首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Production of -amylase by a strain of Bacillus amyloliquefaciens was investigated in a cell recycle bioreactor incorporating a membrane filtration module for cell separation. Experimental fermentation studies with the B. amyloliquefaciens strain WA-4 clearly showed that incorporating cell recycling increased -amylase yield and volumetric productivity as compared to conventional continuous fermentation. The effect of operating conditions on -amylase production was difficult to demonstrate experimentally due to the problems of keeping the permeate and bleed rates constant over an extended period of time. Computer simulations were therefore undertaken to support the experimental data, as well as to elucidate the dynamics of -amylase production in the cell recycle bioreactor as compared to conventional chemostat and batch fermentations. Taken together, the simulations and experiments clearly showed that low bleed rate (high recycling ratio) various a high level of -amylase activity. The simulated fermentations revealed that this was especially pronounced at high recycling ratios. Volumetric productivity was maximum at a dilution rate of around 0.4 h–1 and a high recycling ratio. The latter had to exceed 0.75 before volumetric productivity was significantly greater than with conventional chemostat fermentation.List of Symbols a proportionality constant relating the specific growth rate to the logarithm of G (h) - a 1 reaction order with respect to starch concentration - a 2 reaction order with respect to glucose concentration - B bleed rate (h–1) - C starch concentration (g/l) - C 0 starch concentration in the feed (g/l) - D dilution rate (h–1) - D E volumetric productivity (KNU/(mlh)) - e intracellular -amylase concentration (g/g cell mass) - E extracellular -amylase concentration (KNU/ml) - F volumetric flow rate (l/h) - G average number of genome equivalents of DNA per cell - k l intracellular equilibrium constant - k 2 intracellular equilibrium constant - k s Monod saturation constant (g/l) - k 3 excretion rate constant (h–1) - k d first order decay constant (h–1) - k gl rate constant for glucose production - k st rate constant for starch hydrolysis - k t1 proportionality constant for -amylase production (gmRNA/g substrate) - k 1 translation constant (g/(g mRNAh)) - KNU kilo Novo unit - m maintenance coefficient (g substrate/(g cell massh)) - n number of binding sites for the co-repressor on the cytoplasmic repressor - Q repression function K1/K2Q1.0 - R ratio of recycling - R s rate of glucose production (g/lh) - r c rate of starch hydrolysis (g/(lh)) - R eX retention by the filter of the compounds X: starch or -amylase - r intracellular -amylase mRNA concentration (g/g cell mass) - r C volumetric productivity of starch (g/lh) - r E volumetric productivity of intracellular -amylase (KNU/(g cell massh)) - r r volumetric productivity of intracellular mRNA (g/(g cell massh)) - r e volumetric productivity of extracellular -amylase (KNU/(mlh)) - r s volumetric productivity of glucose (g/(lh)) - r X volumetric productivity of cell mass (g/(lh)) - S 0 free reducing sugar concentration in the feed (g/l) - S extracellular concentration of reducing sugar (g/1) - t time (h) - V volume (l) - X cell mass concentration (g/l) - Y yield coefficient (g cell mass/g substrate) - Y E/S yield coefficient (KNU -amylase/g substrate) - Y E total amount of -amylase produced (KNU) - substrate uptake (g substrate/(g cell massh)) - specific growth rate of cell mass (h–1) - d specific death rate of cells (h–1) - m maximum specific growth rate of cell mass (h–1) This study was supported by Bioprocess Engineering Programme of the Nordic Industrial Foundation and the Center for Process Biotechnology, the Technical University of Denmark.  相似文献   

2.
Summary The highest values of the specific growth rate at the exponential phase (0.144 h-1) and of the yeast cells productivity (0.80 g.L-1.h-1) were obtained at 34°C and 30°C, respectively. The cells yield factor decreased from 0.495 to 0.275 when the temperature was increased from 26°C to 42°C.Nomenclature P yeast cells productivity - P yeast cells productivity - r correlation coefficient - S glycerol concentration - t time - tf duration of the test - T temperature - X yeast cells concentration, dry matter - X0 initial value of X - Xf final value of X - Yx/s yeast cells yield - t duration of the exponential phase - m specific growth rate at the exponential phase  相似文献   

