首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
Human immunodeficiency virus (HIV)-lipodystrophy syndrome (HLS) is characterized by hypertriglyceridemia, low high-density lipoprotein-cholesterol, lipoatrophy, and central adiposity. We investigated fasting lipid metabolism in six men with HLS and six non-HIV-infected controls. Compared with controls, HLS patients had lower fat mass (15.9 +/- 1.3 vs. 22.3 +/- 1.7 kg, P < 0.05) but higher plasma glycerol rate of appearance (R(a)), an index of total lipolysis (964.71 +/- 103.33 vs. 611.08 +/- 63.38 micromol x kg fat(-1) x h(-1), P < 0.05), R(a) palmitate, an index of net lipolysis (731.49 +/- 72.36 vs. 419.72 +/- 33.78 micromol x kg fat(-1) x h(-1), P < 0.01), R(a) free fatty acids (2,094.74 +/- 182.18 vs. 1,470.87 +/- 202.80 micromol x kg fat(-1) x h(-1), P < 0.05), and rates of intra-adipocyte (799.40 +/- 157.69 vs. 362.36 +/- 74.87 micromol x kg fat(-1) x h(-1), P < 0.01) and intrahepatic fatty acid reesterification (1,352.08 +/- 123.90 vs. 955.56 +/- 124.09 micromol x kg fat(-1) x h(-1), P < 0.05). Resting energy expenditure was increased in HLS patients (30.51 +/- 2.53 vs. 25.34 +/- 1.04 kcal x kg lean body mass(-1) x day(-1), P < 0.05), associated with increased non-plasma-derived fatty acid oxidation (139.04 +/- 24.17 vs. 47.87 +/- 18.81 micromol x kg lean body mass(-1) x min(-1), P < 0.02). The lipoatrophy observed in HIV lipodystrophy is associated with accelerated lipolysis. Increased hepatic reesterification promotes the hypertriglyceridemia observed in this syndrome.  相似文献   

2.
We used beta-adrenergic receptor stimulation and blockade as a tool to study substrate metabolism during exercise. Eight moderately trained subjects cycled for 60 min at 45% of VO(2 peak) 1) during a control trial (CON); 2) while epinephrine was intravenously infused at 0.015 microg. kg(-1) x min(-1) (beta-STIM); 3) after ingesting 80 mg of propranolol (beta-BLOCK); and 4) combining beta-BLOCK with intravenous infusion of Intralipid-heparin to restore plasma fatty acid (FFA) levels (beta-BLOCK+LIPID). beta-BLOCK suppressed lipolysis (i.e., glycerol rate of appearance) and fat oxidation while elevating carbohydrate oxidation above CON (135 +/- 11 vs. 113 +/- 10 micromol x kg(-1) x min(-1); P < 0.05) primarily by increasing rate of disappearance (R(d)) of glucose (36 +/- 2 vs. 22 +/- 2 micromol x kg(-1) x min(-1); P < 0.05). Plasma FFA restoration (beta-BLOCK+LIPID) attenuated the increase in R(d) glucose by more than one-half (28 +/- 3 micromol x kg(-1) x min(-1); P < 0.05), suggesting that part of the compensatory increase in muscle glucose uptake is due to reduced energy from fatty acids. On the other hand, beta-STIM markedly increased glycogen oxidation and reduced glucose clearance and fat oxidation despite elevating plasma FFA. Therefore, reduced plasma FFA availability with beta-BLOCK increased R(d) glucose, whereas beta-STIM increased glycogen oxidation, which reduced fat oxidation and glucose clearance. In summary, compared with control exercise at 45% VO(2 peak) (CON), both beta-BLOCK and beta-STIM reduced fat and increased carbohydrate oxidation, albeit through different mechanisms.  相似文献   

