首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 62 毫秒
1.
We demonstrate the use of multiple indicators to characterize the ecological integrity of a coastal plain stream system in the New Jersey Pinelands in relation to human-induced watershed alterations. The individual indicators include pH, specific conductance, stream vegetation and stream-fish, impoundment-fish, and anuran assemblages. We evaluate and compare the utility of the individual and multiple environmental and biological indicators and present a relatively straightforward method for ranking sites. Specific conductance and pH measured at 88 monitoring sites varied in relation to the percentage of altered land (developed land and upland agriculture) within the associated watersheds. All three environmental variables were associated with variations in the composition of stream vegetation and stream fish, impoundment fish, and anuran assemblages. With the exception of impoundment fish, the association between altered land and the multiple-indicator scores based on the two water-quality indicators and the four biological indicators was stronger than that displayed by any of the individual variables.  相似文献   

2.
Improving biological indicators to better assess the condition of streams   总被引:3,自引:0,他引:3  
Biological indicators of stream condition are in use by water resource managers worldwide. The State of Maryland and many other organizations that use Indices of Biotic Integrity (IBIs) must determine when and how to refine their IBIs so that better stream condition information is provided. With completion of the second statewide round in 2004, the Maryland Biological Stream Survey (MBSS) had collected data from 2500 stream sites, more than doubling the number of sites that were available for the original IBI development. This larger dataset provided an opportunity for the MBSS to address the following shortcomings in the original IBIs: (1) substantial disturbance apparent in some reference sites, (2) fish IBIs could not be applied to very small streams, (3) natural variability within IBIs (based on regions) resulted in some stream types (e.g., coldwater and blackwater streams) receiving lower IBI scores and (4) one IBI was not able to discriminate degradation as desired (i.e., Coastal Plain fish IBI). Therefore, development of new fish and benthic macroinvertebrate IBIs was undertaken to achieve the goals of: (1) increased confidence that the reference conditions are minimally disturbed, (2) including more natural variation (such as stream size) across the geographic regions and stream types of Maryland and (3) increased sensitivity of IBIs by using more classes (strata) and different metric combinations. New fish IBIs were developed for four geographical and stream type strata: Coastal Plain, Eastern Piedmont, warmwater Highlands and coldwater Highlands streams; new benthic macroinvertebrate IBIs were developed for three geographical strata: Coastal Plain, Eastern Piedmont and Highlands streams. The addition of one new fish IBI and one new benthic macroinvertebrate IBI partitioned natural variability into more homogeneous strata. At the same time, smaller streams (i.e., those draining catchments <300 ac), which constituted a greater proportion of streams (25%) sampled in Round Two (2000–2004) than Round One (1995–1997), because of the finer map scale, were included in the reference conditions used to develop the new IBIs. The resulting new IBIs have high classification efficiencies of 83–96% and are well balanced between Type I and Type II errors. By scoring coldwater streams, smaller streams and to some extent blackwater streams higher, the new IBIs improve on the original IBIs. Overall, the new IBIs provide better assessments of stream condition to support sound management decisions, without requiring substantial changes by cooperating stream assessment programs.  相似文献   

3.
Ecological indicators are increasingly used to examine the evolution of natural ecosystems and the impacts of human activities. Assessing their trends to develop comparative analyses is essential. We introduce the analysis of convergence, a novel approach to evaluate the dynamic and trends of ecological indicators and predict their behavior in the long-term. Specifically, we use a non-parametric estimation of Gaussian kernel density functions and transition probability matrix integrated in the R software. We validate the performance of our methodology through a practical application to three different ecological indicators to study whether Mediterranean countries converge towards similar fisheries practices. We focus on how distributions evolve over time for the Marine Trophic Index, the Fishing in Balance Index and the Expansion Factor during 1950–2010. Results show that Mediterranean countries persist in their fishery behaviors throughout the time series, although a tendency towards similar negative effects on the ecosystem is apparent in the long-term. This methodology can be easily reproduced with different indicators and/or ecosystems in order to analyze ecosystem dynamics.  相似文献   