3.
Summary Absorption spectra of a young and an old culture of the diatom Pheodactylum tricornutum were measured in thin layers between two opal glass sheets. The spectra at 24° and at -196°C were replotted to give equal areas from 730–625 m to allow direct comparison. At 24°C the spectrum for the difference between the two cultures had a negative component of 18 m half width centered at 675 m and a positive region of W0.5=26 m near 700 m.The spectra at -196°C may be somewhat distorted by clumping of the cells during freezing but nevertheless the 16 day culture clearly showed a smaller proportion of Ca 670 to Ca 680. This older culture has a shoulder due to a 707 m component. The difference curve at -196°C shows the decrease of an unsymmetrical band peaking at 669 m and an increase at 695 m in addition to the 707 m component. Due to the possibility of distortion, the presence of an actual component at 695 is doubtful in these particular cultures.The room temperature spectrum in the chloropyhll a region for the 5 day culture can be closely fitted by a single probability curve at 675 m having a half-width of 31 m. The sum of two components, with widths more reasonable for chlorophylls, also matched the data well enough. These two probability curves, of 22 m half width, centered on 669 and 683.2 m and had a height ratio, h669/h683 of 1.18. In the 16 day culture the ratio for these bands changed to 1.11 and there was extra absorption around 700 m.Dedicated to Professor C. B. van Niel on the occasion of his 70th birthday  相似文献   

4.
The partial phase diagram and the hydration properties of the 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)-water system, in the absence and presence of 30 mol% cholesterol, have been investigated by solid state phosphorus NMR of the lipid and deuterium NMR of heavy water. The POPE-D2O phase diagram resembles other phosphatidylethanolamine (PE)-water systems: below water-to-lipid molar ratios (Ri) of 3 the lamellar gel (L or Lc)-to-hexagonal type II (HII) phase sequence is observed on increasing the temperature. For Ri3 the thermotropic sequence (L or Lc)-L-HII is detected. On increasing hydration from Ri=3, the HII phase is detected from 40°C to 85°C whereas the gel phase is observed from 40°C to 30°C. The limiting hydrations of the gel, L and HII phases are Ri 3, 17 and 20, respectively. The number of bound water molecules per lipid is ca. 8 in both the La and HII phases. The presence of cholesterol stabilizes the hexagonal phase 20°C below temperatures at which it is observed in its absence and reduces the limiting hydration of the fluid and hexagonal phases to Ri 9 and 14, respectively. The structure and/or dynamics of the water bound to the interface are markedly modified on going from the L to the HII phase.Abbreviations NMR Nuclear magnetic resonance - DDPE 1,2-Didodecyl-rac-glycerol-3-phosphoethanol-amine - DHPE 1,2-Dihexadecyl-sn-glycerol-3-phosphoethanol-amine - DOPE 1,2-Dioleoyl-sn-glycerol-3-phosphoethanol-amine - POPE 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoetha-nolamine - DAPE 1,2-Diarachinoyl-sn-glycerol-3-phosphoethanol-amine - DMPC 1,2-Dimyristol-sn-glycerol-3-phosphocholine - DPPC 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine - Tc lamellar gel-to-lamellar fluid transition temperature - Th lamellar fluid-to-hexagonal transition temperature  相似文献   

