首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

Oxidative stress is involved in the pathophysiology of diabetic nephropathy. Manganese superoxide dismutase (SOD2) catalyses the dismutation of superoxide, regulates the metabolism of reactive oxygen species in the mitochondria and is highly expressed in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, was found to be increased in patients with kidney disease. We investigated associations of SOD2 allelic variations, plasma SOD activity and AOPP concentration with diabetic nephropathy in type 1 diabetic subjects.

Methods

Eight SNPs in the SOD2 region were analysed in 1285 Caucasian subjects with type 1 diabetes from the SURGENE prospective study (n = 340; 10-year follow-up), GENESIS (n = 501) and GENEDIAB (n = 444) cross-sectional studies. Baseline plasma concentration of AOPP and SOD activity were measured in GENEDIAB participants. Hazard ratio (HR) and odds ratio (OR) were determined for incidence and prevalence of nephropathy. Analyses were adjusted or stratified by retinopathy stages.

Results

In the SURGENE cohort, the T-allele of rs4880 (V16A) was associated with the incidence of renal events (new cases, or the progression to a more severe stage of nephropathy; HR 1.99, 95% CI 1.24–3.12, p = 0.004) and with the decline in estimated glomerular filtration rate (eGFR) during follow-up. Similar associations were observed for rs2758329 and rs8031. Associations were replicated in GENESIS/GENEDIAB cohorts, in the subset of participants without proliferative retinopathy, and were confirmed by haplotype analyses. Risk allele and haplotype were also associated with higher plasma AOPP concentration and lower SOD activity.

Conclusions

SOD2 allelic variations were associated with the incidence and the progression of diabetic nephropathy, with a faster decline in eGFR and with plasma AOPP concentration and SOD activity in subjects with type 1 diabetes. These results are consistent with a role for SOD2 in the protection against oxidative stress and kidney disease in type 1 diabetes.  相似文献   

2.

Aims/Hypothesis

Several studies have provided compelling evidence implicating the Wnt signalling pathway in the pathogenesis of diabetic nephropathy. Gene expression profiles associated with renal fibrosis have been attenuated through Wnt pathway modulation in model systems implicating Wnt pathway members as potential therapeutic targets for the treatment of diabetic nephropathy. We assessed tag and potentially functional single nucleotide polymorphisms (SNPs; n = 31) in four key Wnt pathway genes (CTNNB1, AXIN2, LRP5 and LRP6) for association with diabetic nephropathy using a case-control design.

Methods

SNPs were genotyped using Sequenom or Taqman technologies in 1351 individuals with type 1 diabetes (651 cases with nephropathy and 700 controls without nephropathy). Cases and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK, to compare allele and haplotype frequencies in cases and controls. Adjustment for multiple testing was performed by permutation testing.

Results

Following logistic regression analysis adjusted by collection centre, duration of T1D, and average HbA1c as covariates, a single SNP in LRP6 (rs1337791) was significantly associated with DN (OR = 0.74; CI: 0.57–0.97; P = 0.028), although this was not maintained following correction for multiple testing. Three additional SNPs (rs2075241 in LRP6; rs3736228 and rs491347 both in LRP5) were marginally associated with diabetic nephropathy, but none of the associations were replicated in an independent dataset. Haplotype and subgroup analysis (according to duration of diabetes, and end-stage renal disease) also failed to reveal an association with diabetic nephropathy.

Conclusions/Interpretation

Our results suggest that analysed common variants in CTNNB1, AXIN2, LRP5 and LRP6 are not strongly associated with diabetic nephropathy in type 1 diabetes among white individuals. Our findings, however, cannot entirely exclude these genes or other members of the Wnt pathway, from involvement in the pathogenesis of diabetic nephropathy as our study had limited power to detect variants with small effect size.  相似文献   

3.

Objective

Though single nucleotide polymorphisms (SNPs) in the non-muscle myosin gene (MYH9) have been reported to explain most of the excess risk of nondiabetic chronic kidney disease (CKD), in African-Americans, some studies have also shown associations with diabetic end-stage renal disease. We investigated the association of MYH9 SNPs with renal traits in a mixed-ancestry South African population prone to diabetes.

Research Design and Methods

Three SNPs known to be associated with CKD (rs4821480, rs5756152 and rs12107) were genotyped using Taqman assay in 716 adults (198 with diabetes) from the Bellville-South community, Cape Town. Glomerular filtration rate was estimated (eGFR) and urinary albumin/creatinine ratio (ACR) assessed. Multivariable regressions were used to relate the SNPs with renal traits.

