首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several management techniques are effective in controlling Lepidium latifolium (perennial pepperweed) in rangelands and hay meadows; however, this invader’s rapid spread into sensitive aquatic habitats throughout the western US calls for alternative control strategies. To evaluate control methods for use in tidal marshes of San Francisco Estuary, we tested chemical, mechanical, and biological methods in field and greenhouse experiments. In a field experiment in three brackish marshes spanning the estuary, application of the herbicide glyphosate to re-growth of L. latifolium following hand-removal reduced L. latifolium cover by an average of 80% after 2 years and led to a 60% increase in native vegetation cover. Glyphosate alone was less effective at reducing L. latifolium cover (20% decrease) and increasing native cover (34% increase). Preliminary tests of a potential biological control, a native parasitic plant, were not successful, thus plots intended for field trials were instead used to test the newly approved herbicide imazapyr, which showed promise in controlling L. latifolium. An additional greenhouse experiment found large reductions in stem lengths with either glyphosate following clipping or imazapyr with or without clipping, all significantly more so than glyphosate alone. We conclude that an integrated management approach of applying glyphosate following mechanical removal can be effective at reducing L. latifolium cover and allowing recovery of native tidal marsh plants, providing a useful solution for controlling smaller, accessible infestations of the invader. Our preliminary tests of imazapyr suggest that it may be very effective at controlling L. latifolium in tidal marshes, although further assessment of non-target effects and native plant recovery are needed to evaluate its relative merit.  相似文献   

2.
Reclamation of highly disturbed lands typically includes establishing fast‐growing, non‐native plants to achieve rapid ground cover for erosion control. Establishing native plant communities could achieve ecosystem functions beyond soil erosion, such as providing wildlife habitat. Pipelines, or other disturbed corridors through a landscape, present unique challenges for establishing native plant communities given the heterogeneity of soil environments and invasive plant propagule pressure. We created two structural equation models to address multiple related hypotheses about the influence of soil pH on plant community composition (current diversity and vegetative cover of the original restoration seed mix and background flora, and invasive plant density during mix establishment and current density) of a highly disturbed landscape corridor restored with native species. To test our hypotheses we conducted a plant survey on a gas pipeline crossing two state forests in the north‐central Appalachians that had been seeded with a native‐based mixture 8 years prior. Low soil pH was a strong predictor of density of the invasive annual plant, Microstegium vimineum, and had resulted in lower species diversity and cover of the seeded mix. Overall, our data provide evidence that native‐based grass and forb mixtures can establish and persist on a wide range of soil environments and thrive in competition with invasive plants in moderately acidic to neutral soils. Advancing knowledge on restoration methods using native species is essential to improving restoration practice norms to incorporate multifunctional ecological goals.  相似文献   

3.
Grasslands are undergoing tremendous degradation as a result of climate change, land use, and invasion by non‐native plants. However, understanding of the factors responsible for driving reestablishment of grassland plant communities is largely derived from short‐term studies. In order to develop an understanding of the factors responsible for longer term restoration outcomes in California annual grasslands, we surveyed 12 fields in Davis, CA, U.S.A., in 2015 that were seeded with native species mixtures starting in 2004. Using field surveys, we investigated how invasive plant richness and cover, native plant richness and cover, aboveground biomass, grazing, soil type, and restoration species identity might provide utility for explaining patterns of restoration success. We found a negative relationship between invasive cover and restoration cover, which was attributed to the slow establishment of seeded species and subsequent dominance by weeds. The relationship between invasive cover and restoration cover was modified by grazing, likely due to a change in the dominance of exotic forbs, which have a more similar growing season to restoration species, and therefore compete more strongly for late season moisture. Finally, we found that soil type was responsible for differences in the identity and abundance of invasive plants, subsequently affecting restoration cover. This work highlights the value of focusing resources on reducing invasive species cover, limiting grazing to periods of adequate moisture, and considering soil type for successful long‐term restoration in California annual grasslands. Moreover, observations of long‐term restoration outcomes can provide insight into the way mechanisms driving restoration outcomes might differ through time.  相似文献   