3.
One of the strategies to prevent insulin resistance is to reduce circulating free fatty acids (FFA). The aim of this study is to assess the effect of an oral lactulose load on fatty acid metabolism in overweight subjects. Eight overweight subjects received a primed constant intravenous infusion of [1-(13)C]acetate and of [1,1,2,3,3-(2)H(5)]glycerol for 9 h. After 3 h of tracer infusion, patients ingested 30 g lactulose, or saline solution. Arterialized blood samples were collected every 20 min. Basal plasma concentrations of acetate were similar before and between oral treatments as well as glycerol and FFA concentrations. Plasma acetate turnover was 11.4 +/- 2.4 vs. 10.7 +/- 1.4 micromol.kg(-1).min(-1) [not significant (NS)], and plasma glycerol turnover was 3.8 +/- 0.4 vs. 4.8 +/- 1.9 micromol.kg(-1).min(-1) (NS). After lactulose ingestion, acetate concentration increased twofold and then decreased to baseline. Acetate turnover rate increased to 15.5 +/- 2.2 micromol.kg(-1).min(-1) after lactulose treatment, whereas it was unchanged after saline treatment (10.3 +/- 2.2 micromol.kg(-1).min(-1), P < or = 0.0001). In contrast, FFA concentrations decreased significantly after lactulose ingestion and then increased slowly. Glycerol turnover decreased after lactulose ingestion compared with saline, 2.8 +/- 0.4 vs. 3.5 +/- 0.3 micromol.kg(-1).min(-1) (P < or = 0.05). A significant negative correlation was found between glycerol and acetate turnover after lactulose treatments (r = -0.78, P < or = 0.02). These results showed in overweight subjects a short-term decrease in FFA level and glycerol turnover after lactulose ingestion related to a decrease of lipolysis in close relationship with an increase of acetate production.  相似文献   

4.
We evaluated lipid metabolism during 90 min of moderate-intensity (50% VO(2) peak) cycle ergometer exercise in five men and five women who were matched on adiposity (24 +/- 2 and 25 +/- 1% body fat, respectively) and aerobic fitness (VO(2) peak: 49 +/- 2 and 47 +/- 1 ml x kg fat-free mass(-1) x min(-1), respectively). Substrate oxidation and lipid kinetics were measured by using indirect calorimetry and [(13)C]palmitate and [(2)H(5)]glycerol tracer infusion. The total increase in glycerol and free fatty acid (FFA) rate of appearance (R(a)) in plasma during exercise (area under the curve above baseline) was approximately 65% greater in women than in men (glycerol R(a): 317 +/- 40 and 195 +/- 33 micromol/kg, respectively; FFA R(a): 652 +/- 46 and 453 +/- 70 micromol/kg, respectively; both P < 0.05). Total fatty acid oxidation was similar in men and women, but the relative contribution of plasma FFA to total fatty acid oxidation was higher in women (76 +/- 5%) than in men (46 +/- 5%; P < 0.05). We conclude that lipolysis of adipose tissue triglycerides during moderate-intensity exercise is greater in women than in men, who are matched on adiposity and fitness. The increase in plasma fatty acid availability leads to a greater rate of plasma FFA tissue uptake and oxidation in women than in men. However, total fat oxidation is the same in both groups because of a reciprocal decrease in the oxidation rate of fatty acids derived from nonplasma sources, presumably intramuscular and possibly plasma triglycerides, in women.  相似文献   

5.
The putative role played by insulin sensitizers in modulating adipose tissue lipolysis in the fasting state was evaluated in obese conscious Zucker rats treated with troglitazone or beta,beta'-tetramethylhexadecanedioic acid (MEDICA 16) and compared with nontreated lean and obese animals. The rates of appearance (R(a)) of glycerol and free fatty acid (FFA), primary intra-adipose reesterification, and secondary reuptake of plasma FFA in adipose fat were measured using constant infusion of stable isotope-labeled [(2)H(5)]glycerol, [2,2-(2)H(2)]palmitate, and radioactive [(3)H]palmitate. The overall lipolytic flux (R(a) glycerol) was increased 1.7- and 1.4-fold in obese animals treated with troglitazone or MEDICA 16, respectively, resulting in increased FFA export (R(a) FFA) in the troglitazone-treated rats. Primary intra-adipose reesterification of lipolysis-derived fatty acids was enhanced twofold by insulin sensitizers, whereas reesterification of plasma fatty acids was unaffected by either treatment. Despite the unchanged R(a) FFA in MEDICA 16 or the increased R(a) FFA induced by troglitazone, very low density lipoprotein production rates were robustly curtailed. Total adipose tissue reesterification, used as an estimate of glucose conversion to glyceride-glycerol, was increased 1.9-fold by treatment with the insulin sensitizers. Our results indicate that, in the fasting state, insulin sensitizers induce, in vivo, a significant activation rather than suppression of adipose tissue lipolysis together with stimulation of glucose conversion to glyceride-glycerol.  相似文献   

