首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海洋生物多样性甚高, 但却饱受人为的破坏及干扰。目前全球最大的含点位数据的在线开放性数据库是海洋生物地理信息系统(OBIS), 共约12万种3,700万笔资料; 另一个较大的数据库世界海洋生物物种登录(WoRMS)已收集全球22万种海洋生物之物种分类信息。除此之外, 以海洋生物为主的单一类群的数据库只有鱼库(FishBase)、藻库(AlgaeBase)及世界六放珊瑚(Hexacorallians of the World)3个。跨类群及跨陆海域的全球性物种数据库则甚多, 如网络生命大百科(EOL)、全球生物物种名录(CoL)、整合分类信息系统(ITIS)、维基物种(Wikispecies)、ETI生物信息(ETI Bioinformatics)、生命条形码(BOL)、基因库(GenBank)、生物多样性历史文献图书馆(BHL)、海洋生物库(SeaLifeBase); 海洋物种鉴定入口网(Marine Species Identification Portal)、FAO渔业及水产养殖概要(FAO Fisheries and Aquaculture Fact Sheets)等可查询以分类或物种解说为主的数据库。全球生物多样性信息网络(GBIF)、发现生命(Discover Life)、水生物图库(AquaMaps)等则是以生态分布数据为主, 且可作地理分布图并提供下载功能, 甚至于可以改变水温、盐度等环境因子的参数值, 利用既定的模式作参数改变后之物种分布预测。谷歌地球(Google Earth)及国家地理(National Geographic)网站中的海洋子网页, 以及珊瑚礁库(ReefBase)等官方机构或非政府组织之网站, 则大多以海洋保育的教育倡导为主, 所提供的信息及素材可谓包罗万象, 令人目不暇给。更令用户感到方便的是上述许多网站或数据库彼此间均已可交互链接及查询。另外, 属于搜索引擎的谷歌图片(Google Images)与谷歌学术(Google Scholar)透过海洋生物数据库所提供的直接链接, 在充实物种生态图片与学术论文上亦发挥极大帮助, 让用户获得丰富多样的信息。为了保育之目的, 生物多样性数据库除了整合与公开分享外, 还应鼓励并推荐大家来使用。本文乃举Rainer Froese在巴黎演讲之内容为例, 介绍如何使用海洋生物多样性之数据来预测气候变迁对鱼类分布的影响。最后就中国大陆与台湾目前海洋生物多样性数据库的现况、两岸的合作及如何与国际接轨作介绍。  相似文献   

2.
The remote and hostile Southern Ocean is home to a diverse and rich community of life that thrives in an environment dominated by glaciations and strong currents. Marine biological studies in the region date back to the nineteenth century, but despite this long history of research, relatively little is known about the complex interactions between the highly seasonal physical environment and the species that inhabit the Southern Ocean. Oceanographically, the Southern Ocean is a major driver of global ocean circulation and plays a vital role in interacting with the deep water circulation in each of the Pacific, Atlantic, and Indian oceans. The Census of Antarctic Marine Life and the Scientific Committee on Antarctic Research Marine Biodiversity Information Network (SCAR-MarBIN) have strived to coordinate and unify the available scientific expertise and biodiversity data to improve our understanding of Southern Ocean biodiversity. Taxonomic lists for all marine species have been compiled to form the Register of Antarctic Marine Species, which currently includes over 8,200 species. SCAR-MarBIN has brought together over 1 million distribution records for Southern Ocean species, forming a baseline against which future change can be judged. The sample locations and numbers of known species from different regions were mapped and the depth distributions of benthic samples plotted. Our knowledge of the biodiversity of the Southern Ocean is largely determined by the relative inaccessibility of the region. Benthic sampling is largely restricted to the shelf; little is known about the fauna of the deep sea. The location of scientific bases heavily influences the distribution pattern of sample and observation data, and the logistical supply routes are the focus of much of the at-sea and pelagic work. Taxa such as mollusks and echinoderms are well represented within existing datasets with high numbers of georeferenced records. Other taxa, including the species-rich nematodes, are represented by just a handful of digital records.  相似文献   