5.
The mechanism of uptake of water-insoluble -sitosterol by a newly isolated strain of Arthrobacter simplex SS-7 was studied. The production of an extracellular sterol-pseudosolubilizing protein during growth of A. simplex on -sitosterol was demonstrated by isolating the factor from the cell-free supernatant and its subsequent purification by Sephadex G-150 column chromatography. The M r of the purified sterol-pseudosolubilizing protein determined by SDS–PAGE was 19kDa. The rate of sterol pseudosolubilization (5.2×10–3g l–1h–1) could not adequately account for the rate of sterol uptake (72×10–3g l–1h–1) and the specific growth rate (56×10–3 h–1). However in the unfavourable growth condition, when the cells were treated with sodium azide at the level of 30–60% of MIC, the sterol pseudosolubilization accounted for nearly 74% of the total growth containing 96% free cells. Cellular adherence to substrate particles was found to play an active role in the normal growth of the strain on -sitosterol. Unlike sodium acetate-grown cells, whose surface activity was negligible (60mNm–1), the sterol-grown cells had strong surface activity (40mNm–1). The high lipid content and long chain fatty acids in the cell-wall of -sitosterol-grown cells probably contribute to the high sterol adherence activity of the cells.  相似文献   

6.
A continuous fermentation model taking into account the culture memory is used for a state estimation design. The influence of the culture memory on the process dynamics is accounted for by a time delay parameter. The proposed procedure of on-line state estimation in the case when the delay has a constant value is based on the extended Kalman observer. The case when the delay parameter is evaluated on-line is also considered. An adaptive state and parameter algorithm on the base of the extended Kalman filter is proposed. The theoretical results are applied to continuous culture for growth of a strain of Saccharomyces cerevisiae.List of Symbols X, S mg/l Biomass concentration and substrate concentration respectively - S 0 mg/l Feed substrate concentration - Z mg/l Past substrate concentration - µ h–1 Specific growth rate taking into account culture memory - h–1 Specific consumption rate - h Time delay parameter denoting culture memory - D h–1 Dilution rate - State variables vector - W ij Gain coefficient for on-line state and parameter estimation - F Substrate feed rate vector - () Gain coefficient matrix - R Square symmetric Riccati matrix - K Matrix of coefficients - K(t) Delay kernel taking account of culture memory - Denote an estimation value The partial support by Bulgarian National Science Research Foundation under Grant SRTS 428/94 Modeling and Control of Fermentation Processes Taking the Memory Effect into Account is gratefully acknowledged.  相似文献   

7.
During intracellular polarization of identified sensory neurons of the leech by square pulses of hyperpolarizing current electrical parameters of the cell membranes were determined: input resistance of the neuron Rn, time constant of the membrane , the ratio between conductance of the cell processes and conductance of the soma , the resistance of the soma membrane rs, the input resistance of the axon r a , capacitance of the membrane Cs, and resistivity of the soma membrane Rs. The results obtained by the study of various types of neurons were subjected to statistical analysis and compared with each other. Significant differences for neurons of N- and T-types were found only between the values of , Cs, and Rs (P<0.01). These parameters also had the lowest coefficients of variation. The surface area of the soma of the neurons, calculated from the capacitance of the membrane (the specific capacitance of the membrane was taken as 1 µF/cm2) was 7–10 times (N-neurons) or 4–6 times (T-neurons) greater than the surface area of a sphere of the same diameter. The resistivity of the soma membrane Rs was 35.00 k·cm2 for cells of the N-type and 19.50 k·cm2 for T-neurons. The reasons for the relative stability of this parameter compared with the input resistance of the cell (coefficient of variation 22–7 and 53–31% respectively) are discussed. The possible effects of electrical characteristics on the properties of repeated discharges in neurons of different types also are discussed.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol.7, No.3, pp.295–301, May–June, 1975.  相似文献   