6.
In this study, we investigated the hypothesis that impairments in forearm skeletal muscle free fatty acid (FFA) metabolism are present in patients with type 2 diabetes both in the overnight fasted state and during beta-adrenergic stimulation. Eight obese subjects with type 2 diabetes and eight nonobese controls (Con) were studied using the forearm balance technique and indirect calorimetry during infusion of the stable isotope tracer [U-(13)C]palmitate after an overnight fast and during infusion of the nonselective beta-agonist isoprenaline (Iso, 20 ng. kg lean body mass(-1) x min(-1)). Additionally, activities of mitochondrial enzymes and of cytoplasmatic fatty acid-binding protein (FABP) were determined in biopsies from the vastus lateralis muscle. Both during fasting and Iso infusion, the tracer balance data showed that forearm muscle FFA uptake (Con vs. type 2: fast 449+/-69 vs. 258 +/-42 and Iso 715+/-129 vs. 398+/-70 nmol. 100 ml tissue(-1) x min(-1), P<0.05) and FFA release were lower in type 2 diabetes compared with Con. Also, the oxidation of plasma FFA by skeletal muscle was blunted during Iso infusion in type 2 diabetes (Con vs. type 2: Iso 446 +/- 274 vs. 16+/-70 nmol. 100 ml tissue(-1) x min(-1), P<0.05). The net forearm glycerol release was increased in type 2 diabetic subjects (P< 0.05), which points to an increased forearm lipolysis. Additionally, skeletal muscle cytoplasmatic FABP content and the activity of muscle oxidative enzymes were lowered in type 2 diabetes. We conclude that the uptake and oxidation of plasma FFA are impaired in the forearm muscles of type 2 diabetic subjects in the overnight fasted state with and without Iso stimulation.  相似文献   

7.
The aim of the present study was to assess whether a standard hyperinsulinemic-euglycemic clamp can provide an estimate for the antilipolytic insulin sensitivity. For this purpose, we infused 9 non-obese, healthy volunteers with [2H5]glycerol and used the glycerol rate of appearance (Ra) in plasma as an index for systemic lipolysis during a standard (1 mU/kg x min, 120 min) and a 3-step (0.1, 0.25, 1.0 mU/kg x min) hyperinsulinemic-euglycemic clamp. The insulin concentration, which half-maximally suppressed lipolysis (EC50) in the three-step clamp, was considered to be the gold standard for the antilipolytic insulin sensitivity. Glycerol Ra decreased from 1.53+/-0.11 micromol/kg x min to 0.60+/-0.09 micromol/kg x min (p <0.001) during the standard clamp. The decrease in Ra at most time points during the standard clamp significantly correlated with the EC50. The highest correlation for the % decrease of glycerol Ra from baseline was found at 60 min (r = 0.96, p < 0.001) making this parameter a useful index for the antilipoytic insulin sensitivity. Neither plasma glycerol nor plasma free fatty acid (FFA) concentrations were significantly correlated with the EC50. In conclusion, the standard hyperinsulinemic-euglycemic clamp in combination with isotopic determination of glycerol Ra provides a reasonable estimate for the antilipolytic insulin sensitivity. In healthy subjects, the parameter best suited to estimate the insulin EC50 (by linear correlation) was the percentage decrease of glycerol Ra at 60 min.  相似文献   