4.
Previously, standardized snap-shot models of the Southern Benguela (1980–1989), Southern Humboldt (1992) and Southern Catalan Sea (1994) ecosystems were examined and found to facilitate assessment of ecosystem characteristics related to the gradient in exploitation status of the ecosystems; highest level of exploitation in the South Catalan Sea (North-western Mediterranean), high in the Southern Humboldt and lower in the Southern Benguela. Subsequently, these models were calibrated and fitted using available catch, fishing effort/mortality and abundance data series and incorporated environmental and internal drivers. This study furthers the previous comparative analyses by comparing changes in ecosystem structure using a selection of ecosystem indicators from the calibrated models and assessing how these indicators change over time in these three contrasting ecosystems. Indicators examined include community turnover rates (production/biomass), trophic level of landings and the community, biodiversity indicators, ratios of predatory/forage fish and pelagic/demersal fish biomass, catch ratios, and network analysis indicators. Using the set of model-derived indicators, the three ecosystems were ranked in terms of exploitation level. This ranking was performed using the values of these indicators in recent years (ecosystem state) as well as their trends over time (ecosystem trend). The non-parametric Kruskal–Wallis and Median tests were used to test for significance of the difference between indicators from the three ecosystems in the last 5 years of the simulation to compare present ecosystem states. We compared the slope of the lineal trend and its significance between ecosystems using the generalized least-squares regression taking auto-correlation into consideration to analyse ecosystem trends. The indicators that capture better the high impacts of fishing prevalent in the Mediterranean and Humboldt ecosystems, and the more conservative exploitation of the Southern Benguela, are the fish/invertebrates biomass and catch ratio, the demersal/pelagic fish biomass and catch ratio (depending on the ecosystem and the fishery being developed), flows to detritus, and the mean trophic level of the community (when large, poorly quantified groups such as zooplankton and detritus are excluded). This study suggests that the best option for classifying ecosystems according to the impact of fishing is to consider a broad range of indicators to understand how and why an ecosystem is responding to particular environmental or fishing drivers (or more likely a combination of these). Our results highlight the importance of including indicators capturing trends over time as well as recent ecosystem states. We also identified 23 pairs of indicators that correlated similarly in the three ecosystems (they showed a significant correlation with same sign). Further comparisons may contribute towards generalization of this list, progressing towards a better understanding of the behaviour of ecological indicators.  相似文献   

5.
Atrazine sensitive leguminous plants were grown in a soil spiked with atrazine and augmented with an atrazine-degrading bacterium, Arthrobacter sp. strain MCM B-436, to ascertain its degradative efficiency. Germination and survival of plants was correlated with atrazine removal from soil. This experiment was carried out at laboratory as well as field level, showing consistent results. This bioindicator approach serves as an efficient measure for atrazine removal and could be easily adapted to determine atrazine degradation efficiency of other microbial strains.  相似文献   

6.
DNA barcoding uses a short, standardized DNA fragment to sort individuals into species. This molecular technique has applications in fields including ecology, evolution, conservation, and biogeography. In ecological applications such as species monitoring and habitat restoration, its potential has not been fully realized and implemented. Invertebrates are excellent biological indicators, as changes in species diversity or community assemblage provide important insights into the condition of, or changes in, the environment. This information is particularly useful within the context of restoration ecology. In this study, DNA barcoding is used to assess the potential of Hemiptera as a biological indicator of restoration success for the Buffelsdraai Landfill Site Community Reforestation Project (Durban, South Africa). A total of 393 Hemiptera specimens were collected from sites reforested at distinct phases (plots reforested in 2010, 2012, and 2015) and two reference sites (natural forest and grassland). The Hemiptera species composition and assemblage were assessed by analyzing diversity indices, ordination, unweighted pair‐group average cluster analysis, and phylogenetic analysis. Hemiptera species composition varied significantly across the chronologically different reforested sites, with a higher species richness observed in the older reforested plots. This suggests that Hemiptera diversity can be used to track restoration success, even over the small temporal scale used in this study. This study highlights the utility of DNA barcoding as a taxonomic sorting tool both to monitor ecological restoration and to discover specific taxa within Hemiptera that may be useful biological indicators.  相似文献   

7.
The circadian time structure (CTS) and its disruption by rotating and nightshift schedules relative to work performance, accident risk, and health/wellbeing have long been areas of occupational medicine research. Yet, there has been little exploration of the relevance of the CTS to setting short-term, time-weighted, and ceiling threshold limit values (TLVs); conducting employee biological monitoring (BM); and establishing normative reference biological exposure indices (BEIs). Numerous publications during the past six decades document the CTS substantially affects the disposition – absorption, distribution, metabolism, and elimination – and effects of medications. Additionally, laboratory animal and human studies verify the tolerance to chemical, biological (contagious), and physical agents can differ extensively according to the circadian time of exposure. Because of slow and usually incomplete CTS adjustment by rotating and permanent nightshift workers, occupational chemical and other contaminant encounters occur during a different circadian stage than for dayshift workers. Thus, the intended protection of some TLVs when working the nightshift compared to dayshift might be insufficient, especially in high-risk settings. The CTS is germane to employee BM in that large-amplitude predictable-in-time 24h variation can occur in the concentration of urine, blood, and saliva of monitored chemical contaminants and their metabolites plus biomarkers indicative of adverse xenobiotic exposure. The concept of biological time-qualified (for rhythms) reference values, currently of interest to clinical laboratory pathology practice, is seemingly applicable to industrial medicine as circadian time and workshift-specific BEIs to improve surveillance of night workers, in particular. Furthermore, BM as serial assessments performed frequently both during and off work, exemplified by employee self-measurement of lung function using a small portable peak expiratory flow meter, can easily identify intolerance before induction of pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号