首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of the phlebotomine sand fly fauna was carried out in the Rio Preto State Park (Minas Gerais, Brazil) aiming to associate the presence of vector species with the risk of leishmaniasis transmission in that region. Sand flies were captured using HP light traps for four months from January to October 2013. The traps were exposed continuously for 40 h each month, in nine fixed sites. A total of 3129 sand flies were captured, belonging to 19 species. Lutzomyia evandroi (Costa Lima & Antunes 1936) was the predominant species (76.48%). The distribution of the phlebotomine sand flies and climatic factors (temperature, humidity, and rainfall) was evaluated. The summer was the season with higher occurrence of insects captured (82.4%). The presence of cutaneous and visceral vector species in park areas requires attention and regular monitoring of sand fly fauna in this conservation area to ensure the well-being of visitors and the regional ecotourism.  相似文献   

2.
The spatial and temporal distribution of Phlebotomus perniciosus (Diptera: Psychodidae) (Newstead, 1911), the sand fly vector of pathogens of public and animal health importance, was investigated in a high sand fly density rural area in Spain using light‐attraction and sticky‐interception traps. Traps were placed inside animal buildings and outside at increasing distance from animals. A total of 8506 sand flies were collected, 87% with light traps. Species frequency differed between trap types. The abundance of P. perniciosus decreased exponentially with increasing distance to animals and, while females were most common in the animal enclosure, males predominated in adjoining storage places. Increasing CO2 concentration had an additional positive effect on female abundance only. Both male and female density increased with rising temperature, and there was some indication that females were more active than males at higher relative humidity. The study confirms that P. perniciosus aggregates around animal premises, although male and female distributions differ and should be analysed separately to account for biological and behavioural differences. This provides further evidence that light traps offer an accurate estimation of the relative spatial and temporal abundance of P. perniciosus, conferring an added value for the study of this species and the risk of pathogen transmission.  相似文献   

3.
Most studies of the sand fly fauna in southeastern Brazil are conducted in the peridomiciliary environment of leishmaniasis endemic regions. Therefore, to increase the knowledge about diversity and richness of sand fly conservation areas, we describe here the sand fly fauna from the National Forest of Goytacazes (NFG), state of Espírito Santo, Brazil, and its surroundings areas. We also used sand fly fauna records from eight conservations units within the state of Espírito Santo to understand the similarity and relationships among them. The sand flies were simultaneously collected from June, 2008 to May, 2009 in two different environments: a preserved environment represented by the NFG and a modified environment represented by a peridomicile. To establish the similarity among the conservation units, we used a method very similar to parsimony analysis of endemism. We collected 2,466 sand fly specimens belonging to 13 species. Pressatia choti and Nyssomyia intermedia were the most abundant sand fly species. Ny. intermedia is a known vector of Leishmania braziliensis and epidemiological surveillance must be conducted in the area. We discuss aspects regarding the diversity of sand flies as well as the risk of transmission of Leishmania parasites in the area. We also provide for the first time a hypothesis of similarity relationships among conservation units within the state of Espírito Santo.  相似文献   

4.
Leishmaniasis is caused by protozoa of the genus Leishmania and transmitted by sand flies from mammalian reservoirs to humans. In recent years, a northward spread of L. infantum from highly endemic Mediterranean countries into previously non-endemic Central European areas has been suspected based on presumed sporadic cases of autochthonous leishmaniasis. Here, we investigated whether sand flies are prevalent in Bavaria in Southern Germany, a federal state in which autochthonous cases have previously been reported. Considering the present and future climatic conditions, we determined whether Bavaria is suitable for five sand fly species with assumed spreading tendencies towards Central Europe: Phlebotomus ariasi, P. neglectus, P. perfiliewi and P. perniciosus that are known vectors for Leishmania in Europe, and P. mascittii, a suspected but not proven vector. Within Bavaria we defined sampling regions based on their climatic suitability and their spatial distance to the sites of the autochthonous cases and/or to areas of reported sand fly detection in states adjacent to Bavaria. At 155 locations in 7 sampling regions, CDC light traps were placed during 38 nights in the summers of 2009 and 2010, resulting in 202 trap-nights. All traps were negative for sand flies. The results suggest that Bavaria is not yet endemic for sand flies, but do not exclude the possibility of sporadic cases of autochthonous human or zoonotic Leishmania infections. This study, which combined methodological approaches from different disciplines, serves as reference for future surveys and risk analyses of sand flies and leishmaniasis in so far non-endemic areas of Europe.  相似文献   