4.
Site preparation designed to exhaust the soil seedbank of adventive species can improve the success of tallgrass prairie restoration. Despite these efforts, increased rates of atmospheric nitrogen (N) deposition over the next century could potentially promote the growth of nitrophilic, adventive species in tallgrass restoration projects. We used a field experiment to examine how N addition affected species composition and plant productivity over the first 3 years of a tallgrass prairie restoration that was preceded by the planting of glyphosate‐resistant crops and multiple applications of glyphosate to exhaust the pre‐existing seedbank. We predicted that N addition would increase the percent cover of adventive plant species not included in the original seeding. Contrary to our prediction, only the cover of native species increased with N addition; native non‐leguminous forbs increased substantially, with Conyza canadensis (a weedy native species not part of the restoration seed mix) exploiting the combination of high N and bare ground in the first year, and non‐leguminous forbs (in particular Monarda fistulosa) and native C3 grasses, all of which were seeded, increasing with N addition by the third year. Native legumes was the only functional group that exhibited lower cover in N addition plots than in control plots. There was no significant response by native C4 grasses to N addition, and adventive grasses remained mostly absent from the plots. Overall, our results suggest that site pre‐treatment with herbicide may continue to be effective in minimizing adventive grasses in restored tallgrass prairie, despite future increases in atmospheric N deposition.  相似文献   

5.
There is currently much interest in restoration ecology in identifying native vegetation that can decrease the invasibility by exotic species of environments undergoing restoration. However, uncertainty remains about restoration's ability to limit exotic species, particularly in deserts where facilitative interactions between plants are prevalent. Using candidate native species for restoration in the Mojave Desert of the southwestern U.S.A., we experimentally assembled a range of plant communities from early successional forbs to late‐successional shrubs and assessed which vegetation types reduced the establishment of the priority invasive annuals Bromus rubens (red brome) and Schismus spp. (Mediterranean grass) in control and N‐enriched soils. Compared to early successional grass and shrub and late‐successional shrub communities, an early forb community best resisted invasion, reducing exotic species biomass by 88% (N added) and 97% (no N added) relative to controls (no native plants). In native species monocultures, Sphaeralcea ambigua (desert globemallow), an early successional forb, was the least invasible, reducing exotic biomass by 91%. However, the least‐invaded vegetation types did not reduce soil N or P relative to other vegetation types nor was native plant cover linked to invasibility, suggesting that other traits influenced native‐exotic species interactions. This study provides experimental field evidence that native vegetation types exist that may reduce exotic grass establishment in the Mojave Desert, and that these candidates for restoration are not necessarily late‐successional communities. More generally, results indicate the importance of careful native species selection when exotic species invasions must be constrained for restoration to be successful.  相似文献   

6.
Exotic plant invasion can have dramatic impacts on native plants making restoration of native vegetation at invaded sites challenging. Though invasives may be superior competitors, it is possible their dominance could be enhanced by insect herbivores if native plants are preferred food sources. Insect herbivory can regulate plant populations, but little is known of its effects in restoration settings. There is a need to better understand relationships between insect herbivores and invasive plants with regard to their combined potential for impacting native plant establishment and restoration success. The objective of this study was to assess impacts of grasshopper herbivory and the invasive grass Bromus tectorum (cheatgrass) on mortality and growth of 17 native plant species used in restoration of critical sagebrush steppe ecosystems. Field and greenhouse experiments were conducted using moderate densities of a common, generalist pest grasshopper (Melanoplus bivittatus). Grasshoppers had stronger and more consistent impacts on native restoration plants in field and greenhouse studies than cheatgrass. After 6 weeks in the greenhouse, grasshoppers were associated with 36% mortality over all native restoration species compared to 2% when grasshoppers were absent. Herbivory was also associated with an approximately 50% decrease in native plant biomass. However, effects varied among species. Artemisia tridentata, Chrysothamnus viscidiflorus, and Coreopsis tinctoria were among the most negatively impacted, while Oenothera pallida, Pascopyrum smithii, and Leymus cinerus were unaffected. These findings suggest restoration species could be selected to more effectively establish and persist within cheatgrass infestations, particularly when grasshopper populations are forecasted to be high.  相似文献   

