首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of (H2tmen)[PtCl4], (1), (H2tmen = N,N,N′,N′-tetramethylethylenediammonium), [triclinic, P ; A = 7.344(3), B = 8.345(3), C = 6.216(2) Å, α = 84.53(3), β = 109.22(3), γ = 69.43(3)°, Z = 1] and (H2tmen)[PtCl6], (2), [monoclinic, P21/a; A = 14.409(4), B = 12.736(7), C = 8.601(3) Å, β = 99.58(3)°, Z = 4] were determined from diffractometric data by Patterson and Fourier methods and refined by full-matrix least-squares to R = 0.027 and 0.039 for (1) and (2) respectively. In both cases the anions and cations are joined in polymeric chains through hydrogen bonds involving the protonated nitrogens and the co-ordinated chlorine atoms. The square-planar [PtCl4]2− and octahedral [PtCl6]2− anions are centrosymmetric; the H2tmen2+ cations are centrosymmetric in (1) with a N-C-C-N dihedral angle of exactly 180°, while in (2) the dihedral angle is 166°. The different symmetry of the organic moieties/Ci and C1 in (1) and (2) respectively] results in a different i.r. spectrum which is more complex the lower the symmetry; moreover the spectrum of a KBr pellet of (2) changes with time, finally resembling that of (1) and of the (H2tmen)Cl2 salt.  相似文献   

2.
The crystal structure of the title compound, SnCl(C6H5)(C4H9)[S2CN(C2H5)2], was determined and refined to an R factor of 3.2% for 4876 reflections. The molecule contains five-coordinate tin in a distorted trigonal bipyramidal arrangement with the tin atom lying 0.20 Å below the equatorial plane formed by one of the sulphur atoms, S(1), and the donor carbons of the butyl and phenyl groups. The chlorine and the other sulphur atom, S(2), occupy axial sites, making a S(2)SnCl angle of 156.85(1)°. The SnS(2) bond is markedly elongated (2.764(1) Å) compared to the SnCl bond (2.449(1) Å) and the SnS(1) bond (2.454(1) Å). The structure resembles those of analogues such as (C6H5)2Sn(glygly) in having both hydrocarbon ligands located in the equatorial plane. Crystal data: space group P1: a = 8.291(2) Å, b = 14.726(3) Å, c = 9.509(2) Å, α = 96.24(2)°, β = 107.02(3)°, γ = 116.70(2)°, Z = 2, R = 3.2% for 4876 independent reflections.  相似文献   

3.
New chiral tetrahedral clusters (μ3-S)OsCoMo(CO)8C5H4C(O)R(R = H 2, CH3 3, C6H4C(O)OCH3 4) were synthesized by the reaction of the precursor (μ3-S)OsCo2(CO)9 1 with the functionally substituted metal exchange reagents [Mo(CO)35-C5H4)C(O)R] (R = H, CH3, C6H4C(O)OCH3). Then clusters 2, 3 and 4 were treated with 2,4-dinitrophenylhydrazine to obtain clusters (μ3-S)OsCoMo(CO)8C5H4CNNHC6H3(NO2)2R (R = H 5, CH3 6, C6H4C(O)OCH3 7), respectively. All the clusters were characterized by Element Analysis, IR and 1H NMR. The structures of clusters 3 and 4 were established by X-ray single crystal diffraction. Interestingly, carbonyl group on the cyclopentadienyl ligand and cyclopentadienyl ring are not in the same plane, in cluster 3, torsion angle C27-C28-C29-O18 is −176.1(9), but in cluster 4, torsion angle C12-C13-C14-O9 is 167.5(17), which shows that carbonyl function group on the cyclopentadienyl ligand offsets the cyclopentadienyl ring more markedly than that in cluster 3. It showed that both conjugated effects and space hinder of phenyl ring in the cluster 4 are important factors to decide atoms positioning in three-dimensional structure of the clusters.  相似文献   