5.
We report the results of control measures introduced to reduce the density of sand flies in domiciles and subsequent monitoring of the effects of these measures on the sand fly populations. The most common species of sand flies were Nyssomyia neivai and Nyssomyia whitmani, which are naturally infected by Leishmania. A total of 268,382 (93.4%) sand flies were collected in ecotypes constructed with the aim of attracting sand flies, and 19,091 (6.6%) sand flies were collected in the ecotypes consisting of residences and other buildings. Human actions determine the growth or reduction of the sand fly population in human‐occupied space. Understanding the dynamics of sand flies in this environment can substantially contribute to the prevention of cutaneous leishmaniasis.  相似文献   

6.

Background

Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species.

Methodology/Principal Findings

Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins.

Conclusions

Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs.  相似文献   

7.
In southeast Amazon, Lutzomyia (Nyssomyia) flaviscutellata is the incriminated vector of Leishmania (Leishmania) amazonensis, a causative agent of zoonotic cutaneous leishmaniasis (CL). The optimal methods for surveying Lu. flaviscutellata were investigated in the Bragança region, northeast Pará State, Brazil, selected for the presence of Le. amazonensis. The performances of modified Disney traps and CDC light traps were compared in four ecotopes within and around four village transects during the wet and dry seasons. The physiological age of female sand flies was estimated and natural infection by flagellates was evaluated by dissection. Disney traps were better for detecting the presence of Lu. flaviscutellata, while CDC traps performed well for detecting Lutzomyia (Nyssomyia) antunesi, suspected vector of Leishmania lindenbergi. The former was more abundant during the wet season, when female flies were naturally infected with Le. amazonensis. These findings identified the environments of local transmission. In order to improve surveys of Lu. flaviscutellata as part of integrated epidemiological surveillance of CL, our recommendations include focusing vector surveys with Disney traps on forest fragments where people work, during the seasonal peak of the vector. Further field studies are required to make model‐based predictions of seasonal variations in the vectorial capacity of vector populations.  相似文献   

8.
The efficacy of three suction traps for trapping phlebotomine sand flies (Diptera: Psychodidae) was compared. Traps were baited with Co2 and used without any light source. CO2‐baited CDC traps were evaluated either in their standard downdraft orientation or inverted (iCDC traps). Mosquito Magnet‐X (MMX) counterflow geometry traps were tested in the updraft orientation only. Both updraft traps (iCDC and MMX) were deployed with their opening ~10 cm from the ground while the opening of the downdraft (CDC) trap was ~40 cm above ground. Comparisons were conducted in two arid locations where different sand fly species prevail. In the Jordan Valley, 3,367 sand flies were caught, 2,370 of which were females. The predominant species was Phlebotomus (Phlebotomus) papatasi, Scopoli 1786 (>99%). The updraft‐type traps iCDC and MMX caught an average of 118 and 67.1 sand flies per trap night, respectively. The CDC trap caught 32.9 sand flies on average per night, significantly less than the iCDC traps. In the Judean desert, traps were arranged in a 3×3 Latin square design. A total of 565 sand flies were caught, 345 of which were females. The predominant species was P. (Paraphlebotomus) sergenti Parrot 1917 (87%). The updraft traps iCDC and MMX caught an average of 25.6 and 17.9 sand flies per trap per night, respectively. The CDC trap caught 7.8 sand flies on average per night, significantly less than the iCDC traps. The female to male ratio was 1.7 on average for all trap types. In conclusion, updraft traps deployed with their opening close to the ground are clearly more effective for trapping sand flies than downdraft CDC traps in open habitats.  相似文献   

9.
Phlebotomine sand flies are haematophagous dipterans of primary medical importance. They represent the only proven vectors of leishmaniasis worldwide and are involved in the transmission of various other pathogens. Studying the ecology of sand flies is crucial to understand the epidemiology of leishmaniasis and further control this disease. A major limitation in this regard is that traditional morphological‐based methods for sand fly species identifications are time‐consuming and require taxonomic expertise. DNA metabarcoding holds great promise in overcoming this issue by allowing the identification of multiple species from a single bulk sample. Here, we assessed the reliability of a short insect metabarcode located in the mitochondrial 16S rRNA for the identification of Neotropical sand flies, and constructed a reference database for 40 species found in French Guiana. Then, we conducted a metabarcoding experiment on sand flies mixtures of known content and showed that the method allows an accurate identification of specimens in pools. Finally, we applied metabarcoding to field samples caught in a 1‐ha forest plot in French Guiana. Besides providing reliable molecular data for species‐level assignations of phlebotomine sand flies, our study proves the efficiency of metabarcoding based on the mitochondrial 16S rRNA for studying sand fly diversity from bulk samples. The application of this high‐throughput identification procedure to field samples can provide great opportunities for vector monitoring and eco‐epidemiological studies.  相似文献   