7.
The restoration of areas invaded by non‐native plants is challenging as invasive plants may affect both biotic and abiotic components of ecosystems, leading to impacts that constrain recolonization by native species after invaders are eliminated. In such a scenario, restoration techniques as topsoil transposition might accelerate colonization by native species in forests. Hedychium coronarium J. Koenig (Zingiberaceae) is a Himalayan herbaceous rhizomatous plant recognized as invasive in several countries. This study aimed to experimentally evaluate the response of plant assemblages to topsoil transposition on a site invaded by H. coronarium after chemical control. Four treatments were applied: chemical control integrated with topsoil transposition, chemical control of H. coronarium alone, topsoil transposition alone, and no intervention (control). Plots were evaluated prior to the application of treatments and then monthly for 11 months after treatments. Parameters were measured for H. coronarium (number of ramets, ramet height, and cover) and other species (species richness, abundance, and cover). Plots treated with chemical control (regardless of topsoil transposition) were similar in terms of all parameters measured and species composition, with dominance of herbs and shrubs. Plots managed solely with topsoil transposition had lower species richness, abundance, and cover, but more diverse life‐forms, being equally rich in climbers, trees, and herbs. Chemical control was effective to control invasion by H. coronarium and increase species richness and abundance on the managed site. Topsoil transposition promoted colonization by species that might accelerate restoration.  相似文献   

8.
After removing invasive plants, whether by herbicides or other means, typical restoration design focuses on rebuilding native plant communities while disregarding soil microbial communities. However, microbial–plant interactions are known to influence the relative success of native versus invasive plants. Therefore, the abundance and composition of soil microorganisms may affect restoration efforts. We assessed the effect of herbicide treatment on phytosymbiotic pink‐pigmented facultative methylotrophic (PPFM) bacteria and the potential consequences of native and invasive species establishment post‐herbicide treatment in the lab and in a coastal sage scrub (CSS)/grassland restoration site. Lab tests showed that 4% glyphosate reduced PPFM abundance. PPFM addition to seeds increased seedling length of a native plant (Artemisia californica) but not an invasive plant (Hirschfeldia incana). At the restoration site, methanol addition (a PPFM substrate) improved native bunchgrass (Nassella pulchra) germination and size by 35% over controls. In a separate multispecies field experiment, PPFM addition stimulated the germination of N. pulchra, but not that of three invasive species. Neither PPFM nor methanol addition strongly affected the growth of any plant species. Overall, these results are consistent with the hypothesis that PPFMs have a greater benefit to native than invasive species. Together, these experiments suggest that methanol or PPFM addition could be useful in improving CSS/grassland restorations. Future work should test PPFM effects on additional species and determine how these results vary under different environmental conditions.  相似文献   

9.
Ecological restoration is a multibillion dollar industry critical for improving degraded habitat. However, most restoration is conducted without clearly defined success measures or analysis of costs. Outcomes are influenced by environmental conditions that vary across space and time, yet such variation is rarely considered in restoration planning. Here, we present a cost‐effectiveness analysis of terrestrial restoration methods to determine how practitioners may restore the highest native plant cover per dollar spent. We recorded costs of 120 distinct methods and described success in terms of native versus non‐native plant germination, growth, cover, and density. We assessed effectiveness using a basic, commonly used metric (% native plant cover) and developed an index of cost‐effectiveness (% native cover per dollar spent on restoration). We then evaluated success of multiple methods, given environmental variation across topography and multiple years, and found that the most successful method for restoring high native plant cover is often different from the method that results in the largest area restored per dollar expended, given fixed mitigation budgets. Based on our results, we developed decision‐making trees to guide practitioners through established phases of restoration—site preparation, seeding and planting, and maintenance. We also highlight where additional research could inform restoration practice, such as improved seasonal weather forecasts optimizing allocation of funds in time or valuation practices that include costs of specific outcomes in the collection of in lieu fees.  相似文献   

