hydrochloric acid at a final concentration of 0.25 N. Purified azure B is obtained by extracting a solution of commercial methylene blue in dilute aqueous sodium hydroxide (pH 11-11.5) with carbon tetrachloride. In this pH range, methylene blue is unstable and yields azure B. The latter passes into the carbon tetrachloride layer as it is formed. Metal salt contaminants remain in the aqueous layer. A concentrated solution oa azure B is obtained by extracting the carbon tetrachloride layer with 4.5 X 10(-4)N hydrobromic acid. The dye is then crystallized by increasing the hydrobromic acid concentration to 0.23 N. Thin-layer chromatography of the purified dyes shows that contamination with related thiazine dyes is absent or negligible. Ash analyses reveal that metal salt contamination is also negligible (sulphated ash less than 0.2%).  相似文献   

6.
The iron, potassium, sodium and zinc contents of commercial samples of the thiazine dyes azure A (C.I. 52005), azure B (C.I. 52010), azure C (C.I. 52002), methylene blue (C.I. 52015), new methylene blue (GI. 52030), polychrome methylene blue, thionine (C.I. 52000) and toluidme blue (C.I. 52040) have been determined by atomic absorption spectrophotometry.

The metal concentrations varied widely in the 38 samples examined—iron, potassium, sodium and zinc together comprised between 0.02% and 25.35% of individual samples.  相似文献   

7.
We have discovered that methylene blue plus light mediates the formation of 8-OHdG in DNA. Methylene blue is one of several thiazin dyes and we report here that the other thiazin dyes tested, in combination with white light, are effective in mediating 8-OHdG formation in DNA. The effectiveness of light plus the thiazin dyes in forming 8-OHdG in DNA were as follows: methylene blue greater than azure B greater than azure A greater than toluidine blue greater than thionin. Two other compounds tested; riboflavin and fuschin acid, in combination with light, caused formation of very little, if any, 8-OHdG in DNA. Thiazin dye mediated formation of 8-OHdG in DNA was not inhibited by the spin trap alpha-phenyl-t-butyl nitrone, which supports our previous observations that oxygen free radical scavengers did not inhibit methylene blue plus light mediated 8-OHdG formation in DNA. Ascorbate addition to methylene blue plus DNA, in the absence of light, was ineffective in mediating 8-OHdG formation in DNA.  相似文献   

8.
A method is described for the purification of the dye azure B in quantities sufficient for biological staining experiments on a larger scale. The method is based on the use of column chromatography. Two columns are employed. In column A with silica gel as adsorbent the azure B fraction is isolated from a suitable substrate ('technical' azure B gained by a modification of Bernthsen's synthesis of methylene blue, or polychrome methylene blue) using an acetate-formate mixture as eluent. In column B, on an Amberlite polymeric adsorbent (XAD-2) the acetate-formate anions are exchanged in chloride. Regeneration of both columns is possible: KMnO4, Na2S2O4 and water are run through column A; 5% NaOH, methanol and water through column B. Purification of azure B on economic terms is thus attained. The opinion is expressed that this method is also applicable to the purification of other cationic dyes.  相似文献   

9.
The iron, potassium, sodium and zinc content of commercial samples of the thiazine dyes azure A (C.I. 52005), azure B (C.I. 52010), azure C (C.I. 52002), methylene blue (C.I. 52015), new methylene blue (C.I. 52030), polychrome methylene blue, thionine (C.I. 52000) and toluidine blue (C.I. 52040) have been determined by atomic absorption spectrophotometry. The metal concentration varied widely in the 38 samples examined--iron, potassium, sodium and zinc together comprised between 0.02% and 25.35% of individual samples.  相似文献   