8.
The dynamics of coupled biological oscillators can be modeled by averaging the effects of coupling over each oscillatory cycle so that the coupling depends on the phase difference between the two oscillators and not on their specific states. Average phase difference theory claims that mode locking phenomena can be predicted by the average effects of the coupling influences. As a starting point for both empirical and theoretical investigations, Rand et al. (1988) have proposed d/dt= — K sin ), with phase-locked solutions =arcsin( /K), where is the difference between the uncoupled frequencies and K is the coupling strength. Phase-locking was evaluated in three experiments using an interlimb coordination paradigm in which a person oscillates hand-held pendulums. was controlled through length differences in the left and right pendulums. The coupled frequency c was varied by a metronome, and scaled to the eigenfrequency v of the coupled system K was assumed to vary inversely with c. The results indicate that: (1) and K contribute multiplicatively to (2) =0 or = regardless of K when =0; (3) 0 or regardless of when K is large (relative to ); (4) results (1) to (3) hold identically for both in phase and antiphase coordination. The results also indicate that the relevant frequency is c/v rather than c. Discussion high-lighted the significance of confirming =arcsin(/K) for more general treatments of phase-locking, such as circle map dynamics, and for the 11 phase-entrainment which characterizes biological movement systems.  相似文献   

9.
The effects of the tripeptide analogues of neurotensin, GZR123 and GZR125, on thermoregulation was studied in rats that were kept at different ambient temperatures ( c): in the cold ( c = 4–6°C), thermoneutral ( c = 27–28°C), and hot ( c = 31–32°C) environment, as well as at room temperature ( c = 20–21°C). In the cold environment, the injection of GZR123 disturbed the vegetative mechanisms of heat emission, leading to peripheral vasoconstriction and possibly changing heat production. Similar to neurotensin, GZR125 disturbed the development of compensatory vasoconstriction in the cold environment and at room temperature, which resulted in a decrease in body temperature. At high temperature, this peptide induced vasodilation.  相似文献   

10.
A -carotene oxygenase is described which occurs in the Cyanobacterium Microcystis. It cleaves -carotene and zeaxanthin specifically at the positions 7,8 and 7,8, while echinenone and myxoxanthophyll are not affected. The oxidative cleavage of -carotene leads to the formation of -cyclocitral and crocetindial and that of zeaxanthin to hydroxy--cyclocitral and crocetindial in nearly stoichiometric amounts. Oxidant is dioxygen as has been demonstrated by high incroporation (86%) of 18O2 into -cyclocitral. -Carotene oxygenase is membrane bound, sensitive to sulfhydryl reagents, antioxidants and chelating agents. Iron seems to be an essential part of the enzyme activity. Cofactors necessary for the reaction could not be detected.Abbreviations TLC thin layer-chromatography - PIPES piperazine-N,N-bis-(2-ethanesulfonate) Na - TES 2{[tris-(hydroxymethyl)-methyl]-amino} ethanesulfonic acid Dedicated to Professor G. Drews on occasion of his 60th birthday  相似文献   