Results

Mean age was 53.6 years, with the expected differences observed in characteristics by diabetic status. Significant associations were found between rs575152 and serum creatinine, and eGFR in the total population, and in diabetic participants (all p≤0.003), but not in non-diabetics (all p≥0.16), with significant interactions by diabetes status (interaction-p≤0.009). The association with ACR was borderline in diabetic participants (p = 0.05) and non-significant in non-diabetics (p = 0.85), with significant interaction (interaction p = 0.02). rs12107 was associated with fasting-, 2-hour glucose and HbA1c in diabetic participants only (interaction-p≤0.003), but not with renal traits.

Conclusion

MYH9 SNPs were associated with renal traits only in diabetic participants in this population. Our findings and other studies suggest that MYH9 may have a broader genetic risk effect on kidney diseases.  相似文献   

4.
Four genome wide linkage scans for diabetic nephropathy have mapped susceptibility loci to chromosome 18q22.3-23 in the region of the carnosinase genes, CNDP1 and CNDP2. CNDP1 has been associated with diabetic nephropathy in Europeans and European Americans, but not African-Americans. Individuals homozygous for a five tri-nucleotide repeat allele (5L; D18S880) are protected from diabetic nephropathy. We identified 64 variants after sequencing the exons, promoter, and 3′ UTR of CNDP1 and CNDP2 in African-American and European American DNA samples. After scanning 44 of these variants, extensive genotyping of 12 SNPs and D18S880 was performed in 1,025 African-American cases with type 2 diabetes (DM)-associated end-stage renal disease (ESRD) and 1,064 African-American non-diabetic non-nephropathy controls to assess whether the carnosinase genes influence risk for DM-ESRD in African-Americans. Evidence of association with DM-ESRD was seen with 2 SNPs: rs6566810 and rs4892247; 3 two-marker haplotypes: rs6566810 and rs17089362, rs17089362 and rs890336, and rs890334 and rs12717111 (global empirical P = 0.0034, 0.0275, and 0.0002, respectively) and 3 three-marker haplotypes: rs6566810, rs17089362, and rs890336; rs890335, rs890334, and rs12717111; and rs890334, rs12717111, and D18S880 (global empirical P = 0.0074, 1.5E-05, and 0.0032, respectively). The risk haplotypes (rs6566810, rs17089362 [A,T] and rs6566810, rs17089362, rs890336 [A,T,C]) were most strongly associated with DM-ESRD among African-Americans in the non 5L–5L group. Variants in the carnosinase genes appear to contribute to diabetic nephropathy susceptibility in African-Americans. Protection from diabetic nephropathy afforded by 5L–5L homozygosity in CNDP1 may be masked by the effects of additional risk haplotypes in CNDP1 and CNDP2. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.

Objective

To investigate the association of Mannose-binding lectin (MBL) and the MBL2 gene with type 2 diabetes and diabetic nephropathy and the influence of MBL2 polymorphisms on serum MBL levels.

Methods

The study population included 675 type 2 diabetic patients with or without nephropathy and 855 normoglycemic controls. The single nucleotide polymorphisms (SNPs) of rs1800450, rs1800451, and rs11003125 of the MBL2 gene were determined by the Multiplex Snapshot method. Serum MBL levels were measured by enzyme-linked immune sorbent assay.

Results

Rs1800450 and rs11003125 SNPs demonstrated strong linkage disequilibrium in the study population (r2 = 0.97). The haplotypes constructed from the G allele of rs1800450 and the C allele of rs11003125 increased the risk for type 2 diabetes (OR = 1.2, 95% CI = 1.1–1.4, P = 0.01). For rs1800450, GG and GA genotypes were associated with type 2 diabetes (P = 0.02, 0.01, respectively). For rs11003125, the GC genotype frequency was significantly different between patients and controls (18.1% vs. 24.9%, P = 0.001). Analyses of genotypes and allele frequency distributions among patients with normal UAE, microalbuminuria, and macroalbuminuria showed that there was no obvious evidence of association between the MBL2 gene and diabetic nephropathy. Subjects with the GG genotype of rs1800450 and the CC genotype of rs11003125 had much higher serum MBL levels.