8.
Kinetics of intramuscular triglyceride fatty acids in exercising humans.   总被引:6,自引:0,他引:6  
A pulse ([(14)C]palmitate)-chase ([(3)H]palmitate) approach was used to study intramuscular triglyceride (imTG) fatty acid and plasma free fatty acid (FFA) kinetics during exercise at approximately 45% peak O(2) consumption in 12 adults. Vastus lateralis muscle was biopsied before and after 90 min of bicycle exercise; (3)H(2)O production, breath (14)CO(2) excretion and lipid oxidation (indirect calorimetry) rates were measured during exercise. Results: during exercise, 8.2+/-1.2 and 8.4+/-0.7 micromol x kg(-1) x min(-1) of imTG fatty acids and plasma FFA, respectively, were oxidized according to isotopic measurements. The sum of these two values was not different (P = 0.6) from lipid oxidation by indirect calorimetry (15.4 +/-1.6 micromol x kg(-1) x min(-1)); the isotopic and indirect calorimetry values were correlated (r = 0.79, P<0.005). During exercise, imTG turnover rate was 0.32+/-0.07%/min (6.0+/-2.0 micromol of imTG x kg wet muscle(-1) x min(-1)) and plasma FFA were incorporated into imTG at a rate of 0.7+/-0.1 micromol x kg wet muscle(-1) x min(-1). The imTG pool size did not change during exercise. This pulse-chase, dual tracer appears to be a reasonable approach to measure oxidation and synthesis kinetics of imTG.  相似文献   

9.
These studies were conducted to understand the relationship between measures of systemic free fatty acid (FFA) reesterification and regional FFA, glycerol, and triglyceride metabolism during fasting. Indirect calorimetry was used to measure fatty acid oxidation in six men after a 60-h fast. Systemic and regional (splanchnic, renal, and leg) FFA ([(3)H]palmitate) and glycerol ([(3)H]glycerol) kinetics, as well as splanchnic triglyceride release, were measured. The rate of systemic FFA reesterification was 366 +/- 93 micromol/min, which was greater (P < 0.05) than splanchnic triglyceride fatty acid output (64 +/- 6 micromol/min), a measure of VLDL triglyceride fatty acid export. The majority of glycerol uptake occurred in the splanchnic and renal beds, although some leg glycerol uptake was detected. Systemic FFA release was approximately double that usually present in overnight postabsorptive men, yet the regional FFA release rates were of the same proportions previously observed in overnight postabsorptive men. In conclusion, FFA reesterification at rest during fasting far exceeds splanchnic triglyceride fatty acid output. This indicates that nonhepatic sites of FFA reesterification are important, and that peripheral reesterification of FFA exceeds the rate of simultaneous intracellular triglyceride fatty acid oxidation.  相似文献   

10.
We measured whole body and regional lipolytic and adipose tissue blood flow (ATBF) sensitivity to epinephrine in 8 lean [body mass index (BMI): 21 +/- 1 kg/m(2)] and 10 upper body obese (UBO) women (BMI: 38 +/- 1 kg/m(2); waist circumference >100 cm). All subjects underwent a four-stage epinephrine infusion (0.00125, 0.005, 0.0125, and 0.025 microgram. kg fat-free mass(-1). min(-1)) plus pancreatic hormonal clamp. Whole body free fatty acid (FFA) and glycerol rates of appearance (R(a)) in plasma were determined by stable isotope tracer methodology. Abdominal and femoral subcutaneous adipose tissue lipolytic activity was determined by microdialysis and (133)Xe clearance methods. Basal whole body FFA R(a) and glycerol R(a) were both greater (P < 0.05) in obese (449 +/- 31 and 220 +/- 12 micromol/min, respectively) compared with lean subjects (323 +/- 44 and 167 +/- 21 micromol/min, respectively). Epinephrine infusion significantly increased FFA R(a) and glycerol R(a) in lean (71 +/- 21 and 122 +/- 52%, respectively; P < 0.05) but not obese subjects (7 +/- 6 and 39 +/- 10%, respectively; P = not significant). In addition, lipolytic and ATBF sensitivity to epinephrine was blunted in abdominal but not femoral subcutaneous adipose tissue of obese compared with lean subjects. We conclude that whole body lipolytic sensitivity to epinephrine is blunted in women with UBO because of decreased sensitivity in upper body but not lower body subcutaneous adipose tissue.  相似文献   