3.
菲律宾海邻近全球生物多样性和进化的中心, 分布着多种重要生物资源。了解本区生物多样性及受威胁物种的分布特征可对掌握其生物多样性现状, 以及未来实施有效的生物多样性保护管理策略提供重要依据。本文利用海洋生物地理信息系统(Ocean Biogeographic Information System, OBIS)数据库, 并参考世界自然保护联盟濒危物种红色名录(IUCN Redlist)的物种濒危程度评估结果, 构建了菲律宾海脊索动物生物多样性和受威胁物种数据库, 结合海洋生态因子特征对该海区脊索动物的物种多样性和不同等级受威胁物种的数量空间分布格局进行了初步分析, 并对脊索动物不同分类阶元生物多样性与生态因子的关系进行了相关性分析。结果表明, 本区海洋脊索动物门已报道11纲56目320科1,171属2,876种。其中在菲律宾海的边缘区域, 特别是菲律宾群岛、台湾岛、日本群岛、马里亚纳群岛及中央的九州-帕劳海脊附近海域, 生物多样性水平相对较高, 而中央海盆区的生物多样性较低。本海域鱼类生物多样性尤其丰富, 共计4纲45目292科1,105属2,768种, 在物种水平上占本区脊索动物物种数的96%。各分类阶元水平的多样性与初级生产力呈显著正相关, 而与水深呈显著负相关。本区脊索动物门受威胁物种共计54种, 其中极危3种、濒危5种、易危22种、近危24种, 分别约占全区脊索动物总种数的0.10%、0.17%、0.76%、0.83%。与本区生物多样性分布格局相似, 受威胁物种多分布于菲律宾海边缘区域, 在中央海脊和深水盆地区域分布较少。本研究表明, 对菲律宾海脊索动物特别是受威胁物种的保护应当以边缘区域优先; 但考虑到当前菲律宾海深海区域生物多样性数据的不足, 也应加强对中央海脊和深水盆地等区域的生物多样性普查。  相似文献   

4.
Aim To analyse the worldwide distribution patterns of hagfishes using panbiogeographical track analysis, and to attempt to correlate these patterns with the tectonic history of the ocean basins. Location Atlantic and Pacific oceans. Method The distributions of 47 out of 70 species of hagfish (in the genera Eptatretus, Myxine, Nemamyxine, Neomyxine, and Paramyxine) were studied by the panbiogeographical method of track analysis. The analysis was performed using distributional data obtained from the collections included in the Ocean Biogeographic Information System (OBIS, http://www.iobis.org ) and FishBase ( http://www.fishbase.org ), with additional records from the literature. Individual tracks were obtained for each species by plotting localities and connecting them by minimum‐spanning trees. Generalized tracks were determined from the spatial overlap between individual tracks. Results Six generalized tracks were found: in the Gulf of Mexico, Caribbean Sea, South‐eastern Atlantic, Western Pacific, North‐eastern Pacific and South‐eastern Pacific. Main conclusions The distribution patterns of myxinids are marked by a high degree of endemism and vicariance, and are correlated with the tectonic features involved in many of the events that led to the development of oceanic basins. The main massing of the group is around the Pacific Basin. In the Atlantic Ocean, the distribution of Myxine glutinosa seems to correspond to a classic trans‐oceanic track and vicariance resulting from the opening of the Atlantic Ocean during the Cretaceous. In the Pacific Ocean, the distribution of the Eptatretus and Paramyxine species is clearly associated with the margins of the Pacific tectonic plate. The generalized tracks of hagfishes are shared by several other groups of marine organisms, including many from shallow tropical waters, implying a common history for this marine biota. Overall, vicariance is a major feature of hagfish distribution, suggesting vicariant differentiation of widespread ancestors as a result of sea‐floor spreading between continents in connection with ocean formation.  相似文献   

5.
The entire Australian marine jurisdictional area, including offshore and sub-Antarctic islands, is considered in this paper. Most records, however, come from the Exclusive Economic Zone (EEZ) around the continent of Australia itself. The counts of species have been obtained from four primary databases (the Australian Faunal Directory, Codes for Australian Aquatic Biota, Online Zoological Collections of Australian Museums, and the Australian node of the Ocean Biogeographic Information System), but even these are an underestimate of described species. In addition, some partially completed databases for particular taxonomic groups, and specialized databases (for introduced and threatened species) have been used. Experts also provided estimates of the number of known species not yet in the major databases. For only some groups could we obtain an (expert opinion) estimate of undiscovered species. The databases provide patchy information about endemism, levels of threat, and introductions. We conclude that there are about 33,000 marine species (mainly animals) in the major databases, of which 130 are introduced, 58 listed as threatened and an unknown percentage endemic. An estimated 17,000 more named species are either known from the Australian EEZ but not in the present databases, or potentially occur there. It is crudely estimated that there may be as many as 250,000 species (known and yet to be discovered) in the Australian EEZ. For 17 higher taxa, there is sufficient detail for subdivision by Large Marine Domains, for comparison with other National and Regional Implementation Committees of the Census of Marine Life. Taxonomic expertise in Australia is unevenly distributed across taxa, and declining. Comments are given briefly on biodiversity management measures in Australia, including but not limited to marine protected areas.  相似文献   

