首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
高产谷胱甘肽的酵母菌选育及其培养条件研究   总被引:17,自引:1,他引:17  
筛选到一株具有较高GSH产量的酵母菌株S.cerevisiae2165,然后以该菌株为出发菌,采用紫外照射,紫外照射 LiCl联合处理,亚硝基胍(MNNG)等诱变处理,获得一株高产GSH的酿酒酵母优良菌株S.cerevisiaeJN-5-8。该菌株具有稳定的遗传性能,在经过优化的培养条件下培养24h,其GSH产量达到339.1mg/L。比出发菌株提高2.2倍。  相似文献   

2.
等离子体-紫外线复合诱变选育高产谷胱甘肽酵母菌   总被引:1,自引:0,他引:1  
以产还原型谷胱甘肽(glutathione,GSH)的啤酒酵母(Sacchromyces cerevisiae)SC-20为出发菌株,采用氩气等离子体射线、紫外照射及两者的复合诱变处理,获得一株高产GSH的酿酒酵母优良菌株(S.cerevisiae)DU-20.结果表明该菌株具有稳定的遗传性能,GSH含量与产量分别比出发菌株提高了78.33%和118.4%.  相似文献   

3.
高产虾青素红法夫酵母的选育及代谢通量分析   总被引:5,自引:0,他引:5  
以野生型红法夫酵母As2.1557为出发菌株,依次进行两轮紫外线诱变和亚硝基胍诱变,并以10-4与10-3mol/Lβ-紫罗酮作为筛选剂,得到突变株UV-N2-7,其虾青素产量和含量分别较出发菌株提高81.7%和2.25倍。采用Plackett-Burman设计法及响应面分析法对发酵培养基的组分及发酵条件进行了优化,突变株的虾青素产量由从初始的2.674 mg/L提高到了6.338 mg/L。建立了红法夫酵母的代谢网络,并对比了突变株和野生株间歇培养条件下对数生长期的代谢通量分布。结果表明:突变株与野生株相比,PP途径通量有所减小,而EMP途径和TCA循环有所增强,突变株用于菌体生长的通量有所减小;二者的丙酮酸脱氢酶的活性均较低,分泌至胞外的丙酮酸的代谢通量约为32%。因此预计通过遗传改造和发酵控制提高丙酮酸脱氢酶的活性可能会进一步提高虾青素的产率。  相似文献   

4.
以酿酒酵母SC-001为出发菌株,利用紫外诱变结合乙硫氨酸和氯化锌的底物选择筛选到1株有较高GSH产量的酿酒酵母菌株SC-001-24,其GSH产量为743 mg/L,比出发菌株提高了22%。进一步在10 L发酵罐中考察了不同发酵模式和前体氨基酸补加方式对酿酒酵母产GSH的影响,确定最佳发酵模式为补料分批发酵,最佳前体氨基酸补加策略为:初始培养基加入41 mmol/L半胱氨酸,发酵42 h后一次性补加半胱氨酸246 mmol,甘氨酸160 mmol,谷氨酸82 mmol。在最佳发酵条件下GSH产量达到1 280.4 mg/L。  相似文献   

5.
酵母菌中谷胱甘肽的主要生理功能及其代谢调控   总被引:3,自引:0,他引:3  
谷胱甘肽是生物体内一种重要的三肽小分子 ,具有广泛的生理功能。对谷胱甘肽在酵母细胞中的作用及其代谢调控机制 ,做了较为详细的介绍。这一带有基础性研究的内容 ,对于以酵母为生产菌的谷胱甘肽的生产 ,或是酵母的其他工业化生产 ,具有重要的启示。  相似文献   

6.
谷胱甘肽高产菌株的选育   总被引:11,自引:0,他引:11       下载免费PDF全文
以编号为 346的酿酒酵母为出发菌株 ,通过紫外线和60Coγ射线诱变处理 ,运用推理育种技术 ,选育到一株抗氯化锌和乙硫氨酸的突变株 0 5Eth40 0 5。该菌株经摇瓶发酵谷胱甘肽产量为 1 65 96mg L ,较出发株提高 350 % ,每克干细胞含谷胱甘肽 1 9 76mg ,较出发株提高 31 8 6 %。菌株经 1 0次传代培养 ,谷胱甘肽产量下降 1 0 7% ,是一株性状较稳定可深入开发研究的优良菌株。  相似文献   