11.
Summary Using the model presented in part I, the measured time and spacial variations of process variables were simulated with satisfactory accuracy. Especially the experimentally found minima of the longitudinal dissolved oxygen concentration profiles in the substrate limiting growth range, which are caused by the transition from oxygen transfer limited to substrate limited growth along the tower, can be simulated with great accuracy.Symbols L length - M mass - T time - K temperature - MM mole mass - a Specific gas/liquid interfacial area with regard to the liquid volume in the tower (L–1) - DSR Substrate feed rate (ML–3T–1) - KO Saturation constant of Monod kinetics with regard to oxygen (ML–3) - KS Saturation constant of Monod kinetics with regard to the substrate (ML–3) - KST Constant - KL Mass transfer coefficient (LT–1) - kLa Volumetric mass transfer coefficient (T–1) - kLaE Volumetric mass transfer coefficient at the entrance (T–1) - kLa Volumetric mass transfer coefficient at large distances from the entrance (T–1) - kLa 0 Volumetric mass transfer coefficient in the absence of substrate (ethanol) (T–1) - LR Gas-liquid layer height in the tower (L) - LR Height of the loop (L) - - OB Dissolved oxygen concentration in the loop liquid (ML–3) - OF Dissolved oxygen concentration in the tower liquid (ML–3) - O F * Saturation value of OF (ML–3) - OTR Oxygen transfer rate (ML–3T–1) - P Pressure - Oxygen transfer rate (ML–3T) - SB Substrate concentration in the loop liquid (ML–3) - SD Substrate concentration at which kLa=2 kLa 0 (ML–3) - SF Substrate concentration in the tower liquid (ML–3) - T Absolute temperature - t Time (T) - uGo Superficial gas velocity in the tower - VR Reactor volume (L3) - VG Volumetric gas flow rate in the tower (L3T–1) - VB Volumetric liquid flow rate in the loop (L3T–1) - VF Volumetric liquid flow rate in the tower (L3T–3) - Vu Liquid recycling rate (L3T–1) - XB Biomass concentration in the loop liquid (ML–3) - XF Biomass concentration in the tower liquid (ML–3) - x Longitudinal coordinate in the tower (L) - x* Longitudinal coordinate in the loop (L) - xOG O2 mole fraction in the gas phase - YX/O Yield coefficient of biomass with regard to oxygen - YX/S Yield coefficient of biomass with regard to substrate - z=x/LR Dimensionless longitudinal coordinate in the tower - z*=x*/LB Dimensionless longitudinal coordinate in the loop - Constant (LR is the distance from the aerator on which kL a is space dependent) - Liquid recirculation ratio - G Mean relative gas holdup in the tower - exp Experimentally determined (T–1) - max Maximum specific growth rate (T–1) - F Liquid density (ML–3) - A At the exit - E At the inlet  相似文献   

12.
Summary The linear growth phase in cultures limited by intracellular (conservative) substrate is represented by a flat exponential curve. Within the range of experimental errors, the presented model fits well the data from both batch and continuous cultures ofEscherichia coli, whose growth is limited in that way.List of symbols D dilution rate, h–1 - KS saturation constant, g.L–1 - S concentration of the limiting substrate, g.L–1 - Si concentration of the limiting substrate accumulated in the cells, g.g–1 - So initial concentration of the limiting substrate, g.L–1 - t time of cultivation, h - t1 time of exhaustion of the limiting substrate from medium, h - to beginning of exponential phase, h - X biomass concentration, g.L–1 - X1 biomass concentration at the time of exhaustion of the limiting substrate from the medium, g.L–1 - Xo biomass concn. at the beginning of exponential phase, g.L–1 - biomass concn. at steady-state, g.L–1 - Y growth yield coefficient (biomass/substrate) - specific growth rate, h–1 - m maximum specific growth rate, h–1  相似文献   

13.
Summary A new, fast method is described to determine kLa either off-line, or on-line during animal-cell cultivation. Since it does not need the equilibrium concentration of oxygen in the liquid phase (C*), it is not required to await a new steady state. Furthermore, the results do not depend on the calibration value of the dissolved-oxygen probe. The method yielded accurate values for kLa, both for an oxygen-consuming and a non-consuming system.Nomenclature C L Dissolved-oxygen concentration [mol·m-3] - C * C L in equilibrium with the oxygen concentration in the gas phase [mol·m-3] - C L, Equilibrium oxygen concentration at stationary conditions [mol·m-3] - kLa Volumetric oxygen transfer coefficient [s-1] - r Specific oxygen consumption of biomass [mol·cell-1·s-1] - X Cell concentration [cells·m-3] - t Time [s] - Noise of dissolved-oxygen probe [mol·m-3] - Absolute error of kLa-measurement [s-1]  相似文献   

