首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Lipoprotein lipase enhances the cholesteryl ester transfer protein (CETP)-mediated transfer of cholesteryl esters from plasma high density lipoproteins (HDL) to very low density lipoproteins (VLDL). In time course studies the stimulation of cholesteryl ester transfer by bovine milk lipase was correlated with accumulation of fatty acids in VLDL remnants. As the amount of fatty acid-poor albumin in the incubations was increased, there was decreased accumulation of fatty acids in VLDL remnants and a parallel decrease in the stimulation of cholesteryl ester transfer by lipolysis. Addition of sodium oleate to VLDL and albumin resulted in stimulation of the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. The stimulation of transfer of cholesteryl esters into previously lipolyzed VLDL was abolished by lowering the pH from 7.5 to 6.0, consistent with a role of lipoprotein ionized fatty acids. CETP-mediated cholesteryl ester transfer from HDL to VLDL was also augmented by phosholipase A2 and by a bacterial lipase which lacked phospholipase activity. When VLDL and HDL were re-isolated after a lipolysis experiment, both lipoproteins stimulated CETP activity. Postlipolysis VLDL and HDL bound much more CETP than native VLDL or HDL. Lipolysis of apoprotein-free phospholipid/triglyceride emulsions also resulted in enhanced binding of CETP to the emulsion particles. Incubation conditions which abolished the enhanced cholesteryl ester transfer into VLDL remnants reduced binding of CETP to remnants, emulsions, and HDL. In conclusion, the enhanced CETP-mediated transfer of cholesteryl esters from HDL to VLDL during lipolysis is related to the accumulation of products of lipolysis, especially fatty acids, in the lipoproteins. Lipids accumulating in VLDL remnants and HDL as a result of lipolysis may augment binding of CETP to these lipoproteins, leading to more efficient transfer of cholesteryl esters from HDL to VLDL.  相似文献   

2.
We have studied the cholesteryl ester transfer between HDL and VLDL in cyclophosphamide-treated rabbits, in order to explain the abnormal cholesteryl ester partition between these two lipoprotein classes. The hypertriglyceridemia caused by treatment with the drug was associated with cholesteryl ester- and triacylglycerol-rich VLDL and with HDL poor in esterified cholesterol but relatively enriched in triacylglycerol. These two lipoprotein classes were characterized by their chemical composition and by gel filtration chromatography. VLDL particles were slightly larger in size, compared with controls. Different transfer combinations were envisaged between these abnormal lipoproteins and control ones. The transfer study involved the plasma fraction of d greater than 1.21 g/ml containing the cholesteryl ester transfer protein (CETP). It appeared that the chemical composition of lipoproteins was responsible for the level of cholesteryl ester transfer between lipoproteins. Actually, when the cholesteryl ester acceptor lipoproteins (VLDL) were enriched in triacylglycerol, the transfer was enhanced. Therefore, the effect of lipolysis on the transfer has also been explored. Lipoprotein lipase seemed to enhance the transfer of cholesteryl ester from HDL to VLDL when these lipoproteins were normal, but an important decline was obtained when triacylglycerol-rich VLDL were lipolyzed. This study defines the relationship between lipoprotein chemical composition and transfer activity of cholesteryl ester from HDL to VLDL.  相似文献   

3.
These studies were undertaken to examine the effects of lipoprotein lipase (LPL) and cholesteryl ester transfer protein (CETP) on the transfer of cholesteryl esters from high density lipoproteins (HDL) to very low density lipoproteins (VLDL). Human or rat VLDL was incubated with human HDL in the presence of either partially purified CETP, bovine milk LPL or CETP plus LPL. CETP stimulated both isotopic and mass transfer of cholesteryl esters from HDL into VLDL. LPL caused only slight stimulation of cholesteryl ester transfer. However, when CETP and LPL were both present, the transfer of cholesteryl esters from HDL into VLDL remnants was enhanced 2- to 8-fold, compared to the effects of CETP alone. The synergistic effects of CETP and LPL on cholesteryl ester transfer were more pronounced at higher VLDL/HDL ratios and increased with increasing amounts of CETP. In time course studies the stimulation of cholesteryl ester transfer activity occurred during active triglyceride hydrolysis. When lipolysis was inhibited by incubating LPL with either 1 M NaCl or 2 mM diethylparanitrophenyl phosphate, the synergism of CETP and LPL was reduced or abolished, and LPL alone did not stimulate cholesteryl ester transfer. These experiments show that LPL enhances the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. This property of LPL is related to lipolysis.  相似文献   

