首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The aim of this work was to develop a biosensor for toxic amides using whole cells of Pseudomonas. aeruginosa containing amidase activity, which catalyses the hydrolysis of amides such as acrylamide producing ammonia and the corresponding organic acid. Whole cells immobilized in several types of membrane in the presence of glutaraldehyde and an ammonium ion-selective electrode, were used for biosensor development. This biosensor exhibited a linear response in the range of 0.1–4.0×10?3 M of acrylamide, a detection limit of 4.48×10?5 M acrylamide, a response time of 55 s, a sensitivity of 58.99 mV mM?1 of acrylamide and a maximum t1/2 of 54 days. The selectivity of this biosensor towards other amides was investigated, which revealed that it cross-reacted with acetamide and formamide, but no activity was detected with phenylacetamide, p-nitrophenylacetamide and acetanilide. It was successfully used for quantification of acrylamide in real industrial effluents and recovery experiments were carried out which revealed an average substrate recovery of 93.3%. The biosensor is cheap since whole cells of P. aeruginosa can be used as source of amidase activity.  相似文献   

2.
We describe the amplification of amperometric l-lysine biosensor using l-lysine oxidase nanoparticles (LOxNPs) and graphene oxide nanoparticles (GrONPs) immobilized onto pencil graphite electrode (PGE). LOxNPs and GrONPs were characterized by UV spectroscopy and transmission electron microscopy (TEM). The working electrode (LOxNPs/GrONPs/PGE) was studied by scanning electron microscopy (SEM) and cyclic voltammetry at different stages of its construction. The biosensor showed optimum current at 0.7 V, pH 6.5, 35 °C, a detection limit of 0.01 μM, response time as 3.95 s and a wider linear range 0.01–1000 μM. The analytical recovery of added lysine in sera was 97 %. The within assay and between batch coefficients of variation for the biosensor were 0.068 and 0.074 % respectively. The biosensor measured l-lysine levels in sera of healthy adults and human immunodeficiency virus (HIV) patients. The biosensor exhibited good correlation with standard spectrophotometric method (R2 = 0.989). The biosensor lost 35 % of its original activity after its regular uses for a period of 180 days, while being stored dry at 4 °C.  相似文献   

3.
A glucose biosensor using a glucose oxidase (GOx)-immobilized nylon net with glutaraldehyde as cross-linking reagent and an oxygen (O2) electrode for the determination of glucose has been fabricated. The detection scheme was based on the utilization of dissolved O2 in oxidation of glucose by the membrane bound GOx. Crucial factors including O-alkylation temperature, reaction times of nylon net with dimethyl sulfate, l-lysine, and glutaraldehyde, and enzyme loading were examined to determine the optimal enzyme immobilization conditions for the best sensitivity of the developed glucose biosensor. In addition, the effects of pH and concentration of phosphate buffer on the response of the biosensor were studied. The glucose biosensor had a linear range of 18 μM to 1.10 mM with the detection limit of 9.0 μM (S/N = 3) and response time of 80 s. The biosensor exhibited both good operational stability with over 200 measurements and long-term storage stability. The results from this biosensor compared well with those of a commercial glucose assay kit in analyzing human serum glucose samples.  相似文献   

4.
Commercial enzymes, creatininase (CA) from Pseudomonas sp, creatinase (CI) from Pseudomonas sp, sarcosine oxidase (SO) from Bacillus sp were co-immobilized onto iron oxide nanoparticles/chitosan-graft-polyaniline (Fe(3)O(4)-NPs/CHIT-g-PANI) composite film electrodeposited on surface of Pt electrode through glutaraldehyde coupling. Transmission electron microscopy (TEM) was used for characterization of Fe(3)O(4)-NPs. A creatinine biosensor was fabricated using Enzymes/Fe(3)O(4)-NPs/CHIT-g-PANI/Pt electrode as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode. The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopic and electrochemical impedance spectroscopy (EIS). The biosensor exhibited an optimum response within 2s at pH 7.5 and 30 °C, when polarized at 0.4V vs Ag/AgCl. The electrocatalytic response showed a linear dependence on creatinine concentration ranging from 1 to 800 μM. The sensitivity of the biosensor was 3.9 μA μM(-1) cm(-2), with a detection limit of 1 μM (S/N=3). Apparent Michaelis-Menton (K(m)) value for creatinine was 0.17 mM. The biosensor showed only 10% loss in its initial response after 120 uses over 200 days, when stored at 4 °C. The biosensor measured creatinine in the serum of apparently healthy persons which correlated well with a standard colorimetric method (r=0.99).  相似文献   

