首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
肿瘤的微环境对肿瘤的发生,发展具有重要的意义。实体瘤中除肿瘤细胞外存在大量的非肿瘤细胞,如肿瘤间质细胞、成纤维细胞、血管内皮细胞、免疫细胞、脂肪细胞等等,这一系列的细胞与肿瘤细胞相互作用,通过一系列的因子分泌而促使肿瘤的进一步的恶化,目前传统的抗肿瘤药物研究往往局限于肿瘤细胞本身而忽略了肿瘤周围的细胞作用,使得肿瘤久治不愈。将来的药物开发应该围绕肿瘤细胞为主体的同时,兼顾微环境中的其他细胞,多靶点治疗肿瘤,真正实现肿瘤的治愈。  相似文献   

2.
转化生长因子β(transforming growth factorβ,TGF-β)是一种多功能的细胞因子,能够调控细胞增殖、分化、黏附、迁移及凋亡等行为,在胚胎发育过程和成体组织稳态维持中发挥重要的作用。而在许多疾病状态下,特别是在癌症中,TGF-β不仅能够影响肿瘤细胞的增殖与转移,其对于肿瘤微环境的调控与塑造也受到越来越多的关注。肿瘤微环境是指肿瘤在发生和发展过程中所处的内环境,由肿瘤细胞本身、相邻正常组织中的间质细胞,以及这些细胞所释放的众多细胞因子等共同组成。肿瘤微环境是肿瘤发展的重要机制,也是肿瘤临床治疗领域亟待探索的关键问题。TGF-β是调节肿瘤微环境组成和功能的主要参与者之一。在本综述中,将着重讨论TGF-β对于肿瘤微环境中的免疫监视机制及肿瘤细胞外基质的主要影响。即TGF-β对于构成先天性和获得性抗肿瘤免疫应答的各种类群的免疫细胞具有广泛的调控作用,从而削弱宿主的肿瘤免疫监视功能。同时,TGF-β通过促进肿瘤相关成纤维细胞的产生,以及肿瘤细胞外基质的纤维化,有助于肿瘤的恶变和转移。此外,还介绍了通过阻断肿瘤微环境中TGF-β信号通路进行肿瘤治疗的主要策略及独特优势。而未来进一步解析TGF-β信号在肿瘤微环境中的复杂调控作用,并建立有效的靶向干预方法对于开发高效的抗肿瘤药物具有重要的意义。  相似文献   

3.
肿瘤微环境指肿瘤细胞发生及转移所处的复杂三维环境。传统研究多让细胞生长在二维培养瓶或培养皿中,缺少肿瘤转移过程中复杂的细胞-细胞和细胞-基质间的动态联系,难以反映肿瘤组织的自身特点以及阐明肿瘤细胞转移的机制,也限制了有效药物的准确检测。为阐明原发性肿瘤微环境的特点,多种生物模拟的三维工程化肿瘤模型已被用于实验和临床研究,即将肿瘤基质细胞、基质组分、生物化学和生物物理学信号整合于同一个时空系统。本文总结了典型三维工程化肿瘤的构建及应用。  相似文献   

4.
质子泵抑制剂与肿瘤耐药研究   总被引:4,自引:0,他引:4  
恶性肿瘤对抗癌药物的耐药性是肿瘤患者治疗失败的主要原因。肿瘤细胞外微环境的高度酸化是肿瘤细胞对化疗药物产生耐药的机制之一。改变肿瘤细胞内外的pH梯度是逆转耐药的一种有效方法。作为抗酸剂治疗胃病的质子泵抑制剂能够通过抑制质子泵的功能,改变pH梯度而阻断肿瘤微环境的酸化,达到提高肿瘤对化疗药物敏感性的目的。  相似文献   

5.
研究表明,肿瘤转移是恶性肿瘤的临床治疗失败的根本原因。肿瘤转移不仅取决于肿瘤细胞自身的特性,还涉及其与肿瘤酸性微环境之间的相互作用。肿瘤微环境构成非常复杂,可促进肿瘤的增生、转移、侵袭,以及逃避宿主免疫监视和治疗耐药性。肿瘤细胞的生存依赖于在酸性微环境条件下的适应,肿瘤细胞可以通过一些离子交换体维持酸性微环境,缺氧的肿瘤组织酸化可以释放蛋白酶如纤维蛋白酶及MMPs降解细胞外基质、上调VEGF基因表达促进肿瘤新生血管生成等促进肿瘤侵袭转移。近年来,影响肿瘤微环境的因素已经成为癌症研究领域中的新兴话题。  相似文献   