4.
Purified human cholesteryl ester transfer protein (CETP) has been found, under certain conditions, to promote changes to the particle size distribution of high-density lipoproteins (HDL) which are comparable to those attributed to a putative HDL conversion factor. When preparations of either the conversion factor or CETP are incubated with HDL3 in the presence of very-low-density lipoproteins (VLDL) or low-density lipoproteins (LDL), the HDL3 are converted to very small particles. The possibility that the conversion factor may be identical to CETP was supported by two observations: (1) CETP was found to be the main protein constituent of preparations of the conversion factor and (2) an antibody to CETP not only abolished the cholesteryl ester transfer activity of the conversion factor preparations but also inhibited changes to HDL particle size. In additional studies, the changes to HDL particle size promoted by purified CETP were inhibited by the presence of fatty-acid-free bovine serum albumin; by contrast, albumin had no effect on the cholesteryl ester transfer activity of the CETP. The possibility that albumin may inhibit changes to HDL particle size by removing unesterified fatty acids from either the lipoproteins or CETP was tested by adding exogenous unesterified fatty acids to the incubations. In incubations of HDL with either VLDL or LDL, sodium oleate had no effect on HDL particle size. However, when CETP was also present in the incubation mixtures the capacity of CETP to reduce the particle size of HDL was greatly enhanced by the addition of sodium oleate. It is concluded that the changes in HDL particle size which were previously attributed to an HDL conversion factor can be explained in terms of the interacting effects of CETP and unesterified fatty acids.  相似文献   

5.
Studies have been performed to determine the involvement of very-low-density lipoproteins (VLDL), cholesteryl ester transfer protein (CETP) and hepatic lipase (HL) in the formation of very small HDL particles. Human whole plasma has been incubated for 6 h at 37 degrees C in the absence and in the presence of various additions. There was minimal formation of very small HDL in incubations of non-supplemented plasma or in plasma supplemented with either VLDL, CETP or HL alone; nor were small HDL prominent after incubating plasma supplemented with mixtures of VLDL plus CETP, VLDL plus HL or CETP plus HL. By contrast, when plasma was supplemented with a mixture containing all three of VLDL, CETP and HL, incubation resulted in an almost total conversion of the HDL fraction into very small particles of radius 3.7 nm. The appearance of these very small HDL was independent of activity of lecithin: cholesterol acyltransferase. It was, however, dependent on both duration of incubation and on the concentrations of the added VLDL, CETP and HL. The effects of these incubations was also assessed in terms of changes to the concentration and distribution of lipid constituents across the lipoprotein spectrum. It was found that not only did lipid transfers and HL exhibit a marked synergism in promoting a reduction in HDL particle size but also that HL, although deficient in intrinsic transfer activity, enhanced the CETP-mediated transfers of cholesteryl esters from HDL to other lipoprotein fractions.  相似文献   

6.
Site-specific changes in the amino acid composition of human cholesteryl ester transfer protein (CETP) modify its preference for triglyceride (TG) versus cholesteryl ester (CE) as substrate. CETP homologs are found in many species but little is known about their activity. Here, we examined the lipid transfer properties of CETP species with 80–96% amino acid identity to human CETP. TG/CE transfer ratios for recombinant rabbit, monkey, and hamster CETPs were 1.40-, 1.44-, and 6.08-fold higher than human CETP, respectively. In transfer assays between VLDL and HDL, net transfers of CE into VLDL by human and monkey CETPs were offset by equimolar net transfers of TG toward HDL. For hamster CETP this process was not equimolar but resulted in a net flow of lipid (TG) into HDL. When assayed for the ability to transfer lipid to an acceptor particle lacking CE and TG, monkey and hamster CETPs were most effective, although all CETP species were able to promote this one-way movement of neutral lipid. We conclude that CETPs from human, monkey, rabbit, and hamster are not functionally equivalent. Most unique was hamster CETP, which strongly prefers TG as a substrate and promotes the net flow of lipid from VLDL to HDL.  相似文献   