7.
在对产琥珀酸放线杆菌代谢分析的基础上选育出高产突变株对琥珀酸的工业生物转化有重要意义.在矩阵分析代谢通量基础上,围绕柔性节点下的副产物乙酸及乙醇的降低分别实施软X诱变及定点突变选育,并对比分析了突变株与出发株相关酶活及基因序列变化.针对出发株的流量分析显示产物琥珀酸的代谢通量为1.78(mmol/g/h),主要副产物乙酸与乙醇的代谢通量分别为(0.60mmol/g/h)和(1.04 mmol/g/h),并发现乙醇代谢加剧了琥珀酸合成中的H电子供体的不足;筛选出的氟乙酸抗性突变株S.JST1的乙酸代谢通量降低了96%,为0.024(mmol/g/h),酶活检测表明磷酸乙酰转移酶(Pta)的酶比活力从602降低到74,进一步的序列对比分析发现pta突变基因中产生了一个突变位点:adh定点复合突变株S.JST2的乙醇代谢通量降低了98%,为0.020(mmol/g/h),酶活检测表明Adh的酶比活力从585降低到62.最终突变株S.JST2琥珀酸累积产量达65.7 g/L.围绕产琥珀酸放线杆菌Pta及Adh酶活的降低实施定向选育,在降低副产物流量的同时,有助于改善细胞H供体代谢平衡进而提高琥珀酸的流量.所获突变株具有工业应用潜力.  相似文献   

8.
高产谷胱甘肽新菌种的选育及其发酵条件的研究   总被引:6,自引:0,他引:6  
通过对谷胱甘肽新产生菌——藤黄八叠球菌进行紫外诱变处理,筛选到一株抗乙硫氨酸和氯化锌的抗性菌株,该突变株发酵生产谷胱甘肽的产量比出发菌株提高268.9%。通过对碳源、氮源、温度、初始pH等发酵条件对该菌株生物合成谷胱甘肽的影响研究,表明突变株HY78在发酵温度37℃、初始pH7.0、摇床转速180r/min条件下,摇瓶发酵26h,该高产菌株在发酵液中合成谷胱甘肽的产量可达160.628mg/L。  相似文献   

9.
琥珀酸是一种用于合成树脂、可降解塑料及许多化学中间体的重要绿色化工原料。为了提高琥珀酸的发酵产率, 基于Actinobacillus succinogenes的代谢流量分布情况对其育种机制进行了研究。以Actinobacillus succinogenes CGMCC1593为原始菌株进行NTG诱变, 挑选在含有50~100 mmol/L氟乙酸平板生长较快的菌落, 经过初筛和复筛, 发现SF-9菌株产生更多琥珀酸且积累乙酸较少。以50 g/L的葡萄糖为碳源, 在5 L发酵罐上进行分批发酵, 该菌株发酵32 h时琥珀酸产量(34.8 g/L)提高了23.4%, 琥珀酸/乙酸比率为9:1, 副产物乙酸量比原始菌株降低了约50%。代谢流量分析(MFA)结果表明, PEP是影响琥珀酸合成的关键节点, PYR是影响乙酸等杂酸生成比例的关键节点, 并且这两个节点均非刚性节点。通过氟乙酸抗性诱变, 成功地筛选出了流向乙酸、甲酸和乳酸等杂酸的流量相对减少, 而流向琥珀酸的流量明显增强的突变菌株SF-9。  相似文献   

10.
琥珀酸是一种用于合成树脂、可降解塑料及许多化学中间体的重要绿色化工原料。为了提高琥珀酸的发酵产率, 基于Actinobacillus succinogenes的代谢流量分布情况对其育种机制进行了研究。以Actinobacillus succinogenes CGMCC1593为原始菌株进行NTG诱变, 挑选在含有50~100 mmol/L氟乙酸平板生长较快的菌落, 经过初筛和复筛, 发现SF-9菌株产生更多琥珀酸且积累乙酸较少。以50 g/L的葡萄糖为碳源, 在5 L发酵罐上进行分批发酵, 该菌株发酵32 h时琥珀酸产量(34.8 g/L)提高了23.4%, 琥珀酸/乙酸比率为9:1, 副产物乙酸量比原始菌株降低了约50%。代谢流量分析(MFA)结果表明, PEP是影响琥珀酸合成的关键节点, PYR是影响乙酸等杂酸生成比例的关键节点, 并且这两个节点均非刚性节点。通过氟乙酸抗性诱变, 成功地筛选出了流向乙酸、甲酸和乳酸等杂酸的流量相对减少, 而流向琥珀酸的流量明显增强的突变菌株SF-9。  相似文献   

11.
以高纯空气(O2∶N2 =21∶79)为加压介质,研究了0.5Mpa压力下面包酵母CICC1447和CICC1339细胞生长及细胞内谷胱甘肽、麦角固醇的含量变化。结果表明:加压培养时两株酵母菌的对数生长期延迟出现,对数生长期的持续时间缩短,而且两株菌的比生长速率均明显低于对照组,同时两株菌的倍增时间也较对照组有所延长;压力刺激可显著提高面包酵母细胞内谷胱甘肽(GSH)的含量,但麦角固醇含量的变化却不明显。在0.5MPa压力下保压培养3h时CICC1447胞内谷胱甘肽含量比常压对照组提高了42.6%,而加压3h后麦角固醇含量比对照组提高了20.1%;加压培养6h时CICC1339胞内谷胱甘肽含量较对照组提高了58.7%,但其麦角固醇含量反而降低。这说明不同的酵母菌对压力刺激的反应是不同的。  相似文献   