10.
The environmental changes resulting from the construction of hydroelectric dams may affect the fauna of insect vectors and consequently the epidemiology of the diseases they transmit. This work examined the mosquito and sand fly fauna in the area of the Aimorés hydroelectric power plant, analyzing the seasonal distribution and the degree of species synanthropy in different ecotopes. Between November, 2008 and September, 2009, entomological captures were performed with the help of HP light traps in the rural, urban, and forest areas of Aimorés, Ituêta, Resplendor, and Baixo Guandu counties. The fauna proved to be quite diversified. Twenty‐two species of mosquitoes and 11 species of sand flies were found. Culex quinquefasciatus was predominant among mosquitoes (76.7%), while Lutzomyia intermedia prevailed among sand flies (34.5%). Some of the captured species have medical interest. Supported by the high degree of synanthropy, those species reinforce the need for epidemiological surveillance.  相似文献   

11.
BackgroundDogs are the primary reservoir for human visceral leishmaniasis due to Leishmania infantum. Phlebotomine sand flies maintain zoonotic transmission of parasites between dogs and humans. A subset of dogs is infected transplacentally during gestation, but at what stage of the clinical spectrum vertically infected dogs contribute to the infected sand fly pool is unknown.Methodology/Principal findingsWe examined infectiousness of dogs vertically infected with L. infantum from multiple clinical states to the vector Lutzomyia longipalpis using xenodiagnosis and found that vertically infected dogs were infectious to sand flies at differing rates. Dogs with mild to moderate disease showed significantly higher transmission to the vector than dogs with subclinical or severe disease. We documented a substantial parasite burden in the skin of vertically infected dogs by RT-qPCR, despite these dogs not having received intradermal parasites via sand flies. There was a highly significant correlation between skin parasite burden at the feeding site and sand fly parasite uptake. This suggests dogs with high skin parasite burden contribute the most to the infected sand fly pool. Although skin parasite load and parasitemia correlated with one another, the average parasite number detected in skin was significantly higher compared to blood in matched subjects. Thus, dermal resident parasites were infectious to sand flies from dogs without detectable parasitemia.Conclusions/SignificanceTogether, our data implicate skin parasite burden and earlier clinical status as stronger indicators of outward transmission potential than blood parasite burden. Our studies of a population of dogs without vector transmission highlights the need to consider canine vertical transmission in surveillance and prevention strategies.  相似文献   

12.
An entomological study was conducted from June to September, 2010 in rural regions of Azarbayjan‐e‐sharqi, Azarbayjan‐e‐qarbi, and Ardabil provinces in northwestern Iran to determine sand fly fauna, diversity, and distribution in different habitats and altitudes using both sticky papers and light traps. Geographical distribution of sand flies and the similarity of populations in different locations were analyzed ecologically based on the Shannon‐Wiener Index and Jacard Coefficient, respectively. A total of 3,982 specimens was collected and sixteen species recorded. They belonged to the genera Phlebotomus [subgenus Phlebotomus (P. papatasi), Paraphlebotomus (P. sergenti, P. mongolensis, P. caucasicus, P. jacusieli), Larroussius (P. major s.l., P. tobbi, P. perfiliewi transcaucasicus, P. kandelakii) and Adlerius (P. halepensis, P. brevis, P. longiductus, P. balcanicus)], and Sergentomyia [subgenus Sergentomyia (S. sintoni, S. dentata and S. theodori)]. P. papatasi was the predominant species in all the locations except Bileh Savar, Macu, and Meshkin Shahr, followed by P. perfiliewi transcaucasicus and P. kandelakii. The latter species were caught from different habitats and altitudes with higher frequency than other species of the subgenus Larroussius. The lowest abundance belonged to P. jacusieli. The predominant species of subgenus Adlerius was P. halepensis. Data analysis showed that Meshkin Shahr and Bileh Savar had high and low diversities of sand fly distribution, respectively. Meshkin Shahr and Sarab districts had the highest similarity. Both are located in the foothills of Sabalan Mountain, with high diversity and richness.  相似文献   

13.