7.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

8.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

9.
Recombinant high density lipoprotein (rHDL) particles were prepared by cosonication of purified lipids and human apoproteins and incubated with partly purified cholesteryl ester transfer protein (CETP) and low density lipoprotein (LDL) containing [3H]cholesteryl ester. Increasing the triglyceride content relative to cholesteryl ester in rHDL significantly decreased the ability of the particles to accept cholesteryl esters transferred by CETP. Kinetic analysis of the data was performed to numerically define the maximum velocity of lipid transfer, Tmax, and the HDL concentration required for half maximal velocity, KH. Increases in rHDL-triglyceride content were shown to result in a significant reduction in the Tmax without a major change in KH. When the free cholesterol content was increased relative to phospholipid, the ability of the particles to accept cholesteryl esters was also decreased in a similar manner. Conversely, rHDL prepared from purified apoprotein A-I, A-II, or mixtures of both, had significantly elevated Tmax and KH values for their interaction with CETP. The results suggest that increases in triglyceride or free cholesterol content of an rHDL particle decrease the catalytic ability of CETP by noncompetitive inhibition. In addition, some component(s) of HDL apoproteins, other than A-I or A-II, were shown to uncompetitively inhibit the activity of CETP, by modifying both Tmax and the KH for the reaction. This study has shown that altered HDL composition may have marked effects on the transfer and equilibration of cholesteryl esters within the HDL pool.  相似文献   

10.
Cholesteryl ester transfer protein (CETP) shuttles various lipids between lipoproteins, resulting in the net transfer of cholesteryl esters from atheroprotective, high-density lipoproteins (HDL) to atherogenic, lower-density species. Inhibition of CETP raises HDL cholesterol and may potentially be used to treat cardiovascular disease. Here we describe the structure of CETP at 2.2-A resolution, revealing a 60-A-long tunnel filled with two hydrophobic cholesteryl esters and plugged by an amphiphilic phosphatidylcholine at each end. The two tunnel openings are large enough to allow lipid access, which is aided by a flexible helix and possibly also by a mobile flap. The curvature of the concave surface of CETP matches the radius of curvature of HDL particles, and potential conformational changes may occur to accommodate larger lipoprotein particles. Point mutations blocking the middle of the tunnel abolish lipid-transfer activities, suggesting that neutral lipids pass through this continuous tunnel.  相似文献   

11.
As most of peripheral cells are not able to catabolize cholesterol, the transport of cholesterol excess from peripheral tissues back to the liver, namely "reverse cholesterol transport", is the only way by which cholesterol homeostasis is maintained in vivo. Reverse cholesterol transport pathway can be divided in three major steps: 1) uptake of cellular cholesterol by the high density lipoproteins (HDL), 2) esterification of HDL cholesterol by the lecithin: cholesterol acyltransferase and 3) captation of HDL cholesteryl esters by the liver where cholesterol can be metabolized and excreted in the bile. In several species, including man, cholesteryl esters in HDL can also follow an alternative pathway which consists in their transfer from HDL to very low density (VLDL) and low density (LDL) lipoproteins. The transfer of cholesteryl esters to LDL, catalyzed by the Cholesteryl Ester Transfer Protein (CETP), might affect either favorably or unfavorably the reverse cholesterol transport pathway, depending on whether LDL are finally taken up by the liver or by peripheral tissues, respectively. In order to understand precisely the implication of CETP in reverse cholesterol transport, it is essential to determine its role in HDL metabolism, to know the potential regulation of its activity and to identify the mechanism by which it interacts with lipoprotein substrates. Results from recent studies have demonstrated that CETP can promote the size redistribution of HDL particles. This may be an important process in the reverse cholesterol transport pathway as HDL particles with various sizes have been shown to differ in their ability to promote cholesterol efflux from peripheral cells and to interact with lecithin: cholesterol acyltransferase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Two lipid transfer proteins are active in human plasma, cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP). Mice by nature do not express CETP. Additional inactivation of the PLTP gene resulted in reduced secretion of VLDL and subsequently in decreased susceptibility to diet-induced atherosclerosis. The aim of this study is to assess possible effects of differences in PLTP expression on VLDL secretion in mice that are proficient in CETP and PLTP. We compared human CETP transgenic (huCETPtg) mice with mice expressing both human lipid transfer proteins (huCETPtg/huPLTPtg). Plasma cholesterol in huCETPtg mice was 1.5-fold higher compared with huCETPtg/huPLTPtg mice (P < 0.001). This difference was mostly due to a lower HDL level in the huCETPtg/huPLTPtg mice, which subsequently could lead to the somewhat decreased CETP activity and concentration that was found in huCETPtg/huPLTPtg mice (P < 0.05). PLTP activity was 2.8-fold increased in these animals (P < 0.001). The human PLTP concentration was 5 microg/ml. Moderate overexpression of PLTP resulted in a 1.5-fold higher VLDL secretion compared with huCETPtg mice (P < 0.05). The composition of nascent VLDL was similar in both strains. These results indicate that elevated PLTP activity in huCETPtg mice results in an increase in VLDL secretion. In addition, PLTP overexpression decreases plasma HDL cholesterol as well as CETP.  相似文献   