6.
肿瘤微环境(tumor microenvironment,TME)包含肿瘤组织中各种细胞如肿瘤细胞、免疫细胞、成纤维细胞等,还包含这些细胞分泌的各种可溶性因子,以及代谢底物(如葡萄糖)和代谢产物(如乳酸)等等。由于肿瘤细胞和免疫细胞对营养共同的大量需求,肿瘤微环境中的肿瘤细胞和T细胞之间会发生营养代谢竞争。这种微环境中的营养竞争已经被证明和抗肿瘤免疫抑制的发生密切相关,但同时这种关联也是复杂的和多因素的。肿瘤微环境中的共抑制分子的表达、葡萄糖的竞争、氨基酸的竞争、氧的竞争以及乳酸的分泌等等,共同成为了免疫抑制表型的重要促进因素。这些研究也给肿瘤的治疗提供了新的方向。本文从肿瘤细胞和T细胞代谢重编程出发,介绍不同的微环境因素对T细胞的影响。  相似文献   

7.
恶性肿瘤严重威胁人类健康,其侵袭和转移是肿瘤患者死亡的重要原因。大量研究表明,肿瘤微环境对肿瘤细胞的侵袭和转移有着重要的作用。肿瘤细胞在肿瘤微环境中会受到多种因素的影响,其中炎症反应产生的多种炎症细胞、细胞因子等会为肿瘤细胞的恶性转化提供有利条件。  相似文献   

8.
三维细胞培养与肿瘤细胞恶性表型研究   总被引:2,自引:0,他引:2  
何平  张学  赵晓航 《生命的化学》2005,25(3):252-255
了解肿瘤细胞与微环境的相互作用,对研究肿瘤的发生、发展及抗癌药物的筛选具有重要意义。三维细胞培养技术近年被用于研究肿瘤细胞恶性表型,与传统二维细胞培养相比.它可以模拟体内细胞生长的微环境,是研究肿瘤细胞恶性表型、细胞与细胞外基质信号传递的有力工具。  相似文献   

9.
除了依赖于肿瘤细胞自身的恶性增殖以外,肿瘤的发生和发展还依赖于肿瘤细胞与肿瘤间质微环境的相互作用。肿瘤间质中存在的肿瘤相关成纤维细胞(tumor-associatedfibroblasts,TAF)能够诱导免疫抑制,是肿瘤免疫治疗中的一大障碍。在TAF上存在一种成纤维细胞激活蛋白(fibroblast activationprotein,FAP),它在细胞表面发挥作用,是一种膜丝氨酸肽酶,是Ⅱ型丝氨酸蛋白酶家族成员之一,具有二肽肽酶及胶原酶活性,在肿瘤微环境中表达FAP的肿瘤相关成纤维细胞是最早被鉴定的一种肿瘤间质细胞类型。它由肿瘤问质中的成纤维细胞与癌细胞相互作用而活化,是肿瘤微环境中最主要的宿主细胞,具有促进肿瘤细胞生长、侵袭及免疫抑制的作用,而且基因组稳定不易耐药,有望成为肿瘤免疫治疗的新靶标。就靶向TAF和FAP在肿瘤免疫治疗中的研究做一综述,为基于肿瘤间质微环境的免疫治疗提供参考。  相似文献   

10.
黏着斑激酶(focal adhesion kinase,FAK)是一种胞质非受体酪氨酸激酶。FAK和肿瘤密切相关,在多种癌细胞中高表达,促进癌细胞的发生、生长、存活、增殖、粘附、转移和侵袭以及血管生成等过程。肿瘤微环境包括肿瘤细胞、周围血管、免疫细胞、纤维母细胞、内皮细胞、信号分子和细胞外基质,它对癌症的发展和恶化具有重要作用。肿瘤细胞可以通过分泌细胞外信号影响微环境,使其有利于肿瘤生存和发展;肿瘤微环境中的基质细胞能通过产生趋化因子、基质降解酶和生长因子促进肿瘤侵袭和转移。本文综述肿瘤微环境在癌症发生发展过程中的作用及FAK在肿瘤微环境中的调控作用,为肿瘤疾病的治疗提供新思路。  相似文献   