10.
The outcomes of invasive plant removal efforts are influenced by management decisions, but are also contingent on the uncontrolled spatial and temporal context of management areas. Phragmites australis is an aggressive invader that is intensively managed in wetlands across North America. Treatment options have been understudied, and the ecological contingencies of management outcomes are poorly understood. We implemented a 5‐year, multi‐site experiment to evaluate six Phragmites management treatments that varied timing (summer or fall) and types of herbicide (glyphosate or imazapyr) along with mowing, plus a nonherbicide solarization treatment. We evaluated treatments for their influence on Phragmites and native plant cover and Phragmites inflorescence production. We assessed plant community trajectories and outcomes in the context of environmental factors. The summer mow, fall glyphosate spray treatment resulted in low Phragmites cover, high inflorescence reduction, and provided the best conditions for native plant recruitment. However, returning plant communities did not resemble reference sites, which were dominated by ecologically important perennial graminoids. Native plant recovery following initial Phragmites treatments was likely limited by the dense litter that resulted from mowing. After 5 years, Phragmites mortality and native plant recovery were highly variable across sites as driven by hydrology. Plots with higher soil moisture had greater reduction in Phragmites cover and more robust recruitment of natives compared with low moisture plots. This moisture effect may limit management options in semiarid regions vulnerable to water scarcity. We demonstrate the importance of replicating invasive species management experiments across sites so the contingencies of successes and failures can be better understood.  相似文献   

11.
Afforestation and fire exclusion are pervasive threats to tropical savannas. In Brazil, laws limiting prescribed burning hinder the study of fire in the restoration of Cerrado plant communities. We took advantage of a 2017 wildfire to evaluate the potential for tree cutting and fire to promote the passive restoration of savanna herbaceous plant communities after destruction by exotic tree plantations. We sampled a burned pine plantation (Burned Plantation); a former plantation that was harvested and burned (Harvested & Burned); an unburned former plantation that was harvested, planted with native trees, and treated with herbicide to control invasive grasses (Native Tree Planting); and two old-growth savannas which served as reference communities. Our results confirm that herbaceous plant communities on post-afforestation sites are very different from old-growth savannas. Among post-afforestation sites, Harvested & Burned herbaceous communities were modestly more similar in composition to old-growth savannas, had slightly higher richness of savanna plants (3.8 species per 50-m2), and supported the greatest cover of native herbaceous plants (56%). These positive trends in herbaceous community recovery would be missed in assessments of tree cover: whereas canopy cover in the Harvested & Burned site was 6% (less than typical of savannas of the Cerrado), the Burned Plantation and Native Tree Planting supported 34% and 19% cover, respectively. By focusing on savanna herbaceous plants, these results highlight that tree cutting and fire, not simply tree planting and fire exclusion, should receive greater attention in efforts to restore savannas of the Cerrado.  相似文献   

12.
Organisms interact with each other along a spectrum ranging from competition to facilitation. A theme in restoration ecology is tipping the balance of these interactions to favor desired species and site conditions, exemplified by restoring fertile islands and their nurse plant effects to encourage plant recruitment. We tested the effectiveness of outplanting nursery‐grown native perennials and vertical mulching (placing dead plant material upright in soil) for stimulating annual plant recruitment in a disturbed Mojave Desert shrubland in Joshua Tree National Park, California, U.S.A. Over 9 years, differences in annual species richness and cover between interspaces and below outplants and vertical mulch varied among years, potentially via inter‐annual fluctuations in precipitation or maturation of restoration sites. In the ninth year, which was the wettest, both native and non‐native cover averaged 3× higher below outplants than in interspaces. Overall among years at the microsite scale, non‐native annual plants more consistently exploited environments provided by outplants and vertical mulch structures than did native annuals. However, these restoration structures were important for native annual diversity. At the 40‐m2 plot scale, disturbed plots that received outplanting supported greater richness of native annual species than disturbed unrestored plots. By facilitating both non‐native and native plants, reestablishing fertile islands to restore dryland ecosystems is a conundrum for restoration. Treatments reducing non‐native plants may need to accompany fertile island restoration to tip the balance of facilitative plant interactions in favor of native species.  相似文献   