5.
This present study was aimed to fabricate a sensitive and improved amperometric biosensor by the nanoparticles of pyruvate oxidase, which were prepared and immobilized covalently onto pencil graphite electrode. The biosensor showed ideal working within 5 s under defined conditions of pH 6.0 and incubation temperature of 30 °C at an applied voltage of -0.1 V. Under standard assay conditions, a linear response was obtained between pyruvate concentration ranging from 0.001 to 6000 μM and current (μA). A lower detection limit (0.58 μM) and an excellent correlation coefficient (R2 = 0.999) with standard spectrophotometric assay was obtained for the present biosensor. Within and between batches of coefficients of variation were calculated and found to be 3.61 % and 3.33 %, respectively. The biosensor was put to continual use for over 210 days. The biosensor was employed for the measurement of pyruvate level in sera of normal healthy individuals and persons suffering from heart disease.  相似文献   

6.
The acetohydroxamic acid synthesis reaction was studied using whole cells, cell-free extract and purified amidase from the strains of Pseudomonas aeruginosa L10 and AI3 entrapped in a reverse micelles system composed of cationic surfactant tetradecyltrimethyl ammonium bromide. The specific activity of amidase, yield of synthesis and storage stability were determined for the reversed micellar system as well as for free amidase in conventional buffer medium. The results have revealed that amidase solutions in the reverse micelles system exhibited a substantial increase in specific activity, yield of synthesis and storage stability. In fact, whole cells from P. aeruginosa L10 and AI3 in reverse micellar medium revealed an increase in specific activity of 9.3- and 13.9-fold, respectively, relatively to the buffer medium. Yields of approximately 92% and 66% of acetohydroxamic acid synthesis were obtained for encapsulated cell free extract from P. aeruginosa L10 and AI3, respectively. On the other hand, the half-life values obtained for the amidase solutions encapsulated in reverse micelles were overall higher than that obtained for the free amidase solution in buffer medium. Half-life values obtained for encapsulated purified amidase from P. aeruginosa strain L10 and encapsulated cell-free extract from P. aeruginosa strain AI3 were of 17.0 and 26.0 days, respectively. As far as the different sources biocatalyst are concerned, the data presented in this work has revealed that the best results, in both storage stability and biocatalytic efficiency, were obtained when encapsulated cell-free extract from P. aeruginosa strain AI3 at w0 of 10 were used. Conformational changes occurring upon encapsulation of both strains enzymes in reverse micelles of TTAB in heptane/octanol were additionally identified by FTIR spectroscopy which clarified the biocatalysts performances.  相似文献   

7.
The lyophilized biomass of White rot fungi (Phanerochaete chrysosporium ME446) was immobilized in gelatine using glutaraldehyde crosslinking agent on a Pt working electrode. The fungal cells retained their laccase activity under entrapped state. The immobilized cells were used as a source of laccase to develop amperometric epinephrine biosensor. The catalytic action of the laccase in the biosensor released an epinephrinequinone as a result of redox activity, thereby causing an increase in the current. The optimal working conditions of the biosensor were carried out at pH 4.5 (50 mM acetate buffer containing 100 mM K(3)Fe(CN)(6)), and 20°C. The sensor response was linear over a range of 5-100 μM epinephrine. The detection limit of the biosensor was found to be 1.04 μM. In the optimization and characterization studies of the microbial biosensor some parameters such as effect of fungi and gelatine amount, percentage of glutaraldehyde on the biosensor response and substrate specificity were carried out. In the application studies of the biosensor, sensitive determination of epinephrine in pharmaceutical ampules was investigated.  相似文献   

8.
A novel amperometric lactate biosensor was developed based on immobilization of lactate dehydrogenase onto graphene oxide nanoparticles‐decorated pencil graphite electrode. The enzyme electrode was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and cyclic voltammetry at different stages of its construction. The biosensor showed optimum response within 5 s at pH 7.3 (0.1 M sodium phosphate buffer) and 35°C, when operated at 0.7 V. The biosensor exhibited excellent sensitivity (detection limit as low as 0.1 μM), fast response time (5 s), and wider linear range (5–50 mM). Analytical recovery of added lactic acid in serum was between 95.81–97.87% and within‐batch and between‐batch coefficients of variation were 5.04 and 5.40%, respectively. There was a good correlation between serum lactate values obtained by standard colorimetric method and the present biosensor (r = 0.99). The biosensor measured lactate levels in sera of apparently healthy subjects and persons suffering from lactate acidosis and other biological materials (milk, curd, yogurt, beer, white wine, and red wine). The enzyme electrode lost 25% of its initial activity after 60 days of its regular uses, when stored dry at 4°C.  相似文献   