11.
This study determined the effects of elevated plasma epinephrine on fat metabolism during exercise. On four occasions, seven moderately trained subjects cycled at 25% of peak oxygen consumption (VO(2 peak)) for 60 min. After 15 min of exercise, subjects were intravenously infused with low (0.96 +/- 0.10 nM), moderate (1.92 +/- 0.24 nM), or high (3.44 +/- 0.50 nM) levels (all P < 0.05) of epinephrine to increase plasma epinephrine above control (Con; 0.59 +/- 0.10 nM). During the interval between 35 and 55 min of exercise, lipolysis [i.e., rate of appearance of glycerol] increased above Con (4.9 +/- 0.5 micromol. kg(-1). min(-1)) with low, moderate, and high (6.5 +/- 0.5, 7.1 +/- 0.8, and 10.6 +/- 1.2 micromol. kg(-1). min(-1), respectively; all P < 0.05) levels of epinephrine despite simultaneous increases in plasma insulin. The release of fatty acid into plasma also increased progressively with the graded epinephrine infusions. However, fatty acid oxidation was lower than Con (11.1 +/- 0.8 micromol. kg(-1). min(-1)) during moderate and high levels (8.7 +/- 0.7 and 8.1 +/- 0.9 micromol. kg(-1). min(-1), respectively; P < 0.05). In one additional trial, the same subjects exercised at 45% VO(2 peak) without epinephrine infusion, which produced a plasma epinephrine concentration identical to low levels. However, lipolysis was lower (i.e., 5.5 +/- 0.6 vs. 6.5 +/- 0.5 micromol. kg(-1). min(-1); P < 0.05). In conclusion, elevations in plasma epinephrine concentration during exercise at 25% of VO(2 peak) progressively increase whole body lipolysis but decrease fatty acid oxidation. Last, increasing exercise intensity from 25 to 45% VO(2 peak) attenuates the lipolytic actions of epinephrine.  相似文献   

12.
The effects of insulin-like growth factor I (IGF-I) and insulin on free fatty acid (FFA) and glucose metabolism were compared in eight control and eight type 2 diabetic subjects, who received a two-step euglycemic hyperinsulinemic (0.25 and 0.5 mU x kg(-1) x min(-1)) clamp and a two-step euglycemic IGF-I (26 and 52 pmol x kg(-1) x min(-1)) clamp with [3-(3)H]glucose, [1-(14)C]palmitate, and indirect calorimetry. The insulin and IGF-I infusion rates were chosen to augment glucose disposal (R(d)) to a similar extent in control subjects. In type 2 diabetic subjects, stimulation of R(d) (second clamp step) in response to both insulin and IGF-I was reduced by approximately 40-50% compared with control subjects. In control subjects, insulin was more effective than IGF-I in suppressing endogenous glucose production (EGP) during both clamp steps. In type 2 diabetic subjects, insulin-mediated suppression of EGP was impaired, whereas EGP suppression by IGF-I was similar to that of controls. In both control and diabetic subjects, IGF-I-mediated suppression of plasma FFA concentration and inhibition of FFA turnover were markedly impaired compared with insulin (P < 0.01-0.001). During the second IGF-I clamp step, suppression of plasma FFA concentration and FFA turnover was impaired in diabetic vs. control subjects (P < 0.05-0.01). CONCLUSIONS: 1) IGF-I is less effective than insulin in suppressing EGP and FFA turnover; 2) insulin-resistant type 2 diabetic subjects also exhibit IGF-I resistance in skeletal muscle. However, suppression of EGP by IGF-I is not impaired in diabetic individuals, indicating normal hepatic sensitivity to IGF-I.  相似文献   