6.
Continental South Africa has a coastline of some 3,650 km and an Exclusive Economic Zone (EEZ) of just over 1 million km2. Waters in the EEZ extend to a depth of 5,700 m, with more than 65% deeper than 2,000 m. Despite its status as a developing nation, South Africa has a relatively strong history of marine taxonomic research and maintains comprehensive and well-curated museum collections totaling over 291,000 records. Over 3 million locality records from more than 23,000 species have been lodged in the regional AfrOBIS (African Ocean Biogeographic Information System) data center (which stores data from a wider African region). A large number of regional guides to the marine fauna and flora are also available and are listed.The currently recorded marine biota of South Africa numbers at least 12,914 species, although many taxa, particularly those of small body size, remain poorly documented. The coastal zone is relatively well sampled with some 2,500 samples of benthic invertebrate communities have been taken by grab, dredge, or trawl. Almost none of these samples, however, were collected after 1980, and over 99% of existing samples are from depths shallower than 1,000 m—indeed 83% are from less than 100 m. The abyssal zone thus remains almost completely unexplored.South Africa has a fairly large industrial fishing industry, of which the largest fisheries are the pelagic (pilchard and anchovy) and demersal (hake) sectors, both focused on the west and south coasts. The east coast has fewer, smaller commercial fisheries, but a high coastal population density, resulting in intense exploitation of inshore resources by recreational and subsistence fishers, and this has resulted in the overexploitation of many coastal fish and invertebrate stocks. South Africa has a small aquaculture industry rearing mussels, oysters, prawns, and abalone—the latter two in land-based facilities.Compared with many other developing countries, South Africa has a well-conserved coastline, 23% of which is under formal protection, however deeper waters are almost entirely excluded from conservation areas. Marine pollution is confined mainly to the densely populated KwaZulu-Natal coast and the urban centers of Cape Town and Port Elizabeth. Over 120 introduced or cryptogenic marine species have been recorded, but most of these are confined to the few harbors and sheltered sites along the coast.  相似文献   

7.

Background

Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean – the largest biome on Earth – is chronically under-represented in global databases of marine biodiversity.

Methodology/Principal Findings

We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented.

Conclusions/Significance

The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity''s big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth''s largest ecosystem.  相似文献   

8.
Marine protists have traditionally been assumed to be lowly diverse and cosmopolitan. Yet, several recent studies have shown that many protist species actually consist of cryptic complexes of species whose members are often restricted to particular biogeographic regions. Nonetheless, detection of cryptic species is usually hampered by sampling coverage and application of methods (e.g. phylogenetic trees) that are not well suited to identify relatively recent divergence and ongoing gene flow. In this paper, we show how these issues can be overcome by inferring phylogenetic haplotype networks from global metabarcoding datasets. We use the Chaetoceros curvisetus (Bacillariophyta) species complex as study case. Using two complementary metabarcoding datasets (Ocean Sampling Day and Tara Oceans), we equally resolve the cryptic complex in terms of number of inferred species. We detect new hypothetical species in both datasets. Gene flow between most of species is absent, but no barcoding gap exists. Some species have restricted distribution patterns whereas others are widely distributed. Closely related taxa occupy contrasting biogeographic regions, suggesting that geographic and ecological differentiation drive speciation. In conclusion, we show the potential of the analysis of metabarcoding data with evolutionary approaches for systematic and phylogeographic studies of marine protists.Subject terms: Population genetics, Biodiversity, Biogeography, Next-generation sequencing  相似文献   

9.
In 2001 the European Register of Marine Species 1.0 was published (Costello et al. 2001 and http://erms.biol.soton.ac.uk/, and latterly: http://www.marbef.org/data/stats.php) [Costello MJ, Emblow C, White R, 2001. European register of marine species: a check list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels50, 463p.]. The lists of species (from fungi to mammals) were published as part of a European Union Concerted action project (funded by the European Union Marine Science and Technology (MAST) research programme) and the updated version (ERMS 2) is EU-funded through the Marine Biodiversity and Ecosystem Functioning (MARBEF) Framework project 6 Network of Excellence. Among these lists, a list of the fungi isolated and identified from coastal and marine ecosystems in Europe was included (Clipson et al. 2001) [Clipson NJW, Landy ET, Otte ML, 2001. Fungi. In@ Costelloe MJ, Emblow C, White R (eds), European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels50: 15-19.]. This article deals with the results of compiling a new taxonomically correct and complete list of all fungi that have been reported occurring in European marine waters.  相似文献   