9.
A high-performance amperometric polyphenol biosensor was developed, based on covalent immobilization of Ganoderma sp. laccase onto copper nanoparticles (CuNP's)/chitosan (CHIT)/carboxylated multiwalled carbon nanotube (cMWCNT)/polyaniline (PANI)-modified gold (Au) electrode. The CuNP's and cMWCNT had a synergistic electrocatalytic effect in the matrix of CHIT. The biosensor showed optimum response at pH 6.0 (0.1 M acetate buffer) and 35 °C, when operated at 50 mV s−1. The biosensor exhibited excellent sensitivity (the detection limit was down to 0.156 μM for guaiacol), fast response time (less than 4 s) and wide linear range (from 1 to 500 μM). Analytical recovery of added guaiacol was 96.40-98.46%. Within batch and between batch coefficients of variation were <2.6% and <5.3%, respectively. The enzyme electrode was used 300 times over a period of 7 months, when stored at 4 °C.  相似文献   

10.
Pseudomonas putida MTCC 6809, a plant growth promoting rhizobacteria producing amidase was isolated from the rhizosphere of Pisum sativum. The cells were immobilized in sodium alginate for the production of amidase and the effect of dehydration on immobilized beads were studied. Optimization of process parameters for amidase production was carried out to enhance enzyme production using immobilized cells. From the results it is clear that 2% and 3% (w/v) of alginate were suitable for amidase production with 12.8 and 13 U/ml activity, respectively after 36 h of incubation. Among the various substrates studied acetamide (2% w/v) was a good inducer of amidase. It was observed that immobilized catalysts could be recycled up to five batches. Amidase production was observed in both free and immobilized cells, nevertheless immobilization is much favored in comparison to free cells, as it leads to reusability of beads, lesser contamination, consistent amidase production and adaptability to wide range of culture conditions. The relative enzyme activity with the dehydrated beads was only 27% in comparison to hydrated beads, it is possible to pack considerably more into a fixed volume as the relative volume of dehydrated beads is 20%. Even though consistent amidase production was difficult to achieve using dehydrated beads, which may have certain advantages like less chances for microbial contamination and easy to transport.  相似文献   

11.
A mixture of commercial creatinine amidohydrolase (CA), creatine amidinohydrolase (CI), and sarcosine oxidase (SO) was coimmobilized covalently via N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto carboxylated multiwalled carbon nanotube (c-MWCNT)/polyaniline (PANI) nanocomposite film electrodeposited over the surface of a platinum (Pt) electrode. A creatinine biosensor was fabricated using enzyme/c-MWCNT/PANI/Pt as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and electrochemical impedance spectroscopy (EIS). The biosensor detected creatinine levels as low as 0.1 μM, estimated at a signal-to-noise ratio of 3, within 5 s at pH 7.5 and 35 °C. The optimized biosensor showed a linear response range of 10 to 750 μM creatinine with sensitivity of 40 μA/mM/cm2. The fabricated biosensor was successfully employed for determination of creatinine in human serum. The biosensor showed only 15% loss in its initial response after 180 days when stored at 4 °C.  相似文献   

12.
In the present work, statistical experimental methodology was used to enhance the production of amidase from Rhodococcus erythropolis MTCC 1526. R. erythropolis MTCC 1526 was selected through screening of seven strains of Rhodococcus species. The Placket–Burman screening experiments suggested that sorbitol as carbon source, yeast extract and meat peptone as nitrogen sources, and acetamide as amidase inducer are the most influential media components. The concentrations of these four media components were optimised using a face-centred design of response surface methodology (RSM). The optimum medium composition for amidase production was found to contain sorbitol (5 g/L), yeast extract (4 g/L), meat peptone (2.5 g/L), and acetamide (12.25 mM). Amidase activities before and after optimisation were 157.85 units/g dry cells and 1,086.57 units/g dry cells, respectively. Thus, use of RSM increased production of amidase from R. erythropolis MTCC 1526 by 6.88-fold.  相似文献   