13.
Restoration often includes control of invasive plants, but little is known about how native plant communities respond to this control. The biennial Alliaria petiolata (M. Bieb.) Cavara and Grande (garlic mustard) is one of the most prevalent invasive plants in forests of eastern North America. We investigated the effects of the herbicide Round‐up (glyphosate) on Alliaria and the response of the forest floor plant community to the herbicide and the subsequent decline of Alliaria. In an old‐growth Acer–Fagus stand and a second‐growth Liriodendron‐dominated stand in Hueston Woods State Nature Preserve, Ohio, United States, we spot applied Round‐up in November 2000 and 2001 in 25 1 × 1–m plots and maintained 25 control plots. Herbicide decreased Alliaria density in both stands and reduced the density of other species in leaf during treatment (mostly exotic winter annuals) in the old‐growth stand. Treatment did not affect the initial density of the Alliaria cohort that germinated in the spring of 2001, but decreased the 2002 cohort. Community differences were found in the old‐growth stand after Alliaria reduction, specifically greater cover of spring ephemerals in the herbicide treatment. In the second‐growth stand, herbicide treatment increased reproduction of the late‐summer perennial, Phryma leptostachya. These results indicate that glyphosate reduces Alliaria without negatively impacting native species and that some native species respond positively to a single‐year reduction in this invasive biennial.  相似文献   

14.
Invasive plants that displace native floral communities can cause changes to associated invertebrate species assemblages. Using a mini‐review of the literature and our own data we add to the still considerable debate about the most effective methods for testing community‐level impacts by invasive species. In endangered saltmarshes of southeast Australia, the non‐native rush Juncus acutus L. is displacing its native congener J. kraussii Hochst., with concurrent changes to floral and faunal assemblages. In two coastal saltmarshes, we tested the hypothesis that the ability to detect differences in the invertebrate assemblage associated with these congeneric rushes depends on the microhabitat of the plant sampled. We used three sampling methods, each targeting specific microhabitats: sweep netting of the plant stems, vacuum sampling of the plant tussock, and vacuum sampling of the ground directly below the plants. Over 3800 individuals and 92 morphospecies were collected across four main taxa: gastropods, crustaceans, hexapods and arachnids. Detection of differences in invertebrate density, richness and composition associated with native compared with non‐native rushes was dependent on the microhabitat sampled and these differences were spatially variable. For example, at one saltmarsh the stems and tussock of J. acutus had a lower density and richness of total invertebrates and hexapods than those of the native J. kraussii. In contrast, crustaceans on the ground were in greater abundance below J. acutus than J. kraussii. This study demonstrates that on occasions where overall differences in the assemblage are not detected between species, differences may become apparent when targeting different microhabitats of the plant. In addition, separately targeting multiple microhabitats likely leads to a greater probability of detecting impacts of invasion. Comparing the invertebrate assemblage without differentiating between or sampling an array of microhabitats can fail to determine the impact of invasive species. These results highlight that a combination of methods targeting different microhabitats is important for detecting differences within the invertebrate community, even for phylogenetically related species.  相似文献   

15.
Abstract. Control of invasive plants is a key element of conservation and restoration efforts. We report results from a five‐year field experiment in western Oregon, USA that evaluates the effects of different mowing regimes on the non‐native and invasive perennial grass Arrhenatherum elatius, the native perennial prairie grasses Danthonia californica and Festuca roemeri, and groups of other native and non‐native grasses and forbs. Eight treatments were designed to test hypotheses about the role of mowing height and time of application on the plant community. Differences among treatments emerged only after two or three years of treatment. This delay in response reinforces the need for long‐term studies. Annual mowing was most effective at reducing Arrhenatherum cover and flowering when applied in late spring or early summer, the time of Arrhenatherum flowering and expected maximum above‐ground allocation. Double mowing and mowing at 15 cm were more effective in reducing Arrhenatherum cover than were single mowing and mowing at 50 cm. All treatments increased the cover and flowering of Danthonia. Statistical model analysis showed that increases in cover and flowering of the native grass Danthonia were caused by its release from suppression by Arrhenatherum. Fouryears of the most effective treatment, mowing at 15 cm in late spring, converted an Arrhenatherum‐dominated site to a prairie dominated by native grasses. This is one of the few documented cases of pest plant control causing an increase in native plant abundance. These results show that mowing, properly applied, can be an effective tool for restoring degraded, Arrhenatherum‐dormnated prairies.  相似文献   