13.
The net transfer of core lipids between lipoproteins is facilitated by cholesteryl ester transfer protein (CETP). We have recently documented CETP deficiency in a family with hyperalphalipoproteinemia, due to a CETP gene splicing defect. The purpose of the present study was to characterize the plasma lipoproteins within the low density lipoprotein (LDL) density range and also the cholesteryl ester fatty acid distribution amongst lipoproteins in CETP-deficient subjects. In CETP deficiency, the conventional LDL density range contained both an apoE-rich enlarged high density lipoprotein (HDL) (resembling HDLc), and also apoB-containing lipoproteins. Native gradient gel electrophoresis revealed clear speciation of LDL subclasses, including a distinct population larger in size than normal LDL. Anti-apoB affinity-purified LDL from the CETP-deficient subjects were shown to contain an elevated triglyceride to cholesteryl ester ratio, and also a high ratio of cholesteryl oleate to cholesteryl linoleate, compared to their own HDL or to LDL from normal subjects. Addition of purified CETP to CETP-deficient plasma results in equilibration of very low density lipoprotein (VLDL) cholesteryl esters with those of HDL. These data suggest that, in CETP-deficient humans, the cholesteryl esters of VLDL and its catabolic product, LDL, originate predominantly from intracellular acyl-CoA:cholesterol acyltransferase (ACAT). The CETP plays a role in the normal formation of LDL, removing triglyceride and transferring LCAT-derived cholesteryl esters into LDL precursors.  相似文献   

14.
Human plasma cholesteryl ester transfer protein (CETP) transports cholesteryl ester from the antiatherogenic high-density lipoproteins (HDL) to the proatherogenic low-density and very low-density lipoproteins (LDL and VLDL). Inhibition of CETP has been shown to raise human plasma HDL cholesterol (HDL-C) levels and is potentially a novel approach for the prevention of cardiovascular diseases. Here, we report the crystal structures of CETP in complex with torcetrapib, a CETP inhibitor that has been tested in phase 3 clinical trials, and compound 2, an analog from a structurally distinct inhibitor series. In both crystal structures, the inhibitors are buried deeply within the protein, shifting the bound cholesteryl ester in the N-terminal pocket of the long hydrophobic tunnel and displacing the phospholipid from that pocket. The lipids in the C-terminal pocket of the hydrophobic tunnel remain unchanged. The inhibitors are positioned near the narrowing neck of the hydrophobic tunnel of CETP and thus block the connection between the N- and C-terminal pockets. These structures illuminate the unusual inhibition mechanism of these compounds and support the tunnel mechanism for neutral lipid transfer by CETP. These highly lipophilic inhibitors bind mainly through extensive hydrophobic interactions with the protein and the shifted cholesteryl ester molecule. However, polar residues, such as Ser-230 and His-232, are also found in the inhibitor binding site. An enhanced understanding of the inhibitor binding site may provide opportunities to design novel CETP inhibitors possessing more drug-like physical properties, distinct modes of action, or alternative pharmacological profiles.  相似文献   