13.
A high-performance amperometric fructosyl valine (FV) biosensor was developed, based on immobilization of fructosyl amino-acid oxidase (FAO) on core-shell magnetic bionanoparticles modified gold electrode. Chitosan was used to introduce amino groups onto the surface of core-shell magnetic bionanoparticles (MNPs). With FAO as an enzyme model, a new fructosyl valine biosensor was fabricated. The biosensor showed optimum response, when operated at 50 mVs(-1) in 0.1M potassium phosphate buffer, pH 7.5 and 35°C. The biosensor exhibited excellent sensitivity [the detection limit is down to 0.1mM for FV], fast response time (less than 4s), wide linear range (from 0 to 2mM). Analytical recovery of added FV was 95.00-98.50%. Within batch and between batch coefficients of variation were <2.58% and <5.63%, respectively. The enzyme electrode was used 250 times over 3 months, when stored at 4°C.  相似文献   

14.
In the course of recent efforts to identify new potential antiproliferative active principles, Salvia leriifolia extracts and isolated constituents were evaluated for their cytotoxic activity against a panel of human cancer cell lines, including renal adenocarcinoma (ACHN), amelanotic melanoma (C32), colorectal adenocarcinoma (Caco‐2), lung large cell carcinoma (COR‐L23), malignant melanoma (A375), lung carcinoma (A549), and hepatocellular carcinoma (Huh‐7D12) cells. The hexane and CH2Cl2 extracts showed the strongest cytotoxic activity against the C32 cell line with IC50 values of 11.2 and 13.6 μg/ml, respectively, and the AcOEt extract was the most active extract against the COR‐L23 cell line (IC50 of 20.9 μg/ml). Buchariol, a sesquiterpene obtained by biofractionation of the CH2Cl2 extract, exhibited a higher activity than the positive control vinblastine against the C32 and A549 cell lines (IC50 values of 2.1 and 12.6 μM , resp.). Interesting results were also obtained for naringenin, a flavonoid isolated from the AcOEt extract, which exhibited a strong cytotoxic activity against the C32, LNCaP, and COR‐L23 cell lines (IC50 values of 2.2, 7.7, and 33.4 μM , resp.), compared to vinblastine (IC50 values of 3.3, 32.2, 50.0 μM , resp.). None of the tested compounds affected the proliferation of skin fibroblasts (142BR), suggesting a selective activity against tumor cells.  相似文献   

15.
The dynamics of changes of spontaneous neuronal activity in primary hippocampal cell cultures developing on a multielectrode array (MEA) was studied using a multielectrode system. The intensification of bioelectrical activity, which depended on the duration of cultivation and stabilized by the second week in vitro, has been revealed. An increase in the concentration of glutamate (up to 2 μM) by addition into the incubation medium during the stabilization period resulted in a rapid and significant reorganization of the neuronal network activity pattern. On the other hand, inhibition and subsequent gradual recovery of the neuronal network activity immediately after the neurotransmitter addition at higher concentrations (50 or 100 μM) have been observed. At the same time, on some electrodes in the presence of high doses of glutamate (100 μM), a complete or partially irreversible suppression of the activity has been recorded. A significant reduction in spontaneous activity of the neuronal network, which was not accompanied by neuronal death, also occurred when copper ions (Cu2+) at a concentration of 10 μM were added into the incubation medium for 48 h. The obtained data demonstrate high biosensor sensitivity of the neuronal network cultured on the multielectrode array, which makes it possible to use it as an effective test system for studies of biologically active compounds.  相似文献   

16.
An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed.  相似文献   

17.
Amperometric and impedimetric biosensor for detecting trimethylamine (TMA) which represents good parameters for estimating fish freshness has been developed. The biosensor is based on a conducting polypyrrole substituted with ferrocenyl, where flavin-containing monooxygenase 3 (FMO3) enzyme was immobilised by covalent bonding. FMO3 catalyzes the monooxygenation TMA to trimethylamine N-oxide (TMO). For catalysis FMO require flavin adenine (FAD) as a prosthetic group, NADPH as a cofactor and molecular oxygen as cosubstrate. Ferrocenyl group substituted on the polypyrrole matrix will serve as redox probe for monitoring the response of the biosensor to TMA. The construction of the biosensor was characterized by FT-IR, cyclic voltammetry and impedance measurements. Detection is done through the analysis of the current of oxidation signal of the ferrocenyl groups and compared to the measurement of impedance related to the electrical properties of the layers. Amperometric and impedimetric response were measured as a function of TMA concentration in range of 0.4 μgm L(-1)-80 μgm L(-1) (6.5 μmol L(-1)-1.5 mmol L(-1)). Amperometric measurements show a decrease in current response which is in correlation with the increase of the charge transfer resistance demonstrated by impedance. Calibration curve obtained by impedance spectroscopy shows a high sensitivity with a dynamic range from (0.4 μgm L(-1) to 80 μgm L(-1)). We demonstrated, using ferrocene as redox probe for catalytic reaction of FMO3, that high sensitivity and dynamic range was obtained. The biosensor was stable during 16 days. The biosensor shows high selectivity and its sensitivity to TMA in real samples was evaluated using fish extract after deterioration during storage.  相似文献   