Conclusions

The rs1800450 and rs11003125 SNPs of the MBL2 gene have strong linkage disequilibrium and are associated with type 2 diabetes in the North Chinese Han population. No association was observed between the MBL2 gene and diabetic nephropathy. Subjects with the GG genotype of rs1800450 and the CC genotype of rs11003125 had much higher serum MBL levels. An association between elevated serum MBL and diabetic nephropathy was also observed.  相似文献   

6.
The MYH9 gene encodes a protein that is expressed in the kidney glomerular podocytes. MYH9 single nucleotide polymorphisms (SNPs) have been linked to the risk for chronic kidney disease (CKD) and end stage renal disease. Our aim was to determine whether MYH9 SNPs were associated with renal disease in Spanish Caucasians. The RENASTUR cohort consisted of 592 Spanish Caucasians, aged 55–85 years. They were genotyped for SNPs rs3752462 and rs4821480, which tagged haplotype E. The main values between individuals with a glomerular filtration rate (eGFR) < 60 and ≥ 60 ml/min/1.73 m2 were statistically compared. The next variables were significantly associated with the eGFR in the univariate analysis: age, gender, type 2 diabetes, total cholesterol, total LDL-cholesterol, and the MYH9 rs3752462 (TC + TT genotypes; p = 0.003). This SNP remained significantly associated with the eGFR in the multivariate analysis.  相似文献   

7.
This study investigated the association of hepatocyte nuclear factor 4 (HNF4) alpha single nucleotide polymorphisms (SNPs) with type 2 diabetes with or without metabolic syndrome in Malaysia. Nine HNF4 alpha SNPs were genotyped in 390 type 2 diabetic subjects with metabolic syndrome, 135 type 2 diabetic subjects without metabolic syndrome, and 160 control subjects. The SNPs rs4810424, rs1884613, and rs2144908 were associated with protection against type 2 diabetes without metabolic syndrome (recessive P = 0.018, OR 0.32; P = 0.004, OR 0.25; P = 0.005, OR 0.24, respectively). The 6-SNP haplotype2 CCCGTC containing the risk genotype of these SNPs was associated with higher risk for type 2 diabetes with or without metabolic syndrome (P = 0.002, OR 2.2; P = 0.004, OR 3.1). These data suggest that HNF4 alpha SNPs and haplotypes contributed to increased type 2 diabetes risk in the Malaysian population.  相似文献   

8.
There is controversy as to the recommended daily intake of selenium (Se), and whether current New Zealand diets are adequate in this nutrient. Various functional single-nucleotide polymorphisms (SNPs) polymorphisms may affect the efficacy of Se utilisation. These include the glutathione peroxidases GPx1 rs1050450, GPx4 rs713041, as well as selenoproteins SEPP1 rs3877899, SEL15 rs5845, SELS rs28665122 and SELS rs4965373. This cross-sectional study measured serum Se levels of 503 healthy Caucasian men in Auckland, New Zealand, between ages 20–81. The Se distribution was compared with activities of the antioxidant enzymes glutathione peroxidase and thioredoxin reductase, and DNA damage as measured by the single cell gel electrophoresis assay, both without and with a peroxide-induced oxidative challenge. Serum Se was measured using inductively coupled plasma-dynamic reaction cell-mass spectrometry, while selenoprotein SNPs were estimated using TaqMan® SNP genotyping assays. While antioxidant enzyme activities and DNA damage recorded after a peroxide challenge increased with increasing serum selenium, the inherent DNA damage levels in leukocytes showed no statistically significant relationship with serum selenium. However, these relationships and dietary Se requirements at the individual level were modified by several different SNPs in genes for selenoproteins. The GPx1 rs1050450 C allele was significantly associated with GPx activity. Significant correlations between serum Se level and GPX activity were seen with all genotypes except for homozygous minor allele carriers, while the GPx1 rs1050450 CT genotype showed the highest correlation. Several genotypes showed significant correlations between serum Se and TR activity with SEPP1 rs3877899 GG genotype showing the highest correlation. A significant decreasing trend in DNA damage with increasing serum Se was seen among GPx1 rs1050450 CC and GPx4 rs713041 TT genotype carriers up to a serum Se level of 116 and 149 ng/ml, respectively. In the absence of this genetic information, we would recommend a serum Se concentration in the region of 100–150 ng/ml as providing a useful compromise.  相似文献   