Background

Leishmaniasis remains a global health problem because of the substantial holes that remain in our understanding of sand fly ecology and the failure of traditional vector control methods. The specific larval food source is unknown for all but a few sand fly species, and this is particularly true for the vectors of Leishmania parasites. We provide methods and materials that could be used to understand, and ultimately break, the transmission cycle of zoonotic cutaneous leishmaniasis.

Methods and Findings

We demonstrated in laboratory studies that analysis of the stable carbon and nitrogen isotopes found naturally in plant and animal tissues was highly effective for linking adult sand flies with their larval diet, without having to locate or capture the sand fly larvae themselves. In a field trial, we also demonstrated using this technique that half of captured adult sand flies had fed as larvae on rodent feces. Through the identification of rodent feces as a sand fly larval habitat, we now know that rodent baits containing insecticides that have been shown in previous studies to pass into the rodents'' feces and kill sand fly larvae also could play a future role in sand fly control. In a second study we showed that rubidium incorporated into rodent baits could be used to demonstrate the level of bloodfeeding by sand flies on baited rodents, and that the elimination of sand flies that feed on rodents can be achieved using baits containing an insecticide that circulates in the blood of baited rodents.

Conclusions

Combined, the techniques described could help to identify larval food sources of other important vectors of the protozoa that cause visceral or dermal leishmaniasis. Unveiling aspects of the life cycles of sand flies that could be targeted with insecticides would guide future sand fly control programs for prevention of leishmaniasis.  相似文献   

14.
Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.  相似文献   

15.
Our objective was to study and evaluate the richness and diversity of Phlebotominae fauna in the Duas Bocas Biological Reserve (DBBR) in the state of Espírito Santo, in southeastern Brazil. Sand fly collections were carried out during four consecutive nights each month between August 2007 and July 2008 at DBBR by using CDC automatic light traps and an illuminated Shannon trap. Specific richness (S) and Shannon diversity index (H) was calculated for each trap. We collected 18,868 sand flies belonging to 29 species and 13 genera. Nyssomyia yuilli yuilli was the most abundant species followed by Psychodopygus ayrozai, Ps. hirsutus, Psathyromyia pascalei, and Ps. matosi. We recorded Brumptomyia cardosoi, Br. troglodytes, and Ps. geniculatus for the first time in the state of Espírito Santo. We discuss the differences in diversity and richness of the sand flies in both traps and in relation to other Brazilian localities and biomes. We also discuss the possibility of wild transmission of Leishmania in the DBBR and the influence of the sand fly species in leishmaniasis transmission to the adjacent areas of the reserve.  相似文献   

16.
The Old World screwworm fly (OWS), Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), is a myiasis‐causing blowfly of major concern for both animals and humans. Surveillance traps are used in several countries for early detection of incursions and to monitor control strategies. Examination of surveillance trap catches is time‐consuming and is complicated by the presence of morphologically similar flies that are difficult to differentiate from Ch. bezziana, especially when the condition of specimens is poor. A molecular‐based method to confirm or refute the presence of Ch. bezziana in trap catches would greatly simplify monitoring programmes. A species‐specific real‐time polymerase chain reaction (PCR) assay was designed to target the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) of Ch. bezziana. The assay uses both species‐specific primers and an OWS‐specific Taqman® MGB probe. Specificity was confirmed against morphologically similar and related Chrysomya and Cochliomyia species. An optimal extraction protocol was developed to process trap catches of up to 1000 flies and the assay is sensitive enough to detect one Ch. bezziana in a sample of 1000 non‐target species. Blind testing of 29 trap catches from Australia and Malaysia detected Ch. bezziana with 100% accuracy. The probability of detecting OWS in a trap catch of 50 000 flies when the OWS population prevalence is low (one in 1000 flies) is 63.6% for one extraction. For three extractions (3000 flies), the probability of detection increases to 95.5%. The real‐time PCR assay, used in conjunction with morphology, will greatly increase screening capabilities in surveillance areas where OWS prevalence is low.  相似文献   