14.
To assess the long-term effect of increased CO2 and temperature on plants possessing the C3 photosynthetic pathway, Chenopodium album plants were grown at one of three treatment conditions: (1) 23 °C mean day temperature and a mean ambient partial pressure of CO2 equal to 350 bar; (2) 34 °C and 350 bar CO2; and (3) 34 °C and 750 bar CO2. No effect of the growth treatments was observed on the CO2 reponse of photosynthesis, the temperature response of photosynthesis, the content of Ribulose-1,5-bisphosphate carboxylase (Rubisco), or the activity of whole chain electron transport when measurements were made under identical conditions. This indicated a lack of photosynthetic acclimation in C. album to the range of temperature and CO2 used in the growth treatments. Plants from every treatment exhibited similar interactions between temperature and CO2 on photosynthetic activity. At low CO2 (< 300 bar), an increase in temperature from 25 to 35 °C was inhibitory for photosynthesis, while at elevated CO2 (> 400 bar), the same increase in temperature enhanced photosynthesis by up to 40%. In turn, the stimulation of photosynthesis by CO2 enrichment increased as temperature increased. Rubisco capacity was the primary limitation on photosynthetic activity at low CO2 (195 bar). As a consequence, the temperature response of A was relatively flat, reflecting a low temperature response of Rubisco at CO2 levels below its km for CO2. At elevated CO2 (750 bar), the temperature response of electron transport appeared to control the temperature dependency of photosynthesis above 18 °C. These results indicate that increasing CO2 and temperature could substantially enhance the carbon gain potential in tropical and subtropical habitats, unless feedbacks at the whole plant or ecosystem level limit the long-term response of photosynthesis to an increase in CO2 and temperature.Abbreviations A net CO2 assimilation rate - C a ambient partial pressure of CO2 - C i intercellular partial pressure of CO2 - Rubisco Ribulose-1,5-bisphosphate carboxylase - VPD vapor pressure difference between leaf and air  相似文献   

15.
A fermentation medium based on millet (Pennisetum typhoides) flour hydrolysate and a four-phase feeding strategy for fed-batch production of baker's yeast,Saccharomyces cerevisiae, are presented. Millet flour was prepared by dry-milling and sieving of whole grain. A 25% (w/v) flour mash was liquefied with a thermostable 1,4--d-glucanohydrolase (EC 3.2.1.1) in the presence of 100 ppm Ca2+, at 80°C, pH 6.1–6.3, for 1 h. The liquefied mash was saccharified with 1,4--d-glucan glucohydrolase (EC 3.2.1.3) at 55°C, pH 5.5, for 2 h. An average of 75% of the flour was hydrolysed and about 82% of the hydrolysate was glucose. The feeding profile, which was based on a model with desired specific growth rate range of 0.18–0.23 h–1, biomass yield coefficient of 0.5 g g–1 and feed substrate concentration of 200 g L–1, was implemented manually using the millet flour hydrolysate in test experiments and glucose feed in control experiments. The fermentation off-gas was analyzed on-line by mass spectrometry for the calculation of carbon dioxide production rate, oxygen up-take rate and the respiratory quotient. Off-line determination of biomass, ethanol and glucose were done, respectively, by dry weight, gas chromatography and spectrophotometry. Cell mass concentrations of 49.9–51.9 g L–1 were achieved in all experiments within 27 h of which the last 15 h were in the fedbatch mode. The average biomass yields for the millet flour and glucose media were 0.48 and 0.49 g g–1, respectively. No significant differences were observed between the dough-leavening activities of the products of the test and the control media and a commercial preparation of instant active dry yeast. Millet flour hydrolysate was established to be a satisfactory low cost replacement for glucose in the production of baking quality yeast.Nomenclature C ox Dissolved oxygen concentration (mg L–1) - CPR Carbon dioxide production rate (mmol h–1) - C s0 Glucose concentration in the feed (g L–1) - C s Substrate concentration in the fermenter (g L–1) - C s.crit Critical substrate concentration (g L–1) - E Ethanol concentration (g L–1) - F s Substrate flow rate (g h–1) - i Sample number (–) - K e Constant in Equation 6 (g L–1) - K o Constant in Equation 7 (mg L–1) - K s Constant in Equation 5 (g L–1) - m Specific maintenance term (h–1) - OUR Oxygen up-take rate (mmol h–1) - q ox Specific oxygen up-take rate (h–1) - q ox.max Maximum specific oxygen up-take rate (h–1) - q p Specific product formation rate (h–1) - q s Specific substrate up-take rate (g g–1 h–1) - q s.max Maximum specific substrate up-take rate (g g–1 h–1) - RQ Respiratory quotient (–) - S Total substrate in the fermenter at timet (g) - S 0 Substrate mass fraction in the feed (g g–1) - t Fermentation time (h) - V Instantaneous volume of the broth in the fermenter (L) - V 0 Starting volume in the fermenter (L) - V si Volume of samplei (L) - x Biomass concentration in the fermenter (g L–1) - X 0 Total amount of initial biomass (g) - X t Total amount of biomass at timet (g) - Y p/s Product yield coefficient on substrate (–) - Y x/e Biomass yield coefficient on ethanol (–) - Y x/s Biomass yield coefficient on substrate (–) Greek letters Moles of carbon per mole of yeast (–) - Moles of hydrogen atom per mole of yeast (–) - Moles of oxygen atom per mole of yeast (–) - Moles of nitrogen atom per mole of yeast (–) - Specific growth rate (h–1) - crit Critical specific growth rate (h–1) - E Specific ethanol up-take rate (h–1) - max.E Maximum specific ethanol up-take rate (h–1)  相似文献   