9.
Adipocypte fatty acid–binding protein‐4 (FABP4/adipocyte P2) may play a central role in energy metabolism and inflammation. In animal models, defects of the aP2 gene (aP2?/?) partially protected against the development of obesity‐related insulin resistance, dyslipidemia, and atherosclerosis. However, it is unclear whether common genetic variation in FABP4 gene contributes to risk of type 2 diabetes (T2D) or diabetes‐related metabolic traits in humans. We comprehensively assess the genetic associations of variants in the FABP4 gene with T2D risk and diabetes‐associated biomarkers in a prospective study of 1,529 cases and 2,147 controls among postmenopausal women aged 50–79 years who enrolled in the Women's Health Initiative Observational Study (WHI‐OS). We selected and genotyped a total of 11 haplotype‐tagging single‐nucleotide polymorphisms (tSNPs) spanning 41.3 kb across FABP4 in all samples. None of the SNPs and their derived haplotypes showed significant association with T2D risk. There were no significant associations between SNPs and plasma levels of inflammatory and endothelial biomarkers, including C‐reactive protein, tumor necrosis factor (TNF), interleukin‐6 (IL‐6), E‐selectin, and intercellular adhesion molecule (ICAM‐1). Among African‐American women, several SNPs were significantly associated with lower levels of vascular cell adhesion molecule‐1 (VCAM‐1), especially among those with incident T2D. On average, plasma levels of VCAM‐1 were significantly lower among carriers of each minor allele at rs1486004(C/T; ?1.08 ng/ml, P = 0.01), rs7017115(A/G; ?1.07 ng/ml, P = 0.02), and rs2290201(C/T; ?1.12 ng/ml, P = 0.002) as compared with the homozygotes of the common allele, respectively. After adjusting for multiple testing, carriers of the rs2290201 minor allele remained significantly associated with decreasing levels of plasma VCAM‐1 in these women (P = 0.02). In conclusion, our finding from a multiethnic cohort of postmenopausal women did not support the notion that common genetic variants in the FABP4 gene may trigger increased risk of T2D. The observed significant association between reduced VCAM‐1 levels and FABP4 genotypes in African‐American women warrant further confirmation.  相似文献   

10.
《PloS one》2013,8(12)

Objective

Estimated glomerular filtration rate (eGFR), a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL) that influence eGFR.

Methods

Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN) from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND) study. This study included 954 African Americans (AA), 781 American Indians (AI), 614 European Americans (EA) and 1,611 Mexican Americans (MA). A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs) using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD) formula.

Results

The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4×10−5) in MA and chromosome 15q12 (LOD = 2.84; P = 1.5×10−4) in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5×10−4) at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome.

Conclusion

The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers for DN.  相似文献   

11.
Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) is expressed in all diabetes-relevant tissues and mediates cytokine-induced insulin resistance. We investigated whether common single nucleotide polymorphisms (SNPs) in the MAP4K4 locus associate with glucose intolerance, insulin resistance, impaired insulin release, or elevated plasma cytokines. The best hit was tested for association with type 2 diabetes. Subjects (N = 1,769) were recruited from the Tübingen Family (TÜF) study for type 2 diabetes and genotyped for tagging SNPs. In a subgroup, cytokines were measured. Association with type 2 diabetes was tested in a prospective case-cohort study (N = 2,971) derived from the EPIC-Potsdam study. Three SNPs (rs6543087, rs17801985, rs1003376) revealed nominal and two SNPs (rs11674694, rs11678405) significant associations with 2-hour glucose levels. SNPs rs6543087 and rs11674694 were also nominally associated with decreased insulin sensitivity. Another two SNPs (rs2236936, rs2236935) showed associations with reduced insulin release, driven by effects in lean subjects only. Three SNPs (rs11674694, rs13003883, rs2236936) revealed nominal associations with IL-6 levels. SNP rs11674694 was significantly associated with type 2 diabetes. In conclusion, common variation in MAP4K4 is associated with insulin resistance and β-cell dysfunction, possibly via this gene’s role in inflammatory signalling. This variation’s impact on insulin sensitivity may be more important since its effect on insulin release vanishes with increasing BMI.  相似文献   

12.

Background

Synthesis of selenoproteins such as glutathione peroxidases (GPx) requires a specific tRNA and a stem-loop structure in the 3′untranslated region (3′UTR) of the mRNA. A common single nucleotide polymorphism occurs in the GPX4 gene in a region corresponding to the 3′UTR.