10.
A method is described for the purification of the dye azure B in quantities sufficient for biological staining experiments on a larger scale. The method is based on the use of column chromatography. Two columns are employed. In column A with silica gel as adsorbent the azure B fraction is isolated from a suitable substrate ('technical' azure B gained by a modification of Bernthsen's synthesis of methylene blue, or plychrome methylene blue) using an acetate-formate mixture as eluent. In column B, on an Amberlite polyineric adsorbent (XAD-2) the acetate-formate anions are exchanged for chloride. Regeneration of both columns is possible: KMnO4, Na2S2O4 and water are run through column A, 5% NaOH, methanol and water through column B. Purification of azure B on economic terms is thus attained. The opinion is expressed that this method is also applicable to the purification of other cationic dyes.  相似文献   

11.
Spectrophotometric analysis affords the most convenient means for determining the proportion of methylene blue and trimethyl thionin (azure B) present in a mixture of these two dyes. The method proposed depends upon the determination of an “absorption ratio.” A suitable ratio for the purpose is that of the extinction coefficient at 640 mμ to that at 670 mμ. On account of the difference in absorption maxima of the two dyes, this ratio increases as the percentage of methylene blue decreases. The ratio value for eleven different mixtures is given and a graph is plotted from this data by means of which the proportions of the two dyes present in any mixture can be calculated from the absorption ratio determined as specified.  相似文献   

12.
Previous studies have proved that the thiazin dyes toluidine blue, azure A, azure B, 1.9-dimethyl methylene blue and the quinolin dyes N,N'-diethylpseudoisocyanine chloride, N,N'-6,6'-dichlorpseudoisocyanine chloride are suitable for topo-optical reaction on the membrane of the red blood cells. In the present study the applicability of the thiazin and quinolin dyes on the membrane of the human red cell ghost was examined. Optical analysis revealed that the thiazin dyes are bound in radial position to the membrane, while the quinolin dyes are bound parallel to the membrane's plane.  相似文献   

13.
The mechanism of the oxidation of methylene blue varies with the conditions. The formation of trimethyl thionin (azure B) and of asymmetrical dimethyl thionolin (azure A) is followed under alkaline conditions by that of dimethyl thionin (methylene violet) and under acid conditions by that of monomethyl thionin (named by authors azure C).

Simple and practical methods are given for the preparation of azure A and azure C. The latter product, which has not been obtained from methylene blue hitherto, has valuable staining properties as a nuclear and bacterial stain in tissue and may also be employed satisfactorily as a substitute for azure A in the MacNeal tetrachrome formula as a blood stain or substitute for the Giemsa stain.

Azure B has no particular merit in staining.

Azure C proves to be a very valuable stain. A procedure is given for its use with eosin Y and orange II as counterstains, by which it is possible to demonstrate bacteria in tissue and at the same time the cytological elements of the tissue.  相似文献   

14.
ABSTRACT

We present an easy test for rapid visualization of viral DNA assemblies in infected cell cytoplasm. We selected the best stains for nuclear staining: Nile blue A, Bismarck brown, gallocyanin chrome alum, methyl green pyronin and azure II. None of the staining techniques is fluorescent, which facilitates their use in everyday experiments. Methyl green is most promising for routine detection of viral DNA assemblies in the cytoplasm; the procedure enables ready detection of viral DNA accumulation in the cytoplasm.  相似文献   

15.
Column and paper chromatography of four thiazin dyes revealed both inorganic and organic impurities. In thionin, azure A, azure B and methylene blue, sodium and other metal cations were found as inorganic impurities. The analysis for organic impurities revealed that the dyes were mixtures; specifically each dye contained one or more of the other dyes as impurities. Inorganic impurities were detected by ashing the dyes in the presence of H2SO4 and chromatographing the sulfate salts on paper. They were removed by filtration through ion exchange resins. Organic impurities were detected by paper chromatography and removed by column chromatography on Woelm's neutral alumina.  相似文献   

16.
Spectrophotometric analysis affords the most convenient means for determining the proportion of methylene blue and trimethyl thionin (azure B) present in a mixture of these two dyes. The method proposed depends upon the determination of an “absorption ratio.” A suitable ratio for the purpose is that of the extinction coefficient at 640 mμ to that at 670 mμ. On account of the difference in absorption maxima of the two dyes, this ratio increases as the percentage of methylene blue decreases. The ratio value for eleven different mixtures is given and a graph is plotted from this data by means of which the proportions of the two dyes present in any mixture can be calculated from the absorption ratio determined as specified.  相似文献   