13.
Hypertriglyceridemia is common in individuals with human immunodeficiency (HIV) infection, but the mechanisms responsible for increased plasma triglyceride (TG) concentrations are not clear. We evaluated fatty acid and VLDL-TG kinetics during basal conditions and during a glucose infusion that resulted in typical postprandial plasma glucose and insulin concentrations in six men with HIV-dyslipidemia [body mass index (BMI): 28 +/- 2 kg/m2] and six healthy men (BMI: 26 +/- 2 kg/m2). VLDL-TG secretion and palmitate rate of appearance (Ra) in plasma were measured by using stable-isotope-labeled tracer techniques. Basal palmitate Ra and VLDL-TG secretion rates were greater (P < 0.01 for both) in men with HIV-dyslipidemia (1.04 +/- 0.07 micromol palmitate x kg-1 x min-1 and 5.7 +/- 0.6 micromol VLDL-TG x l plasma-1 x min-1) than in healthy men (0.67 +/- 0.08 micromol palmitate. kg-1 x min-1 and 3.0 +/- 0.5 micromol VLDL-TG x l plasma-1 x min-1). Basal VLDL-TG plasma clearance was lower in men with HIV-dyslipidemia (13 +/- 1 ml/min) than in healthy men (19 +/- 2 ml/min; P < 0.05). Glucose infusion decreased palmitate Ra (by approximately 50%) and the VLDL-TG secretion rate (by approximately 30%) in both groups, but the VLDL-TG secretion rate remained higher (P < 0.05) in subjects with HIV-dyslipidemia. These findings demonstrate that increased secretion of VLDL-TG and decreased plasma VLDL-TG clearance, during both fasting and fed conditions, contribute to hypertriglyceridemia in men with HIV-dyslipidemia. Although it is likely that increased free fatty acid release from adipose tissue contributes to the increase in basal VLDL-TG concentration, other factors must be involved, because insulin-induced suppression of lipolysis and systemic fatty acid availability did not normalize the VLDL-TG secretion rate.  相似文献   

14.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

15.
The protease inhibitor (PI) ritonavir (RTV) has been associated with elevated resting lipolytic rate, hyperlipidemia, and insulin resistance/glucose intolerance. The purpose of this study was to examine relationships between lipolysis and fatty acid (FA) oxidation during rest, moderate exercise and recovery, and measures of insulin sensitivity/glucose tolerance and fat redistribution in HIV-positive subjects taking RTV (n=12), HAART but no PI (n=10), and HIV-seronegative controls (n=10). Stable isotope tracers [1-(13)C]palmitate and [1,1,2,3,3-(2)H5]glycerol were continuously infused with blood and breath collection during 1-h rest, 70-min submaximal exercise (50% VO2 peak), and 1-h recovery. Body composition was evaluated using DEXA, MRI, and MRS, and 2-h oral glucose tolerance tests with insulin monitoring were used to evaluate glucose tolerance and insulin resistance. Lipolytic and FA oxidation rates were similar during rest and recovery in all groups; however, they were lower during moderate exercise in both HIV-infected groups [glycerol Ra: HIV+RTV 5.1+/-1.2 vs. HIV+no PI 5.9+/-2.8 vs. Control 7.4+/-2.2 micromol.kg fat-free mass (FFM)-1.min-1; palmitate oxidation: HIV+RTV 1.6+/-0.8 vs. HIV+no PI 1.6+/-0.8 vs. Control 2.5+/-1.7 micromol.kg FFM.min, P<0.01]. Fasting and orally-challenged glucose and insulin values were similar among groups. Lipolytic and FA oxidation rates were blunted during moderate exercise in HIV-positive subjects taking HAART. Lower FA oxidation during exercise was primarily due to impaired plasma FA oxidation, with a minor contribution from lower nonplasma FA oxidation. Regional differences in adipose tissue lipolysis during rest and moderate exercise may be important in HIV and warrant further study.  相似文献   