Methods

The two variant 3′UTR sequences were linked to sequences from a selenoprotein reporter gene (iodothyronine deiodinase) and expressed in Caco-2 cells. Clones expressing comparable levels of deiodinase (assessed by real-time PCR) were selected and their response to tert-butyl hydroperoxide assessed by cell viability and measurement of reactive oxygen species. Selenoprotein expression was assessed by real-time PCR, enzyme activity and immunoassay.

Results

When selenium supply was low, cells overexpressing the C variant 3′UTR showed lower viability after oxidative challenge, increased levels of reactive oxygen species and lower GPx activity and SelH mRNA expression compared to cells overexpressing the T variant. After selenium supplementation, cell viability and GPx4 expression were higher in the cells overexpressing the C variant. Expression of transgenes incorporating the T/C variant GPX4 (rs713041) sequences in Caco-2 cells leads to alterations in both cell viability after an oxidative challenge and selenoprotein expression. This suggests that the two variants compete differently in the selenoprotein hierarchy.

General Significance

The data provide evidence that the T/C variant GPX4 (rs713041) alters the pattern of selenoprotein synthesis if selenium intake is low. Further work is required to assess the impact on disease susceptibility.  相似文献   

13.
Genetic studies in Turkish, Native American, European American, and African American (AA) families have linked chromosome 18q21.1–23 to susceptibility for diabetes-associated nephropathy. In this study, we have carried out fine linkage mapping in the 18q region previously linked to diabetic nephropathy in AAs by genotyping both microsatellite and single nucleotide polymorphisms (SNPs) for linkage analysis in an expanded set of 223 AA families multiplexed for type 2 diabetes associated ESRD (T2DM-ESRD). Several approaches were used to evaluate evidence of linkage with the strongest evidence for linkage in ordered subset analysis with an earlier age of T2DM diagnosis compared to the remaining pedigrees (LOD 3.9 at 90.1 cM, ∆P = 0.0161, NPL P value = 0.00002). Overall, the maximum LODs and LOD-1 intervals vary in magnitude and location depending upon analysis. The linkage mapping was followed up by performing a dense SNP map, genotyping 2,814 SNPs in the refined LOD-1 region in 1,029 AA T2DM-ESRD cases and 1,027 AA controls. Of the top 25 most associated SNPs, 10 resided within genic regions. Two candidate genes stood out: NEDD4L and SERPINB7. SNP rs512099, located in intron 1 of NEDD4L, was associated under a dominant model of inheritance [P value = 0.0006; Odds ratio (95% Confidence Interval) OR (95% CI) = 0.70 (0.57–0.86)]. SNP rs1720843, located in intron 2 of SERPINB7, was associated under a recessive model of inheritance [P value = 0.0017; OR (95% CI) = 0.65 (0.50–0.85)]. Collectively, these results suggest that multiple genes in this region may influence diabetic nephropathy susceptibility in AAs.  相似文献   

14.
We previously investigated the estrogen receptor α gene (ESR1) as a positional candidate for type 2 diabetes (T2DM), and found evidence for association between the intron 1-intron 2 region of this gene and T2DM and/or nephropathy in an African American (AA) population. Our objective was to comprehensively evaluate variants across the entire ESR1 gene for association in AA with T2DM and end stage renal disease (T2DM–ESRD). One hundred fifty SNPs in ESR1, spanning 476 kb, were genotyped in 577 AA individuals with T2DM–ESRD and 596 AA controls. Genotypic association tests for dominant, additive, and recessive models, and haplotypic association, were calculated using a χ2 statistic and corresponding P value. Thirty-one SNPs showed nominal evidence for association (P < 0.05) with T2DM–ESRD in one or more genotypic model. After correcting for multiple tests, promoter SNP rs11964281 (nominal P = 0.000291, adjusted P = 0.0289), and intron 4 SNPs rs1569788 (nominal P = 0.000754, adjusted P = 0.0278) and rs9340969 (nominal P = 0.00109, adjusted P = 0.0467) remained significant at experimentwise error rate (EER) P ≤ 0.05 for the dominant class of tests. Twenty-three of the thirty-one associated SNPs cluster within the intron 4–intron 6 regions. Gender stratification revealed nominal evidence for association with 35 SNPs in females (352 cases; 306 controls) and seven SNPs in males (225 cases; 290 controls). We have identified a novel region of the ESR1 gene that may contain important functional polymorphisms in relation to susceptibility to T2DM and/or diabetic nephropathy. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Previous studies and replication analyses have linked chromosome 18q21.1–23 with type 2 diabetes (T2DM) and its complications, including diabetic nephropathy (DN). Here we investigated the association of POL1-nearby variant rs488846, MALT1-nearby variant rs2874116, MC4R-nearby variant rs1942872, PHLPP rs9958800 and DSEL-nearby variant rs9966483 single nucleotide polymorphisms (SNPs) in the 18q region, previously linked with DN in African-Americans, with T2DM in (North African) Tunisian subjects, followed by their association with DN, which was performed subsequent to the analysis of the association with T2DM. Study subjects comprised 900 T2DM cases and 748 normoglycemic control, and genotyping was carried out by PCR–RFLP analysis. Of the 5 SNPs analyzed, POL1-nearby variant rs488846 [P = 0.044], and MC4R-nearby variant rs1942872 [P = 0.012] were associated with moderate risk of T2DM. However, there was a lack of consistency in the association of the 5 tested SNPs with DN. As such, it appears that the three chromosome 18q region variants appear to play a role in T2DM pathogenesis, but not with DN in North African Tunisian Arabs.  相似文献   