16.
Dark respiration rates of guard-cell protoplasts of Commelina communis L. were measured over a temperature range (15–30° C) using a Cartesian-diver microrespirometry technique. Measurements were made using a few microliters of suspension medium containing between 400 and 3 700 protoplasts. Respiration rates were approximately linear for at least 1 h at all temperatures. Respiration rates increased rapidly between 20 and 25° C to relatively high levels (6.11·10-6 mol O2 h-1 protoplast-1=1259 mol O2 mg-1 chlorophyll h-1=22.97 mol O2 mg-1 protein h-1) with no further increases above this temperature. Respiration rates were much lower in protoplasts 15–16 h old than in freshly prepared ones indicating considerable deterioration of their viability over this time period.  相似文献   

17.
Summary Volumetric mass transfer coefficients (kLa) were measured by a steady state method in a twin bubble column to characterize the coalescence behaviour of the medium. Employing Hansenula polymorpha cultivation broths, kLa values were compared with those measured in model media in the presence and absence of antifoam agents. The ratio of the volumetric mass transfer coefficient in the system investigated to that in water, , was employed to characterize the cultivation medium.Symbols a Specific gas/liquid interfacial area with regard to the liquid volume in reactor - de Dynamical equilibrium bubble diameter - dH Perforated plate hole diameter - dp Primary bubble diameter - dS Sauter bubble diameter - Fv Liquid feed rate - H Bubbling layer height - kL Gas/liquid mass transfer coefficient - kLa Volumetric mass transfer coefficient - m kLa/(kLa)r coalescence index - mcorr Corrected coalescence index [Eq. (3)] - OTR Oxygen transfer rate - PO Dissolved O2-partial pressure in BS2 - P1 Dissolved O2-partial pressure in BS1 - PO PO/PS relative oxygen saturation in BS2 - P1 P1/PS relative oxygen saturation in BS1 - PS Saturation dissolved oxygen partial pressure - Rc dnB/dt coalescence rate - S Substrate concentration - tF Time since the beginning of the cultivation - X Biomass concentration - V1 Liquid volume in BS1 - wSG Superficial gas velocity in BS1 - G Gas holdup in BS1 - 1 V1/Fv mean liquid residence time in BS1 - BS1 O2 absorber column - BS2 O2 desorber column - D Desmophen (antifoam agent) - NS Nutrient salt solution (Table 1)  相似文献   