15.
We examined whether postprandial (PP) chylomicrons (CMs) can serve as vehicles for transporting cholesterol from endogenous cholesterol-rich lipoprotein (LDL+HDL) fractions and cell membranes to the liver via lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. During incubation of fresh fasting and PP plasma containing [(3)H]cholesteryl ester (CE)-labeled LDL+HDL, both CMs and VLDL served as acceptors of [(3)H]CE or cholesterol from LDL+HDL. The presence of CMs in PP plasma suppressed the ability of VLDL to accept [(3)H]CE from LDL+HDL. In reconstituted plasma containing an equivalent amount of triglycerides from isolated VLDL or CMs, a CM particle was about 40 times more potent than a VLDL particle in accepting [(3)H]CE or cholesterol from LDL+HDLs. When incubated with red blood cells (RBCs) as a source for cell membrane cholesterol, the cholesterol content of CMs, VLDL, LDL, and HDL in PP plasma increased by 485%, 74%, 13%, and 30%, respectively, via LCAT and CETP activities. The presence of CMs in plasma suppressed the ability of endogenous lipoproteins to accept cholesterol from RBCs. Our data suggest that PP CMs may play an important role in promoting reverse cholesterol transport in vivo by serving as the preferred ultimate vehicle for transporting cholesterol released from cell membranes to the liver via LCAT and CETP.  相似文献   

16.
We previously determined that hamster cholesteryl ester transfer protein (CETP), unlike human CETP, promotes a novel one-way transfer of TG from VLDL to HDL, causing HDL to gain lipid. We hypothesize that this nonreciprocal lipid transfer activity arises from the usually high TG/cholesteryl ester (CE) substrate preference of hamster CETP. Consistent with this, we report here that ∼25% of the total lipid transfer promoted by the human Q199A CETP mutant, which prefers TG as substrate, is nonreciprocal transfer. Other human CETP mutants with TG/CE substrate preferences higher or lower than wild-type also possess nonreciprocal lipid transfer activity. Mutants with high TG/CE substrate preference promote the nonreciprocal lipid transfer of TG from VLDL to HDL, but mutants with low TG/CE substrate preference promote the nonreciprocal lipid transfer of CE, not TG, and this lipid flow is in the reverse direction (from HDL to VLDL). Anti-CETP TP2 antibody alters the TG/CE substrate preference of CETP and also changes the extent of nonreciprocal lipid transfer, showing the potential for externally acting agents to modify the transfer properties of CETP. Overall, these data show that the lipid transfer properties of CETP can be manipulated. Function-altering pharmaceuticals may offer a novel approach to modify CETP activity and achieve specific modifications in lipoprotein metabolism.  相似文献   

17.
Apolipoprotein (apo)A-II is a major high density lipoprotein (HDL) protein; however, its role in lipoprotein metabolism is largely unknown. Transgenic (Tg) mice that overexpress human apoA-II present functional lecithin: cholesterol acyltransferase deficiency, HDL deficiency, hypertriglyceridemia and, when fed an atherogenic diet, increased non-HDL cholesterol and increased susceptibility to atherosclerosis. In contrast to humans, mice do not present cholesteryl ester transfer protein (CETP) activity in plasma. To study the in vivo interaction of these two proteins, we crossbred human apoA-II and CETP-Tg mice. CETP x apoA-II-Tg mice fed an atherogenic diet, compared with CETP-Tg mice presented a 2-fold decrease in HDL cholesterol and a quantitatively similar increase in total plasma cholesterol and percentage of free cholesterol, non-HDL cholesterol, and free fatty acids, together with a remarkable 112-fold increase in plasma triglycerides. Plasma triglycerides in CETP x apoA-II-Tg mice were mainly associated with very low density lipoproteins (VLDL), which were also enriched in protein content, and resulted from a combination of higher production rate compared with both of their progenitors and non-Tg control mice, and decreased catabolism compared only with CETP-Tg mice. These results show CETP x apoA-II-Tg mice to be a good model with which to study mechanisms leading to VLDL overproduction and suggest that CETP and, in particular apoA-II, may play a role in the regulation of VLDL metabolism.  相似文献   