16.
We studied the effects of hand weeding of second‐year plants of the biennial garlic mustard (Alliaria petiolata) on first‐year plants (seedlings) and native ground layer vegetation. Garlic mustard is a Eurasian species that has invaded deciduous forest ground layers in eastern North America. Treatments consisted of a control and an early or late weeding of second‐year garlic mustard. The early treatment (early March) was applied before garlic mustard seeds had germinated and when most native species were dormant. The late treatment (mid‐May) occurred after plants had bolted, flowering was occurring, and most native species and new garlic mustard seedlings were actively growing. Pre‐treatment data were obtained in 2004 and treated and control plots were sampled in 2005, 2006, and 2007. No significant treatment effects were observed in 2004 or 2005. In 2006, mean cover of first‐year plants was higher in the early weeding treatment than in the late weeding treatment and control. In 2007, mean cover of first‐year garlic mustard was higher in the control than in either of the two weeding treatments. There were no significant treatment effects in any year on native vegetation cover, bare ground, or the five most abundant native species. Our data indicate that (1) late weeding of garlic mustard provided more effective control than early weeding because late weeding allows second‐year plants to compete with garlic mustard seedlings for a longer period of time and (2) competition between first‐ and second‐year plants is responsible for alternating dominance of first‐year and second‐year garlic mustard plants.  相似文献   

17.
Using nurse plants to facilitate native plant recruitment in degraded habitats is a common restoration practice across various arid and semiarid environments. Living trees or shrubs are typically considered nurse plants, whereas dead shrubs left in the landscape from prolonged drought are understudied prospective facilitators for native plant recruitment. The interaction between nurse plants and biotic pressures, such as herbivory, on native recruitment is also not well understood in semiarid plant communities. We investigated the effects of facilitation and herbivory on native seedling germination, growth, and survival in the restoration of degraded coastal sage scrub (CSS) habitat. Native shrub seedlings (Artemisia californica and Salvia mellifera) were planted, and native annual species (Amsinckia intermedia, Deinandra fasciculata, Phacelia distans, and Pseudognaphalium californicum) were sown in three Shrub Type treatments (live shrub, dead shrub, and exposed areas), with a nested Cage treatment (no cage and cage) in each Shrub Type treatment. Annual species grew equally well in all Shrub Type treatments; shrub seedlings grew largest in exposed areas. While there was little evidence of facilitation for all species tested, there were strong positive effects of caging on growth and establishment of all species. Caging palatable native species or planting species with anti‐herbivory traits around target plants may be more strategic approaches compared to using nurse plants in restoring degraded CSS after extended drought.  相似文献   

18.

Questions

Selective herbicides are frequently used in ecological restoration to control invasive non-native forbs and recover plant communities. However, the long-term efficacy of this practice, its non-target effects on native plants, and its role in facilitating secondary invasions are not well understood. Similarly, little is known about the extent to which herbicide drift may affect native plant communities.

Location

Foothills grasslands of Montana, USA.

Methods

We conducted a 6-year experiment to investigate changes in the abundance of a target invasive plant, knapweed (Centaurea stoebe subsp. micranthos) and plant community structure in response to the herbicides Tordon® (picloram) and Milestone® (aminopyralid), applied at a recommended rate and a diluted rate that simulated drift.

Results

Knapweed cover and the richness of native and non-native forb species declined in the first 3 years in response to treatment at recommended rates, but not drift rates. Secondary invasion by non-native monocots was significant but weak. The cover of native forbs and the cover and richness of native monocots did not differ among treatments but changed significantly with the year. Surprisingly, 6 years after treatments, there were no differences among treatments in the cover of the target invasive plant or community structure.