18.
Summary Basal oxygen consumption, ventilatory frequency, and heart rate were recorded at four different times during the unusually protracted 15–16-month spawning run of the Southern Hemisphere lamprey Geotria australis. At 15°C, the mean basal oxygen consumption of G. australis caught immediately after they had left the sea and embarked on the spawning run (45 l · g-1 · h-1) was less than in young adults about to commence their marine feeding phase (64 l · g-1 · h-1), but greater than in large ammocoetes (26.5 l · g-1 · h-1). Basal oxygen consumption fell progressively during the spawning-run of to 33 l · g-1 · h-1 after 5 months and 25 l · g-1 · h-1 after 10 months, before rising to 35 l · g-1 · h-1 after 15 months when the animals were approaching sexual maturity. The downwards trend in basal oxygen consumption contrasts with that recorded during the spawning run of Lampetra fluviatilis. Furthermore, these values for spawning-run of G. australis are far lower than those measured at any time during the upstream migration of L. fluviatilis or during the parasitic phase of landlocked Petromyzon marinus. A low and declining metabolic rate during much of the spawning run of G. australis would facilitate the conservation of energy reserves during this very long non-feeding period. Trends shown by ventilatory frequency and heart rate essentially parallel those of basal oxygen consumption. The Q10s for basal oxygen consumption, ventilatory frequency and heart rate over the temperature range 5–25°C were 1.6, 1.6, and 1.7, respectively. The trends shown by basal oxygen consumption during metamorphosis and the upstream migration did not parallel those exhibited by circulating thyroid hormones.  相似文献   

19.
Summary The growth of the yellow pigmented non-sporulating caldoactive bacterium Thermus aquaticus was investigated in different culture vessels and using differnt culture techniques. Each combination of these two variables led to very specific characteristic behaviour of the culture. A synthetic medium for a white cell type of T. aquaticus was optimized by means of pulse and medium-shift techniques. The main kinetic parameters of the organism have been determined to be =1.62h–1 and Y (glucose)=0.4 g g–1 at T=68 °C and pH=7.3. In complex medium only a mixed population of white and yellow cells could be cultivated. The cell yield was shown to be very low (Y=0.02 g g–1) due to incomplete substrate utilisation, but a very high maximal specific growth rate was determined ( max=3.5h–1) at 75 °C and pH=7.3. The maintenance coefficient for oxygen uptake was approximately Mo=16 mMol g–1 h–1. A discussion of the problems arising in the cultivation of thermophilic microorganisms with respect to their physiology and stability is given.  相似文献   

20.
Summary The surface tension and foaminess of (a) unlimited, (b) substrate limited, and (c) oxygen transfer limited growth media of Hansenula polymorpha were measured using methanol, ethanol or glucose as a substrate.The time dependence of can be described by the Avrami-Überreiter relationship: log (2.3 log V)=n log t+log b, where V = (Oeq/(teq, and O, t and eq are at tM=0, tM=t and tM (equilibrium value).The constants n and b are functions of the fermentation time tF as long as the growth is unlimited but they are constant in the state of limited growth. With glucose substrate, the foaminess can be presented as a definite function of the time, tDG, which is necessary to attain eq. With alcohol as a substrate no definite (tDG) function was found.Symbols b constant in Eq. (1) - n constant in Eq. (1) - S substrate concentration - T temperature - tM time h (measured from the beginning of the determination of the surface tension ) - tF cultivation time h (measured from the time of inoculation) - tDG time (min) necessary to attain the equilibrium surface tension ) - X dry biomass concentration (gl–1) - V (Oeq)/(teq) - VS equilibrium volume of the foam (cm3) - VG volumetric gas flow rate during the estimation of (cm3 s–1) - vvm volumetric gas flow rate with regard to the volume of the medium (min–1) - wSG superficial gas velocity (cm s–1) - m maximum specific growth rate (h–1) - VS/VG foaminess (s) - surface tension, mMm–1 (milli Newton m–1) - O at tM=0 - eq equilibrium surface tension ( at tM) - t at tM=t - HP probes from Hansenula polymorpha cultivation - NLG non limited growth - OTLG oxygen transfer limited growth - SLG substrate limited growth  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号