10.
The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km2, is one of the largest in the world. It spans 30° of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand''s entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine diversity in the EEZ may be expected to equal that in the ERMS region. This equivalence invites testable hypotheses to explain it. There are 177 naturalized alien species in New Zealand coastal waters, mostly in ports and harbours. Marine-taxonomic expertise in New Zealand covers a broad number of taxa but is, proportionately, at or near its lowest level since the Second World War. Nevertheless, collections are well supported by funding and are continually added to. Threats and protection measures concerning New Zealand''s marine biodiversity are commented on, along with potential and priorities for future research.  相似文献   

11.
运用聚类分析与Google Maps于大量物种出现记录之研究   总被引:1,自引:0,他引:1  
物种出现记录包含博物馆动物标本、植物标本、生态调查与物种观察等资料。在台湾生物多样性信息机构(Taiwan Biodiversity Information Facility,TaiBIF)物种出现记录整合平台中,已整合台湾26个数据集,包含超过150万笔物种出现记录,其中约有85%的数据具有地理信息。我们利用数据库中所汇整的鲤科数据,包括11个数据集、超过8,800笔出现记录数据,利用网格式、切割式与密度式3种聚类分析算法分别绘制出不同的空间可视化结果,藉此解决大量物种出现记录于Google Maps上呈现效能与可视化不佳之问题。同时我们也探讨了3种聚类分析法之结果与鲤科的专家意见范围地图(expertopinion range maps)比对的差异。期望透过本研究可快速且有效地呈现物种分布资料,进而帮助研究者挖掘出大量数据所隐含的知识,并为生态保育提供重要参考。  相似文献   

12.
The Census of Antarctic Marine Life (CAML) aims to collate DNA barcode data for Antarctic marine species. DNA barcoding is a technique that uses a short gene sequence from a standardised region of the genome as a diagnostic ‘biomarker’ for species. This study aimed to quantify genetic data currently available in GenBank in order to establish whether a representative cross-section of Antarctic marine taxa and bio-geographic areas has been sequenced and to propose priorities for barcoding, with a particular emphasis on marine invertebrate species. It was found that, amongst marine invertebrate fauna, sequence information covers a limited range of taxa and areas—mainly Crustacea, Annelida and Mollusca from the Weddell Sea and the Antarctic Peninsula. Only 15% of genes sequenced in Antarctic marine invertebrates were the standard barcode gene cytochrome c oxidase subunit 1 (CO1), the majority were other nuclear and mitochondrial genes. There is an urgent need for more in-depth genetic barcoding and species identification studies in Antarctic science, from a range of taxa and areas, given the rate of climate-driven habitat changes that might lead to extinctions in the region. CAML hopes to redress the balance, by collecting and sequencing over the circum-Antarctic area, using material from voyages that occurred during 2008 and 2009, within the framework of the International Polar Year (IPY).  相似文献   

13.
An 18-month-study of 40 saline wetlands, ranging from 6 to 336 g l−1, on the west and southern coasts of Eyre Peninsula yielded 88 species of invertebrates, some aquatic plants and a fish. The invertebrates are taxonomically diverse and include 38 crustaceans, 28 insects, 12 molluscs and significantly an aquatic spider, a nemertean, two polychaetes, two sea anemones, a sponge and a bryzoan. Most were tolerant of wide fluctuations in salinity, there being 51 halobionts, 21 halophils and only 16 salt-tolerant freshwater species. Many invertebrates are restricted to the thalassic springs where marine molluscs dominated. Athalassic wetlands were dominated by crustaceans and were of two basic types—coastal and continental. There is evidence of the former evolving biologically into the later, and for some lakes to be still in transition. There is also evidence of increasing salinity in recent decades and already two lakes exhibit severe secondary salinity. Like other salt lakes in Australia the fauna is regionally distinctive. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