18.
The urease was immobilized onto nanoporous alumina membranes prepared by the two-step anodization method, and a novel piezoelectric urea sensing system with separated porous alumina/urease electrode has been developed through measuring the conductivity change of immobilized urease/urea reaction. The process of urease immobilization was optimized and the performance of the developed urea biosensor was evaluated. The obtained urea biosensor presented high-selectivity monitoring of urea, better reproducibility (S.D. = 0.02, n = 6), shorter response time (30 s), wider linear range (0.5 μM to 3 mM), lower detection limit (0.2 μM) and good long-term storage stability (with about 76% of the enzymatic activity retained after 30 days). The clinical analysis of the urea biosensor confirmed the feasibility of urea detection in urine samples.  相似文献   

19.
Cryopreservation is an important tool for the ex situ preservation of endangered plants. In this article, we describe the development of a cryopreservation protocol for orchid protocorms using the terrestrial Australian species Caladenia latifolia. Protocorms of C. latifolia generated asymbiotically each month on Murashige and Skoog (MS) medium containing 10 μM N6‐benzyladenine (BAP) provided explant sources for cryopreservation. Three size classes of protocorms were used as source explant material [small (S, ≤ 1 mm); medium (M, > 1 < 4 mm); large (L, ≥ 4 mm)] in combination with five desiccation treatments, i.e. 0, 0.4, 0.6, 0.8 and 1.0 M glycerol. After 2 days on desiccation medium, protocorms were treated with two cryoprotectant solutions (PVS2 and PVS4 at 0 °C for 15, 20, 25 and 30 min) before immersion in liquid nitrogen for 1 day. Protocorms were then removed from liquid nitrogen storage, warmed rapidly (in a 40 °C waterbath) and placed on three recovery media: half‐strength MS with 0.5 μM BAP, 0.5 μM 6‐furfurylaminopurine (kinetin) or 0.5 μM 1‐phenyl‐3‐(1,2,3‐thiadiazol‐5‐yl)‐urea (TDZ). Protocorms on recovery media were incubated at 25 °C under dark conditions and potential protocorm survival was observed at 60 and 90 days using a fluorescein diacetate (FDA) test for protocorm viability. Protocorm survival was correlated significantly with explant size. Large cryopreserved protocorms had the highest potential survival rate (> 90%) relative to small (< 10%) and medium (70–80%) protocorms. Different desiccation media treatments did not affect significantly the survival percentage (74–92%). Similarly, changing the cryoprotectant solution and time of incubation at 0 °C did not affect significantly potential protocorm survival (76–96%). Potential protocorm survival on various recovery media was not significantly different among treatments (88–100% survival). The study indicates that the cryopreservation of terrestrial orchid protocorms is technically feasible and provides a new and potentially highly beneficial tool in terrestrial orchid conservation where seed may be limited (because of species rarity), or as a means of storing and later utilizing the large surpluses of protocorms generated in propagation programmes. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

20.
We have developed a stable and selective ATP biosensor for long-term in vitro tissue monitoring. The electrode was fabricated by entrapping glucose oxidase (GOx) and hexokinase (HEX) in a poly-phenol film on a Pt microelectrode. The biosensor was stable to a fixed concentration of glucose for over 20 min and had a limit of detection of 9.9 ± 3.2 nM, with a sensitivity of 45.8 ± 1.22 pA μM(-1). Most significantly of all, the response on the ATP biosensor did not alter in the presence of 1mM ascorbic acid, 5 μM dopamine, 5 μM serotonin, 5 μM ADP and 5 μM AMP. The ATP biosensor was also shown to have excellent stability over 7 days, and showed only a 23.92 ± 3.55% loss in sensitivity. The ATP biosensor was utilised for the in vitro detection of ATP from gastrointestinal tissue. The ATP biosensor response was stable for 5h during in vitro recordings from ileum tissue. ATP release was shown to be greater from the mucosal surface in the ileum compared to the colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号