Conclusions

Our results demonstrate that the efficacy and non-target effects of herbicides in grassland restoration can be short-lived and idiosyncratic because of year effects. Restoration of knapweed invasions might require other active interventions, such as seeding or repeated spraying. Our study supports previous calls for long-term monitoring of herbicides application in ecological restoration.  相似文献   

19.
Invasive non‐native plants pose a ubiquitous threat to native plant communities and have been blamed for the decline of many endangered species. Endangered species legislation provides legal instruments for protection, but identifying a general method for protecting endangered species by managing non‐natives is confounded by multiple factors. We compared non‐native management methods aimed at increasing populations of an endangered forb, Ambrosia pumila, and associated native plants. We compared the effects of a grass‐specific herbicide (Fusilade II), hand‐pulling, and mowing in two degraded coastal sage scrub sites in southern California, U.S.A. At both sites, hand‐pulling had the greatest effect on non‐native cover, and correspondingly resulted in the greatest increase in A. pumila stems. Fusilade II application also led to an increase in A. pumila, but was not as effective in controlling non‐native plants as hand‐pulling and its effect varied with the dominant non‐native species. Mowing was not effective at promoting A. pumila, and its effect on non‐native cover seemed to be related to rainfall patterns. Although some methods increased A. pumila, none of our treatments simultaneously increased cover of other native plants. Hand‐pulling, the most effective treatment, is labor intensive and thus only feasible at small spatial scales. At larger scales, managers should take an experimental approach to identifying the most appropriate method because this can vary depending on the specific management objective (endangered species or whole native community), the dominant non‐natives, yearly variation in weather, and the timing of treatment application.  相似文献   

20.
基于2008—2012年对三峡水库奉节以东秭归和巫山段消落带固定样地不同海拔区段植物群落的5a定位监测,研究消落带植物群落的物种组成、优势植物、植物生活型和物种多样性的动态变化,结果表明:1)截止2012年,消落带海拔156—172 m区段共经历了4次水库水位涨落。经历首次后(2009年),消落带原生植物由55科147种减少到18科33种,经历4次后(2012年),减少到14科39种。与经历水库水位涨落前(2008年)比较,经历首次后的科数减少了67.3%,种数减少了77.6%;经历4次后的科数减少了74.5%,种数减少了73.5%。在消落带原生植物减少的同时,出现了许多"新"植物。经历首次后出现了49种,经历4次后出现了23种,分别占调查当年样地植物种类总数的59.8%和32.9%。海拔172—175 m区段共经历了2次水库水位涨落,消落带原生植物由40科91种(2008年)减少到了13科20种。与经历水库水位涨落前比较,科数减少了67.5%,种数减少了78.0%。出现"新"植物21种,约占调查当年样地植物种类总数的44.7%。通过对历次调查中消落带植物"消失"和"出现"的数量比较表明,消落带植物对经历首次水库水位涨落的反应最为敏感,此后,虽又经历过几次水库水位涨落,但其变化速率趋于减小。2)不同海拔区段、不同生态适应型植物的"消长"动态和优势种组成不完全相同。海拔156—172 m区段,经历4次水库水位涨落后,在消落带植物群落中占优势的草本植物种为菊科(Compositae)的鬼针草(Bidens pilosa)、禾本科(Gramineae)的狗牙根(Cynodon dactylon)、毛马唐(Digitaria chrysoblephara)、狗尾草(Setaria viridis)、莎草科(Cyperaceae)的碎米莎草(Cyperus iria),占优势的灌木树种为漆树科(Anacardiaceae)的盐肤木(Rhus chinensis)和大戟科(Euphorbiaceae)的算盘子(Glochidion puberum);在海拔172—175 m区段,除鬼针草、毛马唐仍为优势种外,还增加了大戟科的湖北算盘子(Glochidion wilsonii),马鞭草科(Verbenaceae)的黄荆(Vitex negundo),葡萄科(Vitaceae)的五叶地锦(Parthenocissus quniquefolia)等树种。3)消落带植物群落的优势生活型为一年生和多年生草本;物种多样性随着水库水位涨落次数的增加总体变化呈减少趋势。4)三峡水库水位周期性涨落导致消落带发生水陆环境交替变化,不同生态适应型植物对变化生境的适应能力有所不同,是消落带植物群落发生变化的主要驱动因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号