16.
Rheumatoid arthritis (RA) is a chronic inflammatory disease with a heritability of 60%. Genetic contributions to RA are made by multiple genes, but only a few gene associations have yet been confirmed. By studying animal models, reduced capacity of the NADPH-oxidase (NOX) complex, caused by a single nucleotide polymorphism (SNP) in one of its components (the NCF1 gene), has been found to increase severity of arthritis. To our knowledge, however, no studies investigating the potential role played by reduced reactive oxygen species production in human RA have yet been reported. In order to examine the role played by the NOX complex in RA, we investigated the association of 51 SNPs in five genes of the NOX complex (CYBB, CYBA, NCF4, NCF2, and RAC2) in a Swedish case-control cohort consisting of 1,842 RA cases and 1,038 control individuals. Several SNPs were found to be mildly associated in men in NCF4 (rs729749, P = 0.001), NCF2 (rs789181, P = 0.02) and RAC2 (rs1476002, P = 0.05). No associations were detected in CYBA or CYBB. By stratifying for autoantibody status, we identified a strong association for rs729749 (in NCF4) in autoantibody negative disease, with the strongest association detected in rheumatoid factor negative men (CT genotype versus CC genotype: odds ratio 0.34, 95% confidence interval 0.2 to 0.6; P = 0.0001). To our knowledge, this is the first genetic association identified between RA and the NOX complex, and it supports previous findings from animal models of the importance of reactive oxygen species production capacity to the development of arthritis.  相似文献   

17.
Four single nucleotide polymorphisms (SNPs, rs2237892, rs2237895, rs2237897, rs2283228) in KCNQ1 are associated with type 2 diabetes mellitus in different ancestral groups. We investigated whether these 4 genetic markers are determinants of type 2 diabetes and premature coronary artery disease (CAD) in a Chinese population. We studied 398 consecutive patients, including 180 with coronary stenosis ≥50% or previous myocardial infarction (male <55 years, female <65 years) and 218 controls without documented CAD. CAD cases and controls were genotyped for 4 SNPs by using the ligase detection reaction method. The 3 genotypes AA, AC, and CC were present in rs2283228 and rs2237895, and the 3 genotypes CC, CT, TT were present in rs2237897 and rs2237892. No differences were found in genotype distribution and allele frequencies of these 4 SNPs between subjects with and without type 2 diabetes. Logistic regression showed that the risk of premature CAD in subjects carrying the CC genotype at rs2237892 was reduced by 90% in relation to individuals carrying the TT genotype (OR = 0.100, 95% CI: 0.018–0.564, P = 0.009). The association of other 3 SNPs with premature CAD could not be detected, nor did there exist any association of these 4 SNPs among groups of patients with 0, 1, 2, and 3-vessel disease (all P > 0.05). Our data implicate rs2237892 in KCNQ1 as a protective gene variant against premature CAD and we couldn’t replicate any association of these 4 SNPs with T2DM or extent of coronary lesions in a Chinese population.  相似文献   