14.
Marine biogeographers have long recognized broad east–west differentiation of marine communities across southern Australia, but few studies have explicitly assessed the site of disjunction or the factors potentially underlying this biodiversity. A recent, detailed phylogeographical and distributional study of the dispersive gastropod genus Nerita revealed an abrupt shift in species abundance across mainland Australia, apparently correlated with the site of an historical vicariant barrier: the Bassian Isthmus. In the current study I provide an independent assessment of this vicariant hypothesis by morphologically analysing over 3000 intertidal Nerita specimens from eight coastal sites around Tasmania. Consistent with the Bassian Isthmus hypothesis, the study reveals a dramatic east–west disjunction across north-east Tasmania. A survey of marine biogeographical literature reveals several additional examples supporting the east–west species turnover detected in Nerita . I discuss the role of contemporary oceanographic factors in preserving the biogeographical signature of marine vicariance, even in highly dispersive taxa. Based on recent marine connectivity data, the east–west disjunction in Nerita taxa can be interpreted as an historic vicariant pattern perpetuated by contemporary oceanographic conditions. The results of this study emphasize the potential importance of considering relative abundance data – rather than just species range data – in marine biogeographical analyses. As the observed disjunction is likely to have broad implications for Australia's marine biodiversity, it is imperative that conservation biologists incorporate such data in the design of marine protected areas.  相似文献   

15.
 A new cardinalfish species, Gymnapogon melanogaster, is described from two specimens collected at night in the Gulf of Aqaba, Eilat, Israel. This species is characterized by having 9 dorsal and 8 anal fin soft rays; 14–15 pectoral fin rays; 2 + 11 gill rakers; a flat, bifurcated preopercular spine; a naked body without a papillae network; black pelvic fins; and a black stomach. It is similar to Gymnapogon vanderbilti (Fowler, 1938) that is known only from the Line Islands of the Central Pacific Ocean. Received: December 26, 2001 / Revised: June 10, 2002 / Accepted: June 24, 2002 Acknowledgments We thank D. Didier and M. Sabaj of the Academy of Natural Sciences, Philadelphia, for loans of and for taking data from type specimens; T.H. Fraser of the Mote Marine Laboratory, Sarasota, kindly provided data on type specimens. We are grateful to E. Heemstra of the South African Institute for Aquatic Biodiversity, Grahamstown, South Africa, for the artwork presented in this article and to A. Lerner of the Hebrew University, Jerusalem, for his assistance in collecting the specimens. Correspondence to:Ofer Gon  相似文献   

16.
Aim To study the siting of marine protected areas (MPAs) with respect to the biogeographical distribution of seaweeds within the Agulhas Marine Province and to assess the effectiveness of current MPAs in including (conserving) seaweeds of the South African south coast. Location South Africa – the south coast between Cape Agulhas and the Eastern Cape/Kwazulu‐Natal border, and eight MPAs within that area. Methods We used interpolated seaweed distribution records from all available sources, in 50‐km coastal sections. Cluster analysis (Jaccard Average Linkage) of species presence/absence data provided measures of similarity between coastal sections and between MPAs. Complementarity analyses identified the sequence of ‘importance’ of sections/MPAs for conserving seaweed species. Results Species presence/absence data indicated two main groups, representing western (cooler water) and eastern (warmer water) biogeographical divisions, as well as several biogeographical subdivisions within each of these groups. Complementarity analysis yielded a sequence of ‘importance’ of coastal sections (in terms of the highest number of species included) that began with a section just east of central in the Agulhas Marine Province, around Port Alfred, where there is no MPA. This was followed by the easternmost section (warmest water), which contains the Pondoland MPA, and then by the westernmost (coolest water) section, containing the De Hoop MPA. Similar analysis of the actual species collected in MPAs showed a generally similar pattern. Main conclusions Seven current MPAs and one proposed coastal MPA in the Agulhas Marine Province appear to be well distributed and well sited to include (conserve) the full biogeographical range of seaweeds. However, if further MPAs are to be considered, the Port Alfred area is recommended for improved conservation. This study did not examine estuaries, which may require improved conservation efforts. Seaweed distribution data, which are often relatively complete, offer a good tool for planning the siting of coastal MPAs.  相似文献   

17.
The Indian Ocean (IO) extends over 30% of the global ocean area and is rimmed by 36 littoral and 11 hinterland nations sustaining about 30% of the world's population. The landlocked character of the ocean along its northern boundary and the resultant seasonally reversing wind and sea surface circulation patterns are features unique to the IO. The IO also accounts for 30% of the global coral reef cover, 40,000 km2 of mangroves,some of the world's largest estuaries, and 9 large marine ecosystems. Numerous expeditions and institutional efforts in the last two centuries have contributed greatly to our knowledge of coastal and marine biodiversity within the IO. The current inventory, as seen from the Ocean Biogeographic Information System, stands at 34,989 species, but the status of knowledge is not uniform among countries. Lack of human, institutional, and technical capabilities in some IO countries is the main cause for the heterogeneous level of growth in our understanding of the biodiversity of the IO. The gaps in knowledge extend to several smaller taxa and to large parts of the shelf and deep-sea ecosystems, including seamounts. Habitat loss, uncontrolled developmental activities in the coastal zone, over extraction of resources, and coastal pollution are serious constraints on maintenance of highly diverse biota, especially in countries like those of the IO, where environmental regulations are weak.  相似文献   