16.
We evaluated the hypothesis that fatty acid reesterification would be increased during rest and exercise in the midluteal menstrual cycle phase and during oral contraceptive use, when ovarian hormone concentrations are high, compared with the early follicular phase. Subjects were eight moderately active, weight-stable, eumenorrheic women (24.8 +/- 1.2 yr, peak oxygen consumption = 42.0 +/- 2.3 ml.kg(-1).min(-1)) who had not taken oral contraceptives for at least 6 mo. Plasma free fatty acid (FFA) kinetics were assessed in the 3-h postprandial state by continuous infusion of [1-(13)C]palmitate and [1,1,2,3,3-(2)H]glycerol during 90 min of rest and 60 min of exercise at 45% and 65% peak oxygen consumption in the early follicular and midluteal menstrual cycle phases and during the inactive- and high-dose phases following 4 mo of oral contraceptive use. Plasma FFA rates of appearance, disappearance, and oxidation increased significantly from rest to exercise with no differences noted between menstrual cycle or oral contraceptive phases or exercise intensities. Compared with either menstrual cycle phase, oral contraceptive use resulted in an increase in plasma-derived fatty acid reesterification and a decrease in the proportion of plasma FFA rate of disappearance that was oxidized at rest and during exercise. Endogenous and exogenous synthetic ovarian hormones do not exert a measurable influence on plasma FFA turnover or oxidation at rest or during moderate-intensity exercise in the 3-h postprandial state when carbohydrate use predominates. The increase in whole body lipolytic rate during exercise noted previously with oral contraceptive use is not matched by an increase in fatty acid oxidation and results in an increase in reesterification. Synthetic ovarian hormones contained in oral contraceptives increase lipolytic rate, but fatty acid oxidation during exercise is determined by exercise intensity and its metabolic and endocrine consequences.  相似文献   

17.
To investigate the effect of elevated plasma free fatty acid (FFA) concentrations on splanchnic glucose uptake (SGU), we measured SGU in nine healthy subjects (age, 44 +/- 4 yr; body mass index, 27.4 +/- 1.2 kg/m(2); fasting plasma glucose, 5.2 +/- 0.1 mmol/l) during an Intralipid-heparin (LIP) infusion and during a saline (Sal) infusion. SGU was estimated by the oral glucose load (OGL)-insulin clamp method: subjects received a 7-h euglycemic insulin (100 mU x m(-2) x min(-1)) clamp, and a 75-g OGL was ingested 3 h after the insulin clamp was started. After glucose ingestion, the steady-state glucose infusion rate (GIR) during the insulin clamp was decreased to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in GIR during the period after glucose ingestion from the ingested glucose load. [3-(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of endogenous glucose production (EGP) and glucose disappearance (R(d)). During the 3-h euglycemic insulin clamp before glucose ingestion, R(d) was decreased (8.8 +/- 0.5 vs. 7.6 +/- 0.5 mg x kg(-1) x min(-1), P < 0.01), and suppression of EGP was impaired (0.2 +/- 0.04 vs. 0.07 +/- 0.03 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly increased during the LIP vs. Sal infusion study (30 +/- 2 vs. 20 +/- 2%, P < 0.005). In conclusion, an elevation in plasma FFA concentration impairs whole body glucose R(d) and insulin-mediated suppression of EGP in healthy subjects but augments SGU.  相似文献   

18.
Cortisol's effects on lipid metabolism are controversial and may involve stimulation of both lipolysis and lipogenesis. This study was undertaken to define the role of physiological hypercortisolemia on systemic and regional lipolysis in humans. We investigated seven healthy young male volunteers after an overnight fast on two occasions by means of microdialysis and palmitate turnover in a placebo-controlled manner with a pancreatic pituitary clamp involving inhibition with somatostatin and substitution of growth hormone, glucagon, and insulin at basal levels. Hydrocortisone infusion increased circulating concentrations of cortisol (888 +/- 12 vs. 245 +/- 7 nmol/l). Interstitial glycerol concentrations rose in parallel in abdominal (327 +/- 35 vs. 156 +/- 30 micromol/l; P = 0.05) and femoral (178 +/- 28 vs. 91 +/- 22 micromol/l; P = 0.02) adipose tissue. Systemic [(3)H]palmitate turnover increased (165 +/- 17 vs. 92 +/- 24 micromol/min; P = 0.01). Levels of insulin, glucagon, and growth hormone were comparable. In conclusion, the present study unmistakably shows that cortisol in physiological concentrations is a potent stimulus of lipolysis and that this effect prevails equally in both femoral and abdominal adipose tissue.  相似文献   