18.
A genome-wide association scan of type 1 diabetic patients from the GoKinD collections previously identified four novel diabetic nephropathy susceptibility loci that have subsequently been shown to be associated with diabetic nephropathy in unrelated patients with type 2 diabetes. To expand these findings, we examined whether single nucleotide polymorphisms (SNPs) at these susceptibility loci were associated with diabetic nephropathy in patients from the Joslin Study of Genetics of Nephropathy in Type 2 Diabetes Family Collection. Six SNPs across the four loci identified in the GoKinD collections and 7 haplotype tagging SNPs, were genotyped in 66 extended families of European ancestry. Pedigrees from this collection contained an average of 18.5 members, including 2 to 14 members with type 2 diabetes. Among diabetic family members, the 9q21.32 locus approached statistical significance with advanced diabetic nephropathy (P = 0.037 [adjusted P = 0.222]). When we expanded our definition of diabetic nephropathy to include individuals with high microalbuminuria, the strength of this association improved significantly (P = 1.42×10−3 [adjusted P = 0.009]). This same locus also trended toward statistical significance with variation in urinary albumin excretion in family members with type 2 diabetes (P = 0.032 [adjusted P = 0.192]) and in analyses expanded to include all relatives (P = 0.019 [adjusted P = 0.114]). These data increase support that SNPs identified in the GoKinD collections on chromosome 9q21.32 are true diabetic nephropathy susceptibility loci.  相似文献   

19.
In diabetic retinopathy (DR) and other angiogenesis-associated diseases, increased levels of cytokines, inflammatory cells, and angiogenic factors are present. We investigated the hypothesis that rs2243250 polymorphism of the interleukin 4 (IL-4) gene or rs1800896 polymorphism of the interleukin 10 (IL-10) gene, and rs3212227 polymorphism of the 3’ untranslated region (3’ UTR) of the interleukin-12 p40 gene (IL12B) may be associated with the development of proliferative diabetic retinopathy (PDR) in Caucasians with type 2 diabetes (DM2). This cross sectional case — control study included 189 patients with PDR and 187 patients with type 2 diabetes without PDR. Polymorphisms rs1800896 of the IL-10 gene, rs2243250 of the IL-4 gene, and rs3212227 of IL12B gene were analyzed by ARMS -PCR and RFLP -PCR methods. Multivariate analysis demonstrated the GG genotype of the rs1800896 polymorphism of the IL-10 gene to be associated with increased risk for PDR (OR=1.99; 95% CI=1.11–3.57; P=0.02), whereas the TT genotype of the rs2243250 polymorphism of the IL-4 gene and the AA genotype of the rs3212227 polymorphism of the IL-12 gene were not independent risk factors for PDR. Our findings suggest that the genetic variations at the IL-10 promoter gene might be a genetic risk factor for PDR in Caucasians with type 2 diabetes.  相似文献   

20.

Background

To study the relationship between the intima-media thickness (IMT) of the carotid artery and the stage of chronic kidney disease (CKD) based on the estimated glomerular filtration rate (eGFR) and diabetic nephropathy graded by the urinary albumin excretion (UAE) in the patients with type 2 diabetes mellitus.

Methods

A cross-sectional study was performed in 338 patients with type 2 diabetes mellitus. The carotid IMT was measured using an ultrasonographic examination.

Results

The mean carotid IMT was 1.06 ± 0.27 mm, and 42% of the subjects showed IMT thickening (≥ 1.1 mm). Cerebrovascular disease and coronary heart disease were frequent in the patients with IMT thickening. The carotid IMT elevated significantly with the stage progression of CKD (0.87 ± 0.19 mm in stage 1, 1.02 ± 0.26 mm in stage 2, 1.11 ± 0.26 mm in stage 3, and 1.11 ± 0.27 mm in stage 4+5). However, the IMT was not significantly different among the various stages of diabetic nephropathy. The IMT was significantly greater in the diabetic patients with hypertension compared to those without hypertension. The IMT positively correlated with the age, the duration of diabetes mellitus, and the brachial-ankle pulse wave velocities (baPWV), and negatively correlated with the eGFR. In a stepwise multivariate regression analysis, the eGFR and the baPWV were independently associated with the carotid IMT.

Conclusions

Our study is the first report showing a relationship between the carotid IMT and the renal parameters including eGFR and the stages of diabetic nephropathy with a confirmed association between the IMT and diabetic macroangiopathy. Our study further confirms the importance of intensive examinations for the early detection of atherosclerosis and positive treatments for hypertension, dyslipidaemia, obesity, as well as hyperglycaemia are necessary when a reduced eGFR is found in diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号