4.
Branchlets of broccoli (Brassica oleracea L.) were used to examine ethylene-stimulated chlorophyll catabolism. Branchlets treated with: 1) air (CK); 2) 1 µL·L–1 1-methylcyclopropene (1-MCP) for 14 hr at 20 °C; 3) 1000 µL·L–1 ethylene (C2H4) for 5 hr at 20 °C; or 4) 1-MCP then C2H4, were stored in the dark at 20 °C for up to 3 d. Chlorophyll (Chl) content and branchlet hue angle decreased during the storage period and 1-MCP treatment delayed this change. Chl degradation in broccoli was accelerated by exposure to C2H4, especially for Chl a. Prior treatment with 1-MCP prevented degreening stimulated by C2H4. Lipoxygenase activity was not altered by any of the treatments, however, 1-MCP with or without ethylene resulted in reduced activity of chlorophyllase (Chlase) and peroxidase (POD). Exposure to C2H4 stimulated Chlase activity and extended the duration of high POD activity. Treatment with 1-MCP followed by C2H4 resulted in reduced POD activity and delayed the increase in Chlase activity. The results suggest chlorophyll in broccoli can be degraded via the POD – hydrogen peroxide system. Exposure to C2H4 enhances activity of Chlase and extends the duration of high POD activity, and these responses may accelerate degreening. Treatment with 1-MCP delays yellowing of broccoli, an effect that may be due to the 1-MCP-induced reduction in POD and Chlase activities.  相似文献   

5.
The growth of lateral buds (tillers), which are undergoing release from apical dominance, was measured in upright and gravistimulated intact Avena sativa L. cv. `Victory' (oat) shoots as well as in isolated Avena stem segments treated with kinetin and sucrose. During release, the tiller bud initially shows a slow rate of elongation accompanied by swelling. It is followed by a more rapid rate of elongation. Ethylene (C2H4) production in shoot segments containing a tiller bud was found to occur at the onset of tiller swelling during gravistimulation as well as during inflorescence emergence. Exogenous application of indoleacetic acid or C2H4 inhibits kinetin-induced tiller bud swelling and elongation. However, stem segments pulsed for 24 hours in C2H4 or the C2H4 biosynthesis precursor, 1-amino-cyclopropane-1-carboxylic acid (ACC) and then transferred to kinetin and sucrose, showed a significant increase in swelling elongation as compared with segments maintained under the same conditions but without C2H4 or ACC in the pulse. Segments pulsed for 24 hours with kinetin and sucrose plus the ACC biosynthesis inhibitor, aminoethoxyvinylglycine, or the C2H4 action inhibitor, CO2, then transferred to kinetin and sucrose medium, showed inhibition of tiller swelling during the pulse and of subsequent elongation. These results indicate that C2H4 plays a role in promoting tiller swelling during the onset of tiller release from apical dominance and may act as a modulator hormone in promoting tiller elongation in the presence of cytokinin.  相似文献   

6.
《Inorganica chimica acta》2006,359(11):3671-3676
Reaction of the salt [Rh(PMe3)4]Cl (1) with p-F3C–C6H4–CC–CC–C6H4-p-CF3 (2) in THF gives a mixture of two related neutral π-bound diyne complexes of [Rh(PMe3)3Cl], each having two distinct CF3 resonances of equal intensity in the in situ 19F{1H} NMR spectrum. The ratio of the two products can be varied by varying the stoichiometry of the reagents. On the basis of the spectroscopic data and literature precedent, we propose Rh(PMe3)3(Cl)((1,2-η2)-p-F3C–C6H4–CC–CC–C6H4-p-CF3) (3a) and [Rh(PMe3)3(Cl)]2(μ-(1,2-η2):(1,2-η2)-p-F3C–C6H4–CC–CC–C6H4-p-CF3) (3b) as the most likely structures of the species in solution. However, upon standing overnight, single crystals of the unusual, dinuclear complex [Rh(PMe3)3(Cl)]2(μ-(1,2-η2):(3,4-η2)-p-F3C–C6H4–CC–CC–C6H4-p-CF3) (4), an isomer of 3b, form reproducibly and in good yield as two different solvates from THF/C6D6 solution. The centrosymmetric structure of 4, obtained from single-crystal X-ray diffraction data, displays a transoid orientation of the bridging diarylbutadiyne ligand.  相似文献   

7.
Nodulated cowpea (Vigna unguiculata L. Walp. cv Vita 3:Bradyrhizobium CB 756) plants were cultured with their whole root system or crown root nodulation zone maintained for periods from 5 to 69 days after planting in atmospheres containing a range of pO2 (1-80%, v/v) while the rest of the plant grew in normal air. Growth (dry matter yield) and N2 fixation were largely unaffected by pO2 from 10 to 40%. Decrease in fixation at pO2 below 5% was due to lower nodulation and nodule mass and, at pO2 above 60%, to a fall in specific N2-fixing activity of nodules. Root:shoot ratios were significantly lower at pO2 below 2.5%. The effect of pO2 on nitrogenase activity (acetylene reduction), both of whole nodulated root systems and crown root nodulation zones, varied with plant age but was generally lower at supra- and subambient extremes of O2. H2 evolution showed a sharp optimum at 20% O2 but was at most 4% of total nitrogenase activity. The ratio of CO2 evolved to substrate (C2H2+H+) reduced by crown root nodulation zones was constant (6 moles CO2 per mole substrate reduced) from 2.5 to 60% O2 but at levels below 2.5 and above 80% O2 reached values between 20 and 30 moles CO2 per mole substrate reduced. Effects of long-term growth with nonambient pO2 on adaptation and efficiency of functioning of nodules are discussed.  相似文献   