19.
The present study investigated potential sex-related differences in the metabolic response to carbohydrate (CHO) ingestion during exercise. Moderately endurance-trained men and women (n = 8 for each sex) performed 2 h of cycling at approximately 67% Vo(2 max) with water (WAT) or CHO ingestion (1.5 g of glucose/min). Substrate oxidation and kinetics were quantified during exercise using indirect calorimetry and stable isotope techniques ([(13)C]glucose ingestion, [6,6-(2)H(2)]glucose, and [(2)H(5)]glycerol infusion). In both sexes, CHO ingestion significantly increased the rates of appearance (R(a)) and disappearance (R(d)) of glucose during exercise compared with WAT ingestion [males: WAT, approximately 28-29 micromol x kg lean body mass (LBM)(-1) x min(-1); CHO, approximately 53 micromol x kg LBM(-1) x min(-1); females: WAT, approximately 28-29 micromol x kg LBM(-1) x min(-1); CHO, approximately 61 micromol x kg LBM(-1) x min(-1); main effect of trial, P < 0.05]. The contribution of plasma glucose oxidation to the energy yield was significantly increased with CHO ingestion in both sexes (from approximately 10% to approximately 20% of energy expenditure; main effect of trial, P < 0.05). Liver-derived glucose oxidation was reduced, although the rate of muscle glycogen oxidation was unaffected with CHO ingestion (males: WAT, 108 +/- 12 micromol x kg LBM(-1) x min(-1); CHO, 108 +/- 11 micromol x kg LBM(-1) x min(-1); females: WAT, 89 +/- 10 micromol x kg LBM(-1) x min(-1); CHO, 93 +/- 11 micromol x kg LBM(-1) x min(-1)). CHO ingestion reduced fat oxidation and lipolytic rate (R(a) glycerol) to a similar extent in both sexes. Finally, ingested CHO was oxidized at similar rates in men and women during exercise (peak rates of 0.70 +/- 0.08 and 0.65 +/- 0.06 g/min, respectively). The present investigation suggests that the metabolic response to CHO ingestion during exercise is largely similar in men and women.  相似文献   

20.
Dietary carbohydrate restriction (CR) presents a challenge to glucose homeostasis. Despite the popularity of CR diets, little is known regarding the metabolic effects of CR. The purpose of this study was to examine changes in whole body carbohydrate oxidation, glucose availability, endogenous glucose production, and peripheral glucose uptake after dietary CR, without the confounding influence of a negative energy balance. Postabsorptive rates of glucose appearance in plasma (R(a); i.e., endogenous glucose production) and disappearance from plasma (R(d); i.e., glucose uptake) were measured using isotope dilution methods after a conventional diet [60% carbohydrate (CHO), 30% fat, and 10% protein; kcals = 1.3 x resting energy expenditure (REE)] and after 2 days and 7 days of CR (5% CHO, 60% fat, and 35% protein; kcals = 1.3 x REE) in eight subjects (means +/- SE; 29 +/- 4 yr; BMI 24 +/- 1 kg/m(2)) during a 9-day hospital visit. Postabsorptive plasma glucose concentration was reduced (P = 0.01) after 2 days but returned to prediet levels the next day and remained at euglycemic levels throughout the diet (5.1 +/- 0.2, 4.3 +/- 0.3, and 4.8 +/- 0.4 mmol/l for prediet, 2 days and 7 days, respectively). Glucose R(a) and glucose R(d) were reduced to below prediet levels (9.8 +/- 0.6 micromol x kg(-1) x min(-1)) after 2 days of CR (7.9 +/- 0.3 micromol x kg(-1) x min(-1)) and remained suppressed after 7 days (8.3 +/- 0.4 micromol x kg(-1) x min(-1); both P < 0.001). A greater suppression in carbohydrate oxidation, compared with the reduction in glucose R(d), led to an increased (all P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号