18.
CETP activity, measured as transfer of cholesteryl ester from exogenous HDL to exogenous VLDL and LDL, reflecting CETP mass as determined by ELISA, was documented in three groups of St. Kitts vervet monkeys fed diets enriched in saturated (Sat), monounsaturated (Mono), or n-6 polyunsaturated (Poly) fatty acids. CETP activity was not different when comparing the three dietary fats. However, CETP activity was significantly higher when cholesterol was added to each of the diets. Significant positive associations between CETP activity and VLDL and LDL cholesterol concentrations were found whereas significant negative associations were seen between CETP activity and HDL cholesterol in each of the diet groups. The strength of these associations was highest in the Sat group. Cholesteryl ester (CE) fatty acid composition of lipoproteins varied widely among diet groups, with the more polyunsaturated CE of the Poly group being associated with a higher rate of CE transfer to endogenous acceptor apolipoprotein B-containing lipoproteins. Finally, only the Sat diet group showed significant positive correlations of CETP activity with LDL particle diameter (r = 0.76), cholesteryl ester percentage (r = 0.67), and a strong negative correlation (r = -0.86) with LDL receptor function, estimated as the difference between native and methylated LDL turnover rates. We speculate that strong associations between CETP and LDL metabolism may explain, at least in part, the increased atherogenicity of dietary saturated fat.  相似文献   

19.
Plasma cholesteryl ester transfer protein (CETP) has a profound effect on neutral lipid transfers between HDLs and apolipoprotein B (apoB)-containing lipoproteins when it is expressed in combination with human apoA-I in HuAI/CETP transgenic (Tg) rodents. In the present study, human apoA-I-mediated lipoprotein changes in HuAI/CETPTg rats are characterized by 3- to 5-fold increments in the apoB-containing lipoprotein-to-HDL cholesterol ratio, and in the cholesteryl ester-to-triglyceride ratio in apoB-containing lipoproteins. These changes occur despite no change in plasma CETP concentration in HuAI/CETPTg rats, as compared with CETPTg rats. A number of HDL apolipoproteins, including rat apoA-I and rat apoC-I are removed from the HDL surface as a result of human apoA-I overexpression. Rat apoC-I, which is known to constitute a potent inhibitor of CETP, accounts for approximately two-thirds of CETP inhibitory activity in HDL from wild-type rats, and the remainder is carried by other HDL-bound apolipoprotein inhibitors. It is concluded that human apoA-I overexpression modifies HDL particles in a way that suppresses their ability to inhibit CETP. An apoC-I decrease in HDL of HuAI/CETPTg rats contributes chiefly to the loss of the CETP-inhibitory potential that is normally associated with wild-type HDL.  相似文献   

20.
In order to investigate the direct effect of cholesteryl ester transfer protein (CETP) on the structure and composition of HDL in vivo, simian CETP was expressed in Fisher rat that spontaneously displays high plasma levels of HDL1. In the new CETPTg rat line, the production of active CETP by the liver induced a significant 48% decrease in plasma HDL cholesterol, resulting in a 34% decrease in total cholesterol level (P < 0.01 in both cases). Among the various plasma HDL subpopulations, the largest HDL were those mostly affected by CETP, with a 74% decrease in HDL1 versus a significantly weaker 38% decrease in smaller HDL2 (P < 0.0001). Apolipoprotein E (apoE)-containing HDL1 were selectively affected by CETP expression, whereas apoA content of HDL remained unmodified. The reduction in the apoE content of serum HDL observed in CETPTg rats compared to controls (53%, P < 0.02) suggests that apoE in HDL may constitute in vivo a major determinant of their ability to interact with CETP. These results bring new insight into the lack of HDL1 in plasma from CETP-deficient heterozygotes despite their substantial 50% decrease in CETP activity. In addition, they indicate that HDL1 constitute reliable and practicable sensors of very low plasma CETP activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号