12.
啤酒酵母代谢工程研究进展   总被引:1,自引:0,他引:1  
啤酒工业上应用的啤酒酵母菌株在生产中都会存在着某些方面的缺陷。通过分析啤酒酵母某些代谢产物的代谢途径,寻找改变其代谢流量的方法,然后用分子生物学手段对其代谢流量加以改变,来调节啤酒酵母某些产物的代谢水平已经成为啤酒酵母育种的新方式。对酵母的底物利用、可操作性、控制有害副产物的产量及改善啤酒风味等方面的研究成果进行了综述。  相似文献   

13.
14.
L-乳酸是一种重要的有机化合物,具有广泛的应用价值。微生物发酵法生产是当前L-乳酸的主要来源,但受限于精确的发酵条件、菌体产物耐受能力低及底物要求高等因素,导致L-乳酸供给不足且价格偏高。鉴于酿酒酵母利用廉价底物生产有价值物质方面的诸多优势,并随着分子生物学技术的发展,利用代谢工程改造酿酒酵母本身固有的代谢网络,使其高产L-乳酸已成为当前研究的热点。从L-乳酸的异源生产、关键途径改造及菌体生长能力恢复三个方面归纳了关于代谢工程改造酿酒酵母生产L-乳酸的研究进展。最后,指出了酿酒酵母异源生产L-乳酸存在的不足和今后研究的方向。  相似文献   

15.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

16.
Abstract The tripeptide γ-l-glutamyl-l-cystinylglycine (glutathione) is one of the major antioxidant molecules of cells and is thought to play a vital role in buffering the cell against reactive oxygen species and toxic electrophiles. We wished to determine the role of glutathione in the protection of the yeast Saccharomyces cerevisiae against oxidative stress. This study shows that glutathione is an important antioxidant molecule in yeast, with γ-glutamylcysteine synthetase ( gshI ) mutants, deficient in glutathione synthesis, being hypersensitive to H2O2 and Superoxide anions in both exponential- and stationary-phase cultures. Despite this, these mutants are still able to induce adaptive stress responses to oxidants.  相似文献   

17.
A thermotolerant Saccharomyces cerevisiae yeast strain, YK60‐1, was bred from a parental strain, MT8‐1, via stepwise adaptation. YK60‐1 grew at 40°C, a temperature at which MT8‐1 could not grow at all. YK60‐1 exhibited faster growth than MT8‐1 at 30°C. To investigate the mechanisms how MT8‐1 acquired thermotolerance, DNA microarray analysis was performed. The analysis revealed the induction of stress‐responsive genes such as those encoding heat shock proteins and trehalose biosynthetic enzymes in YK60‐1. Furthermore, nontargeting metabolome analysis showed that YK60‐1 accumulated more trehalose, a metabolite that contributes to stress tolerance in yeast, than MT8‐1. In conclusion, S. cerevisiae MT8‐1 acquired thermotolerance by induction of specific stress‐responsive genes and enhanced intracellular trehalose levels. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1116–1123, 2013  相似文献   

18.
利用PCR方法以酿酒酵母Saccharomyces cerevisiae S288c基因组DNA为模板;PCR扩增γ -谷氨酰半胱氨酸合成酶(GSH1)及谷胱甘肽合成酶(GSH2)基因;以乙醇脱氢酶(ADH1)启动子进行表达;并以Kanr基因和Hygr基因作为筛选标记;构建了两个重组表达质粒YEplace181AK-GSH1和YEplace181AH-GSH2。采用电击法将这两个质粒分别和同时转入工业酿酒酵母菌株Saccharomyces cerevisiae TS013;在含有G418或(和)Hygromycin的平板上筛选阳性克隆S.TS013/GSH1、S.TS013/GSH2和S.TS013/GSH1+GSH2。重组菌进行摇瓶发酵;采用四氧嘧啶法测定培养细胞合成谷胱甘肽含量。结果显示;不同转化子重组菌的胞内谷胱甘肽产量比宿主菌分别提高了44.11%、29.79%和56.47%。  相似文献   

19.
    
Saccharomyces cerevisiae mutant strains deficient in superoxide dismutase (Sod), an antioxidant enzyme, were used to analyze cadmium absorption and the oxidation produced by it. Cells lacking the cytosolic Sod1 removed twice as much cadmium as the control strain, while those deficient in the mitochondrial Sod2 exhibited poor metal absorption. Interestingly, the sod1 mutant did not become more oxidized after exposure to cadmium, as opposed to the control strain. We observed that the deficiency of Sod1 increases the expression of both Cup1 (a metallothionein) and Ycf1 (a vacuolar glutathione S-conjugate pump), proteins involved with protection against cadmium. Furthermore, when sod1 cells were exposed to cadmium, the ratio glutathione oxidized/glutathione reduced did not increase as expected. We propose that a high level of metallothionein expression would relieve glutathione under cadmium stress, while an increased level of Ycf1 expression would favor compartmentalization of this metal into the vacuole. Both conditions would reduce the level of glutathione-cadmium complex in cytosol, contributing to the high capacity of absorbing cadmium by the sod1 strain. Previous results showed that the glutathione-cadmium complex regulates cadmium uptake. These results indicate that, even indirectly, metallothionein also regulates cadmium transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号