18.
Aim To use patterns of nestedness in the indigenous and non‐indigenous biotas of the Southern Ocean islands to determine the influence of dispersal ability on biogeographical patterns, and the importance of accounting for variation in dispersal ability in their subsequent interpretation, especially in the context of the Insulantarctic and multi‐regional hypotheses proposed to explain the biogeography of these islands. Location Southern Ocean islands. Methods Nestedness was determined using a new metric, d1 (a modification of discrepancy), for the indigenous and introduced seabirds, land birds, insects and vascular plants of 26 Southern Ocean islands. To assess the possible confounding effects of spatial autocorrelation on the results, islands were assigned to 11 major island groups and each group was treated as a single island in a following analysis. In addition, nestedness of the six Southern Ocean islands comprising the South Pacific Province (New Zealand islands) was analysed. All analyses were conducted for species and genera, for each of the taxa on its own, and for the complete data sets. Results Statistically significant nestedness was found in all of the taxa examined, with nestedness declining in the order seabirds > land birds > vascular plants > insects for the indigenous species. Vagility had a marked influence on nestedness and the biogeographical patterns shown by the indigenous species. This influence was borne out by additional analyses of marine taxa and small‐sized terrestrial species, both of which were more nested than the most nested group examined here, the seabirds. Assemblages of non‐indigenous species also showed nestedness, and nestedness was generally more pronounced than in the indigenous species. Surprisingly, vagility had a significant effect on nestedness in these assemblages too. Main conclusions Nestedness analyses provide a quantitative means of comparing biogeographical patterns for groups differing in vagility. These comparisons revealed that vagility has a considerable influence on biogeographical patterns and should be taken into account in analyses. Here, investigations of more vagile taxa support hypotheses for a single origin of the Southern Ocean island biota (the Insulantarctica scenario), whilst those of less mobile taxa support the more commonly held, multi‐regional hypothesis. All biogeographical analyses across the Southern Ocean (and elsewhere) will be influenced by the effects of dispersal ability, with composite analyses dominated by sedentary groups likely to favour multi‐regional scenarios, and those dominated by mobile groups favouring single origins. Mechanisms underlying nestedness in the region range from nested physiological tolerances in more mobile groups to colonization ability and patterns of speciation in less vagile taxa. Considerable nestedness in the non‐indigenous assemblages is largely a consequence of the fact that many of these species are European weedy species.  相似文献   

19.
Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand marine phenology.  相似文献   

20.
We attempt to quantify how significant the polar archipelago of South Georgia is as a source of regional and global marine biodiversity. We evaluate numbers of rare, endemic and range-edge species and how the faunal structure of South Georgia may respond to some of the fastest warming waters on the planet. Biodiversity data was collated from a comprehensive review of reports, papers and databases, collectively representing over 125 years of polar exploration. Classification of each specimen was recorded to species level and fully geo-referenced by depth, latitude and longitude. This information was integrated with physical data layers (e.g. temperature, salinity and flow) providing a visualisation of South Georgia's biogeography across spatial, temporal and taxonomic scales, placing it in the wider context of the Southern Hemisphere. This study marks the first attempt to map the biogeography of an archipelago south of the Polar Front. Through it we identify the South Georgian shelf as the most speciose region of the Southern Ocean recorded to date. Marine biodiversity was recorded as rich across taxonomic levels with 17,732 records yielding 1,445 species from 436 families, 51 classes and 22 phyla. Most species recorded were rare, with 35% recorded only once and 86% recorded <10 times. Its marine fauna is marked by the cumulative dominance of endemic and range-edge species, potentially at their thermal tolerance limits. Consequently, our data suggests the ecological implications of environmental change to the South Georgian marine ecosystem could be severe. If sea temperatures continue to rise, we suggest that changes will include depth profile shifts of some fauna towards cooler Antarctic Winter Water (90-150 m), the loss of some range-edge species from regional waters, and the wholesale extinction at a global scale of some of South Georgia's endemic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号