17.
Understanding the relationship between geographic range limits and physiological traits of vector species is under increasing demand to predict the potential effects of global warming, not only in terms of geographic distribution of vector species but also in terms of the risk of disease transmission. Like in many other insect species, the geographical distribution of Chagas’ disease vectors is affected by temperature. This study examines, for the first time, the relationship between the limits of geographic distribution and thermo‐tolerance of the most important vectors of Chagas disease, Triatoma infestans in southern South America and Rhodnius prolixus in northern South America and Central America, to test the climatic variability hypothesis (CVH). We applied species distribution modeling (SDM) using bioclimatic variables and identified the most important limiting factors of the habitat suitability. Then, we measured and compared: the critical thermal maximum (CTmax) and the upper lethal temperature (ULT) (measured by thermo‐limit respirometry), chilled coma recovery (i.e. the time to recovery from 4 h at 0°C) and the critical thermal minimum (CTmin). For both species the minimum temperature of the coldest month was the most important abiotic factor restricting their geographic distribution. By taking a correlative approach and testing predictions with thermal tolerance traits, it was possible to explain the southern limit distribution for both species in terms of physiological constraints. The greater temperature tolerance of T. infestans compared to R. prolixus supports the CVH.  相似文献   

18.
The phlebotomine sand flies (Diptera: Psychodidae, Phlebotominae) are vectors of several infectious pathogens. The presence of a sand fly vector is considered to be a risk factor for the emergence of leishmaniasis in temperate Europe. Hence, the occurrence of phlebotomine sand flies and any changes in their distribution is important in determining the potential change in distribution of leishmaniasis in Europe. Therefore, published evidence for a changing distribution of the important phlebotomine sand fly vectors of leishmaniasis and phlebovirus infection in Europe is reviewed. This paper presents evidence of an increasing risk of establishment by sand fly species, especially for the Atlantic Coast and inland parts of Germany, Switzerland, and Austria. In addition to detection in potentially appropriate areas, the findings show areas of potential future establishment of the species. The most important and urgent necessity within the community of entomologists working on phlebotomines is the need to record the extremes of distribution of each species and obtain data on their regional presence/absence along with increased sharing of the data throughout European projects.  相似文献   

19.
The effects of food deprivation, age, and mating status on the responses of three fruit fly species, Ceratitis cosyra (Walker), Ceratitits fasciventris (Bezzi), and Ceratitits capitata (Wiedemann) (Diptera: Tephritidae) to natural and artificial sugar and protein food sources were investigated. Natural food sources included guava [Psidium guajava L. (Myrtaceae)] juice (a common host fruit for all three fruit fly species) and bird faeces (farm chicken). Artificial food sources included molasses (obtained from a local sugar factory) and a locally produced protein bait (the International Centre of Insect Physiology and Ecology yeast). In all species studied, sugar deprivation of immature (1–2‐day‐old) male and female flies increased their response to food odours, although it did not change their preference for the type of odour (protein or sugar). Protein deprivation of mature (14–17‐day‐old) male and female flies also increased their response to food odours compared to protein‐fed flies. Protein‐deprived females were highly attracted to odours from protein sources in particular. Odours from natural food sources, guava juice, and chicken faeces, were more attractive to food‐deprived flies than were odours from artificial sugar and protein sources. Attraction to food odours increased significantly with increasing age for protein‐deprived females of all species. For males and females of all species, nutritional state was a more important factor than mating status in influencing responses of flies to food odours. Practical implications of these findings are discussed in terms of strategies for fruit fly control using food baits.  相似文献   

20.
Many taxa of Nearctic origin have diversified in the subtropical highlands of Mexico. In particular, flies in the genus Rhagoletis have undergone episodes of isolation and gene flow during Pleistocene glaciations and post‐glacial times that have produced lineage differentiation and reproductive isolation. To reach a better understanding of the phylogeography of the genus Rhagoletis, a host plant survey of the walnut‐infesting Rhagoletis suavis species group was conducted across sixteen states comprising 34 different collecting sites in Mexico over a 9‐year period. Five species of Juglans were found to be infested by three species of walnut‐attacking Rhagoletis flies. Several species of parasitoids were also recovered from collections, but in contrast to their walnut fly hosts, they revealed little evidence for host or geographic subdivision. There was no consistent difference in mean eclosion time between walnut fly species or populations associated with different host walnuts in Mexico, unlike the case for other Rhagoletis species, in which allochronic isolation arising from variation in diapause timing is a major ecological adaptation, reproductively isolating flies. We compare the distribution of R. suavis flies in Mexico with those of other Rhagoletis species attacking hawthorns and cherries, and discuss its implications for population divergence and speciation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 765–779.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号