8.
《Inorganica chimica acta》2006,359(9):2859-2863
Terminal alkynes (R–CC–H, R = 1-naphthyl, 9-anthryl, 4-Me2N–C6H4–, or the longer analogue, 4-(4-Me2N–C6H4–CC–)–C6H4–) react with [Rh(PMe3)4Me] at ambient temperature, with loss of methane and one PMe3 ligand, to form the corresponding mer,trans-[(PMe3)3Rh(CCR)2H] compounds in excellent yield. In this preliminary study, the synthesis and spectroscopic characterization of the four new compounds are reported, along with the single-crystal structure of the R = 4-Me2N–C6H4 derivative.  相似文献   

9.
Oxorhenium(V) complexes with ‘3+1’ mixed ligands, [ReO(SSS)L], where SSS is η3-(SCH2CH2SCH2CH2S), L = η1-(C6H4COOH-4-S), η1-(C6H4CONHCH2COOEt-4-S), η1-(C6H4CONHCH(CH3)COOEt-4-S), and η1-(C6H4CONHCH(CH2Ph)COOEt-4-S), have been synthesized. These L ligands and [ReO(SSS)L] complexes were characterized by IR, 1H NMR, 13C NMR, and MAS spectrometers. Molecular structure of [ReO(SSS){η1-(C6H4COOH-4-S)}] complex was determined to be a distorted square pyramidal by single crystal X-ray analytical method.  相似文献   

10.
《MABS-AUSTIN》2013,5(1):84-95
This study compares the local conformational dynamics and physical stability of an IgG1 mAb (mAb-A) with its corresponding YTE (M255Y/S257T/T259E) mutant (mAb-E), which was engineered for extended half-life in vivo. Structural dynamics was measured using hydrogen/deuterium (H/D) exchange mass spectrometry while protein stability was measured with differential scanning calorimetry (DSC) and size exclusion chromatography (SEC). The YTE mutation induced differences in H/D exchange kinetics at both pH 6.0 and 7.4. Segments covering the YTE mutation sites and the FcRn binding epitopes showed either subtle or no observable differences in local flexibility. Surprisingly, several adjacent segments in the CH2 and distant segments in the VH, CH1, and VL domains had significantly increased flexibility in the YTE mutant. Most notable among the observed differences is increased flexibility of the 244–254 segment of the CH2 domain, where increased flexibility has been shown previously to correlate with decreased conformational stability and increased aggregation propensity in other IgG1 mAbs (e.g., presence of destabilizing additives as well as upon de-glycosylation or methionine oxidation). DSC analysis showed decreases in both thermal onset (Tonset) and unfolding (Tm1) temperatures of 7°C and 6.7°C, respectively, for the CH2 domain of the YTE mutant. In addition, mAb-E aggregated faster than mAb-A under accelerated stability conditions as measured by SEC analysis. Hence, the relatively lower physical stability of the YTE mutant correlates with increased local flexibility of the 244–254 segment, providing a site-directed mutant example that this segment of the CH2 domain is an aggregation hot spot in IgG1 mAbs.  相似文献   

11.
This study compares the local conformational dynamics and physical stability of an IgG1 mAb (mAb-A) with its corresponding YTE (M255Y/S257T/T259E) mutant (mAb-E), which was engineered for extended half-life in vivo. Structural dynamics was measured using hydrogen/deuterium (H/D) exchange mass spectrometry while protein stability was measured with differential scanning calorimetry (DSC) and size exclusion chromatography (SEC). The YTE mutation induced differences in H/D exchange kinetics at both pH 6.0 and 7.4. Segments covering the YTE mutation sites and the FcRn binding epitopes showed either subtle or no observable differences in local flexibility. Surprisingly, several adjacent segments in the CH2 and distant segments in the VH, CH1, and VL domains had significantly increased flexibility in the YTE mutant. Most notable among the observed differences is increased flexibility of the 244–254 segment of the CH2 domain, where increased flexibility has been shown previously to correlate with decreased conformational stability and increased aggregation propensity in other IgG1 mAbs (e.g., presence of destabilizing additives as well as upon de-glycosylation or methionine oxidation). DSC analysis showed decreases in both thermal onset (Tonset) and unfolding (Tm1) temperatures of 7°C and 6.7°C, respectively, for the CH2 domain of the YTE mutant. In addition, mAb-E aggregated faster than mAb-A under accelerated stability conditions as measured by SEC analysis. Hence, the relatively lower physical stability of the YTE mutant correlates with increased local flexibility of the 244–254 segment, providing a site-directed mutant example that this segment of the CH2 domain is an aggregation hot spot in IgG1 mAbs.  相似文献   