17.
The rate of diffusion through the non-aqueous layer of the protoplasm depends largely on the partition coefficients mentioned above. Since these cannot be determined we have employed an artificial system in which chloroform is used in place of the non-aqueous layer of the protoplasm. The partition coefficients may be roughly determined by shaking up the aqueous solutions with chloroform and analyzing with the spectrophotometer (which is necessary with methylene blue because we are dealing with mixtures). This will show what dyes may be expected to pass through the protoplasm into the vacuole in case it behaves like the artificial system. From these results we may conclude that the artificial system and the living cell act almost alike toward methylene blue and azure B, which supports the notion of non-aqueous layers in the protoplasm. There is a close resemblance between Valonia and the artificial system in their behavior toward these dyes at pH 9.5. In the case of Nitella, on the other hand, with methylene blue solution at pH 9.2 the sap in the artificial system takes up relatively more azure B (absorption maximum at 650 mµ) than the vacuole of the living cell (655 mµ). But both take up azure B much more rapidly than methylene blue. A comparison cannot be made between the behavior of the artificial system and that of the living cell at pH 5.5 since in the latter case there arises a question of injury to cells before enough dye is collected in the sap for analysis.  相似文献   

18.
An investigation has been made of the staining properties of eight dyes of the thionin group. The dyes studied are as follows: tetra-ethyl thionin, asymmetrical di-ethyl thionin, tetra-methyl thionin (methylene blue), tri-methyl thionin (azure B), asymmetrical di-methyl thionin (azure A), symmetrical di-methyl thionin, mono-methyl thionin (azure C), and unsubstituted thionin. The staining properties were tested on sections of paraffin embedded material following five different methods of fixation. No counterstain was employed. It was shown that there was a general correlation between the extent of ethylation or methylation of the dyes and their staining properties. As one passes from tetra-ethyl thionin down the series to thionin itself, there is a progressive decrease in the amount of green showing in the preparations, and an increase in the amount of red present, also an increase in the metachromatic effects, and in the intensity of nuclear staining. There seems, also, to be a similar relation between staining qualities on the one hand and the color and solubility of the dye base on the other.  相似文献   

19.
In this paper are given methods for determining the suitability of certain dyes of the triphenylmethane group for certification by the Commission on Standardization of Biological Stains. These methods have been developed by the Commission, in cooperation with the Color and Farm Waste Division, Bureau of Chemistry and Soils, U. S. Department of Agriculture. The dyes for which the methods are given in the present paper are: Malachite green, brilliant green, light green SF yellowish, fast green FCF, basic fuchsin (rosanilin and pararosanilin), acid fuchsia, methyl violet, crystal violet, gentian violet, methyl green and anilin blue. For each of these dyes, methods are discussed under the following headings: (1) identification or qualitative examination; (2) quantitative analysis; and (3) biological tests.  相似文献   

20.
An investigation has been made of the staining properties of eight dyes of the thionin group. The dyes studied are as follows: tetra-ethyl thionin, asymmetrical di-ethyl thionin, tetra-methyl thionin (methylene blue), tri-methyl thionin (azure B), asymmetrical di-methyl thionin (azure A), symmetrical di-methyl thionin, mono-methyl thionin (azure C), and unsubstituted thionin. The staining properties were tested on sections of paraffin embedded material following five different methods of fixation. No counterstain was employed. It was shown that there was a general correlation between the extent of ethylation or methylation of the dyes and their staining properties. As one passes from tetra-ethyl thionin down the series to thionin itself, there is a progressive decrease in the amount of green showing in the preparations, and an increase in the amount of red present, also an increase in the metachromatic effects, and in the intensity of nuclear staining. There seems, also, to be a similar relation between staining qualities on the one hand and the color and solubility of the dye base on the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号