11.
The high mortality rate of breast cancer is mainly caused by the metastatic ability of cancer cells, resistance to chemotherapy and radiotherapy, and tumor regression capacity. In recent years, it has been shown that the presence of breast cancer stem cells is closely associated with the migration and metastatic ability of cancer cells, as well as with their resistance to chemotherapy and radiotherapy. The tumor microenvironment is one of the main molecular factors involved in cancer and metastatic processes development, in this sense it is interesting to study the role of platelets, one of the main communicator cells in the human body which are activated by the signals they receive from the microenvironment and can generate more than one response. Platelets can ingest and release RNA, proteins, cytokines and growth factors. After the platelets interact with the tumor microenvironment, they are called "tumor-educated platelets." Tumor-educated platelets transport material from the tumor microenvironment to sites adjacent to the tumor, thus helping to create microenvironments conducive for the development of primary and metastatic tumors. It has been observed that the clone capable of carrying out the metastatic process is a cancer cell with stem cell characteristics. Cancer stem cells go through a series of processes, including epithelial-mesenchymal transition, intravasation into blood vessels, movement through blood vessels, extravasation at the site of the establishment of a metastatic focus, and site colonization. Tumor-educated platelets support all these processes.  相似文献   

12.
关于恶性肿瘤发生、复发与转移机制的研究由来已久,但目前的临床治疗方法依然不能克服肿瘤复发与转移的难题,肿瘤患者的生存率并未得到显著改善。近年来的研究提示肿瘤的起源、复发与转移的真正原因可能是存在于肿瘤内的极少数具有干细胞特性的细胞,即肿瘤干细胞(cancer stem cells,CSC)。与此同时,越来越多的研究表明,对于肿瘤干细胞的发生与功能维持,表观遗传学的调控机制可能发挥着极其重要的作用。该文简要综述目前肿瘤干细胞和表观遗传学相关领域的研究进展,并对肿瘤干细胞形成及发展过程中表观遗传学的调控作用及机制进行重点介绍。  相似文献   

13.
We recently described a novel form of cell division termed neosis, which appears to be the mode of escape of cells from senescence and is involved in the neoplastic transformation and progression of tumors (Cancer Biol & Therap 2004;3:207–18). Neosis is a parasexual somatic reduction division and is characterized by (1) DNA damage-induced senescence/mitotic crisis and polyploidization, (2) followed by production of aneuploid daughter cells via nuclear budding, (3) asymmetric cytokinesis and cellularization conferring extended, but, limited mitotic life span to the offspring, and (4) is repeated several times during tumor growth. The immediate neotic progeny are termed the Raju cells, which seem to transiently display stem cell properties. The Raju cells immediately undergo symmetric mitotic division and become mature tumor cells. Exposure of tumor cells to genotoxic agents yields neosis-derived Raju cell progenies that are resistant to genotoxins, thus contributing to the recurrence of drug-resistant tumor growth. Similar events have been described in the literature under different names through several decades, but have been neglected due to the lack of appreciation of the significance of this process in cancer biology. Here we review and interpret the literature in the light of our observations and the recent advances in self-renewal in cancer. Neosis paradigm of self-renewal of cancer growth is consistent with the telomere attrition, aging and origin of cancer cells after reactivation of telomerase, and constitutes an alternative to the cancer stem cell hypothesis. We summarize the arguments favoring Raju cells and not cancer stem cells, as the source of self-renewal in cancer and present a comprehensive hypothesis of carcinogenesis, encompassing various aspects of cancer biology including senescence, tumor suppressor genes, oncogenes, cell cycle checkpoints, genomic instability, polyploidy and aneuploidy, natural selection, apoptosis, endoapoptosis, development of resistance to radiotherapy and chemotherapy leading tumor progression into malignancy.  相似文献   