12.
A hydrogen peroxide (H2O2) sensor was developed by electrodepositing Prussian blue (PB) on a gold electrode modified with (3-mercaptopropyl)-trimethoxysilane (MPS) polymer. The characterization of the self-assembled electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The results of electrochemical experiments showed that such constructed sensor had a favorable catalytic ability to reduce H2O2. The MPS film on the modified gold electrode greatly enhanced the pH-adaptive range of PB. Large surface-to-volume ratio property of double-layer 2d-network MPS-modified PB electrode enabled stable and highly sensitive performance of the non-enzymatic H2O2 sensor. The linear range of H2O2 determined is from 2.0 × 10−6 to 2.0 × 10−4 mol L−1 with a correlation coefficient of 0.9991 and a detection limit for H2O2 of 1.8 × 10−6 mol L−1. The influences of the potentially interfering substances on the determination of H2O2 were investigated. This modified electrode exhibits a good selectivity and high sensitivity with satisfactory results.  相似文献   

13.
《Inorganica chimica acta》2006,359(9):2812-2818
Alkynylgold(I) complexes incorporating a chiral binaphthyl group have been prepared. Bis(alkyne) reagents [rac-1,1′-C20H12-2,2′-(OCH2CCH)2] (1) and [rac-1,1′-C20H12-2,2′-(OC(O)CH2CCH)2] (2), react with [AuCl(SMe2)] and base to give insoluble oligomeric alkynylgold(I) complexes [rac-1,1′-C20H12-2,2′-(OCH2CCAu)2]n (3) and [rac-1,1′-C20H12-2,2′-(OC(O)CH2CCAu)2]n (4), which react with phosphine or diphosphine ligands to give soluble complexes [rac-1,1′-C20H12-2,2′-(OCH2CCAuPR3)2] (5), R = Ph or Cy, [rac-1,1′-C20H12-2,2′-(OCH2CCAu)2(Ph2P(CH2)nPPh2)] (6), or [rac-1,1′-C20H12-2,2′-(OC(O)CH2CCAu)2(Ph2P(CH2)nPPh2)] (7), with n = 3–5. Several of the complexes 6 and 7 are shown to exist as mixtures of isomeric forms in solution.  相似文献   

14.
Laser photoacoustic spectroscopy continuously quantified the ethylene (C2H4) produced by strawberry flowers and fruits developing in planta. C2H4 was first detected as flower buds opened and exhibited diurnal oscillations (to approximately 200 pl flower?1 h?1) before petal abscission. Exogenous application of silver thiosulphate (STS) to detached flowers inhibited petal abscission and flower senescence. In fruit, C2H4 production was maintained at a ‘low level’ (10–60 pl fruit?1 h?1) until fruit expanded when levels increased in a diurnal pattern (to 200 pl fruit?1 h?1). After expansion, C2H4 production declined to a low level until fruit attained the red‐ripe stage for at least 24 h. After this time, C2H4 levels increased linearly (no diurnal fluctuation) to approximately 1 nL fruit?1 h?1. Twenty‐four hours after the re‐initiation of C2H4 production by red fruit, CO2 levels increased approximately three‐fold, indicative of a respiratory climacteric. STS applied to fruits developing in planta and dissected fruit parts ex situ established that C2H4 production is regulated by negative feedback until fruits had expanded. The C2H4 produced by red‐ripe fruit was regulated by positive feedback. Anti‐1‐amino‐cyclopropane‐1‐carboxylic acid oxidase IgG localization identified immunoreactive antigens of 40 and 30 kDa (Mr) within the fruit achenes of expanding and red‐ripe fruit. Analysis of dissected fruit showed that seed C2H4 accounts for 50% the C2H4 that is detectable from ripe fruit.  相似文献   

15.
Loss of intestinal CD4+ T cells was associated with decreased production of several T-helper 1 (TH1) and TH2 cytokines and increased production of interleukin 17 (IL-17), gamma interferon (IFN-γ), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by CD8+ T cells 21 days after simian immunodeficiency virus (SIV) infection in rhesus macaques. Shifting of mucosal TH1 to TH2 or T-cytotoxic 1 (TC1) to TC2 cytokine profiles was not evident. Additionally, both CD4+ and CD8+ T cells showed upregulation of macrophage migration inhibition factor (MIF) and basic fibroblast growth factor (FGF-basic) cytokines that have been linked to HIV disease progression.  相似文献   