14.
15.
Neosis--a paradigm of self-renewal in cancer   总被引:3,自引:0,他引:3  
We recently described a novel form of cell division termed neosis, which appears to be the mode of escape of cells from senescence and is involved in the neoplastic transformation and progression of tumors (Cancer Biol & Therap 2004;3:207-18). Neosis is a parasexual somatic reduction division and is characterized by (1) DNA damage-induced senescence/mitotic crisis and polyploidization, (2) followed by production of aneuploid daughter cells via nuclear budding, (3) asymmetric cytokinesis and cellularization conferring extended, but, limited mitotic life span to the offspring, and (4) is repeated several times during tumor growth. The immediate neotic progeny are termed the Raju cells, which seem to transiently display stem cell properties. The Raju cells immediately undergo symmetric mitotic division and become mature tumor cells. Exposure of tumor cells to genotoxic agents yields neosis-derived Raju cell progenies that are resistant to genotoxins, thus contributing to the recurrence of drug-resistant tumor growth. Similar events have been described in the literature under different names through several decades, but have been neglected due to the lack of appreciation of the significance of this process in cancer biology. Here we review and interpret the literature in the light of our observations and the recent advances in self-renewal in cancer. Neosis paradigm of self-renewal of cancer growth is consistent with the telomere attrition, aging and origin of cancer cells after reactivation of telomerase, and constitutes an alternative to the cancer stem cell hypothesis. We summarize the arguments favoring Raju cells and not cancer stem cells, as the source of self-renewal in cancer and present a comprehensive hypothesis of carcinogenesis, encompassing various aspects of cancer biology including senescence, tumor suppressor genes, oncogenes, cell cycle checkpoints, genomic instability, polyploidy and aneuploidy, natural selection, apoptosis, endoapoptosis, development of resistance to radiotherapy and chemotherapy leading tumor progression into malignancy.  相似文献   

16.
Radiotherapy is one of the most common modalities for the treatment of a wide range of tumors, including colorectal cancer (CRC); however, radioresistance of cancer cells remains a major limitation for this treatment. Following radiotherapy, the activities of various cellular mechanisms and cell signaling pathways are altered, resulting in the development of radioresistance, which leads to therapeutic failure and poor prognosis in patients with cancer. Furthermore, even though several inhibitors have been developed to target tumor resistance, these molecules can induce side effects in nontumor cells due to low specificity and efficiency. However, the role of these mechanisms in CRC has not been extensively studied. This review discusses recent studies regarding the relationship between radioresistance and the alterations in a series of cellular mechanisms and cell signaling pathways that lead to therapeutic failure and tumor recurrence. Our review also presents recent advances in the in vitro/in vivo study models aimed at investigating the radioresistance mechanism in CRC. Furthermore, it provides a relevant biochemical basis in theory, which can be useful to improve radiotherapy sensitivity and prolong patient survival.  相似文献   

17.
Head and neck squamous cell carcinomas (HNSCC) are in a group of cancers that are the most resistant to treatment. The survival rate of HNSCC patients has been still very low since last 20 years. The existence of relationship between oncogenic and surrounding cells is probably the reason for a poor response to treatment. Fibroblasts are an important element of tumor stroma which increases tumor cells ability to proliferate. Another highly resistance, tumorigenic and metastatic cell population in tumor microenvironment are cancer initiating cells (CICs). The population of cancer initiating cells can be found regardless of differentiation status of cancer and they seem to be crucial for HNSCC development.In this review, we describe the current state of knowledge about HNSCC biological and physiological tumor microenvironment.  相似文献   

18.
Aggressive cancer cells and pluripotent stem cells converge in their capacity for self-renewal, proliferation and plasticity. Recent studies have capitalized on these similarities by demonstrating that tumors arise from specific cancer stem cell populations that, in a manner reminiscent of normal stem cells, are able to both self-renew and give rise to a heterogeneous tumor population. This stem cell like function of aggressive cancer cells is likely attributable to the ectopic expression of embryonic factors such as Nodal and Cancer Testis Specific Antigens (CTAs), which maintain a functional plasticity by promoting pluripotency and immortality. During development, the expression of these embryonic factors is tightly regulated by a dynamic array of mediators, including the spatial and temporal expression of inhibitors such as Lefty, and the epigenetic modulation of the genome. In aggressive cancer cells, particularly melanoma, this balance of regulatory mediators is disrupted, leading to the aberrant expression of pluripotency-associated genes. By exposing aggressive cancer cells to embryonic microenvironments, this balance of regulatory mediators is restored, thereby reprogramming tumor cells to a more benign phenotype. These stem cell-derived mediators, as well as the genes they regulate, provide therapeutic targets designed to specifically differentiate and eradicate aggressive cancers.  相似文献   

19.
Metastasis is the main cause of cancer death. As the tumor progresses, cells from the primary tumor site are shed into the bloodstream as circulating tumor cells (CTCs). Eventually, these cells colonize other organs and form distant metastases. It is therefore imperative that we gain a better understanding of the biological characteristics of CTCs for development of novel treatment modalities to minimize metastasis-associated cancer deaths. In recent years, rapid developments in technologies for the study of CTCs have taken place. We now have a variety of tools for the isolation and examination of CTCs which were not available before. This review introduces some commonly used protein markers in CTC investigations and summarizes a few advanced technologies which have been successfully applied for studying CTC biology at the protein level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号