16.
17.
We compared aboveground tree forms among closely related species in two genera of the Sterculiaceae (Scaphium and Heritiera) in a Bornean mixed dipterocarp forest. Two significant allometric patterns were detected: a negative correlation between the height at the onset of branching and the slope of the species-specific Cr (crown width)-D (stem diameter) allometric relationship for juveniles (D<10 cm), and a negative correlation between H max (observed maximum height) and the Cr-D slope. The slope of the Cr-D allometric relationship of branched trees was significantly steeper than that of monoaxial (unbranched) trees in most species. These results suggest that the branching growth habit is better adapted than the monoaxial growth habit to crown expansion, and that the morphology of short species is better adapted to crown expansion than that of tall species. We did not detected significant correlations between the height at the onset of branching and the slope of the H (height)-D allometric relationship for juvenile trees, and between H max and the H-D slope. In addition, the monoaxial and branched juvenile of most species did not differ significantly in the allometric slopes of the H-D relationship. Therefore, the study does not support the hypotheses that a monoaxial growth habit favors rapid height growth and that tall species have allometries better adapted to height growth.  相似文献   

18.
The kinetics of change in the fluidity of liposome membranes, obtained in the process of sonication of Egg Yolk Lecithin (EYL), with the admixture of organic tin compounds, was investigated. Five compounds were selected for the research: three differed in the length of hydrocarbon chains, (CH3)4Sn, (C2H5)4Sn, and (C3H7)3SnCl, whereas two differed in the number of aromatic rings, (C6H5)2SnCl2 and (C6H5)3SnCl. The concentration of the compounds in proportion to EYL was 2 mol-%. Electron Spin (paramagnetic) Resonance (ESR) was applied using two spin probes TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) and 16-DOXYL-stearic acid methyl ester (2-ethyl-2-(15-methoxy-15-oxopentadecyl)-4,4-dimethyl-3-oxazolidinyloxyl) localized at different sites within the membrane, to determine the spectroscopic parameters: partition (F) and rotation correlation time (τ), related to the membrane's fluidity. The ESR spectroscopic spectra of investigated samples were recorded from the moment of introducing the admixture to membranes for 180h. Analysing the obtained results, the following conclusions can be drawn: chain compounds slightly stiffened the membrane both on the inside (hydrophobic) layer and on the surface one, whereas ring compounds resulted in fluidization of the membrane—stronger in the case of the two-layer middle and weaker with reference to the surface layer.  相似文献   

19.
Nitrogen-fixingAnabaena cylindrica cells are found to evolve hydrogen in high quantities in the presence of CO plus C2H2. Studies with the inhibitors dichlorophenyldimethylurea (DCMU), disalicylidenepropanediamine (DSPD), dibromothymoquinone (DBMIB), undecylbenzimidazole (UDB) and chloro-carbonyl-cyanide-phenylhydrazone (CCCP) and also withAnabaena grown on nitrate- and ammonia-nitrogen show that the H2-formation is due to the ATP-dependent H3O+-reduction catalysed by nitrogenase. In control experiments CO plus C2H2 inhibited the activities of a cell-free hydrogenase fromClostridium pasteurianum. It is concluded that Anabaena has a hydrogenase whose natural function is to recycle the H2 lost by the action of nitrogenase.Abbreviations Cl-CCP m-chloro-carbonyl-cyanide-phenylhydrazone - DSPD disalicylidenepropanediamine(1–3) - DBMIB dibromothymoquinone - DCMU N-(3,4-dichlorophenyl) NN-dimethyl-urea - UDB 2-undecyl-benzimidazole  相似文献   

20.
Electrochemical oxidation of [C10H10N]2[Pt(ox)2] · H2O (1) (C10H10N = N-methylisoquinolinium, ox = oxalate) leads to the synthesis of new partially oxidized platinum nanowires of formula [C10H10N]1.6[Pt(ox)2] · 3H2O (2). The nanowires were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Wires with diameters of less than 5 nm and lengths of over 1 μm were observed. Energy dispersive spectroscopy (EDS) and microanalysis confirmed the degree of partial oxidation of the nanowires. The bulk electrical properties including phase angle and real and imaginary impedance values were measured and a model of the electrical conduction circuit was proposed. The significance of this work is that the large N-methylisoquilolinium cation leads to nanostructures, possibly involving individual molecular wires which has not been previously observed in the bis(oxalato)platinate nanowire system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号