首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The evidence that dendritic cell (DC) subsets produce differential cytokines in response to specific TLR stimulation is robust. However, the role of TLR stimulation in Ag presentation and phenotypic maturation among DC subsets is not clear. Through the adjuvanticity of a novel mannosylated Ag, mannosylated dendrimer OVA (MDO), as a pathogen-associated molecular pattern Ag, we characterized the functionality of GM-CSF/IL-4-cultured bone marrow DC and Flt3 ligand (Flt3-L) DC subsets by Ag presentation and maturation assays. It was demonstrated that both bone marrow DCs and Flt3-L DCs bound, processed, and presented MDO effectively. However, while Flt3-L CD24(high) (conventional CD8(+) equivalent) and CD11b(high) (CD8(-) equivalent) DCs were adept at MDO processing by MHC class I and II pathways, respectively, CD45RA(+) plasmacytoid DCs presented MDO poorly to T cells. Successful MDO presentation was largely dependent on competent TLR4 for Ag localization and morphological/phenotypic maturation of DC subsets, despite the indirect interaction of MDO with TLR4. Furthermore, Toll/IL-1 receptor-domain-containing adaptor-inducing IFN-beta, but not MyD88, as a TLR4 signaling modulator was indispensable for MDO-induced DC maturation and Ag presentation. Taken together, our findings suggest that DC subsets differentially respond to a pathogen-associated molecular pattern-associated Ag depending on the intrinsic programming and TLRs expressed. Optimal functionality of DC subsets in Ag presentation necessitates concomitant TLR signaling critical for efficient Ag localization and processing.  相似文献   

2.
In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using TLR4-/- DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of naïve T cells to polarized CD4+ and CD8+ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy. [BMB Reports 2014;47(9): 512-517]  相似文献   

3.
LIGHT is a recently identified member of the TNF superfamily that is up-regulated upon activation of T cells. Herpesvirus entry mediator, one of its receptors, is constitutively expressed on immature dendritic cells (DCs). In this report, we demonstrate that LIGHT induces partial DC maturation as demonstrated by Ag presentation and up-regulation of adhesion and costimulatory molecules. LIGHT-stimulated DCs show reduced macropinocytosis and enhanced allogeneic stimulatory capacity but fail to produce significant amounts of IL-12, IL-6, IL-1beta, or TNF-alpha compared with unstimulated DCs. However, LIGHT cooperates with CD154 (CD40 ligand) in DC maturation, with particular potentiation of allogeneic T cell proliferation and cytokine secretion of IL-12, IL-6, and TNF-alpha. Moreover, LIGHT costimulation allows DCs to prime in vitro-enhanced specific CTL responses. Our results suggest that LIGHT plays an important role in DC-mediated immune responses by regulating CD154 signals and represents a potential tool for DC-based cancer immunotherapy.  相似文献   

4.
5.
Due to their potent ability to activate the immune system, dendritic cells (DC) are showing promise as potential adjuvants for tumour immunotherapy of cancer patients. However, little is known about the effect tumour cells can have on DC function. Indeed, the discovery of different DC subsets with different immunological functions indicates that the relationship between tumour cells and tumour-infiltrating DC subtypes is likely to be complex. There remains a lot to be understood about the effects of tumours on DC before we can expect to benefit from DC-based tumour immunotherapy of cancer patients. Here we review the recent advances being made in understanding DC phenotype and function in relation to interactions with different types of tumours.  相似文献   

6.
TLRs initiate the host immune response to microbial pathogens by activating cells of the innate immune system. Dendritic cells (DCs) can be categorized into two major groups, conventional DCs (including CD8(+) and CD8(-) DCs) and plasmacytoid DCs. In mice, these subsets of DCs express a variety of TLRs, with conventional DCs responding in vitro to predominantly TLR3, TLR4, TLR5, and TLR9 ligands, and plasmacytoid DCs responding mainly to TLR7 and TLR9 ligands. However, the in vivo requirement of DCs to initiate immune responses to specific TLR agonists is not fully known. Using mice depleted of >90% of CD11c(+) MHC class II(+) DCs, we demonstrate that cellular recruitment, including CD4(+) T cell and CX5(+)DX5(+) NK cell recruitment to draining lymph nodes following the footpad administration of TLR4 and TLR5 agonists, is dramatically decreased upon reduction of DC numbers, but type I IFN production can partially substitute for DCs in response to TLR3 and TLR7 agonists. Interestingly, TLR ligands can activate T cells and NK cells in the draining lymph nodes, even with reduced DC numbers. The findings reveal considerable plasticity in the response to TLR agonists, with TLR4 and TLR5 agonists sharing the requirement of DCs for subsequent lymph node recruitment of NK and T cells.  相似文献   

7.
Dendritic cells (DC), which consist of several different subsets, specialize in antigen presentation and are critical for mediating the innate and adaptive immune responses. DC subsets can be classified into conventional, plasmacytoid, and monocyte-derived DC in the tumor microenvironment, and each subset plays a different role. Because of the role of intratumoral DCs in initiating antitumor immune responses with tumor-derived antigen presentation to T cells, DCs have been targeted in the treatment of cancer. By regulating the functionality of DCs, several DC-based immunotherapies have been developed, including administration of tumor-derived antigens and DC vaccines. In addition, DCs participate in the mechanisms of classical cancer therapies, such as radiation therapy and chemotherapy. Thus, regulating DCs is also important in improving current cancer therapies. Here, we will discuss the role of each DC subset in antitumor immune responses, and the current status of DC-related cancer therapies.  相似文献   

8.
Dendritic cell (DC)-based cancer immunotherapy has been paid much attention as a new and cancer cell-specific therapeutic in the last decade; however, little clinical outcome has been reported. Current limitations of DC-based cancer immunotherapy include sparse information about which DC phenotype should be administered. We here report a unique, representative, and powerful method to activate DCs, namely recombinant Sendai virus-modified DCs (SeV/DC), for cancer immunotherapy. In vitro treatment of SeV without any bioactive gene solely led DCs to a mature phenotype. Even though the expression of surface markers for DC activation ex vivo did not always reach the level attained by an optimized amount of LPS, superior antitumor effects to B16F1 melanoma, namely tumor elimination and survival, were obtained with use of SeV-GFP/DC as compared with those seen with LPS/DC in vivo, and the effect was enhanced by SeV/DC-expressing IFN-beta (SeV-murine IFN-beta (mIFN-beta)/DC). In case of the treatment of an established tumor of B16F10 (7-9 mm in diameter), a highly malignant subline of B16 melanoma, SeV-modified DCs (both SeV-GFP/DC and SeV-mIFN-beta/DC), but not immature DC and LPS/DC, dramatically improved the survival of animals. Furthermore, SeV-mIFN-beta/DC but not other DCs could lead B16F10 tumor to the dormancy, associated with strongly enhanced CD8+ CTL responses. These results indicate that rSeV is a new and powerful tool as an immune booster for DC-based cancer immunotherapy that can be significantly modified by IFN-beta, and SeV/DC, therefore, warrants further investigation as a promising alternative for cancer immunotherapy.  相似文献   

9.
Toll-like receptors (TLRs) have been found to be key elements in pathogen recognition by the host immune system. Dendritic cells (DCs) are crucial for both innate immune responses and initiation of acquired immunity. Here we focus on the potential involvement of TLR ligand interaction in DC maturation. TLR2 knockout mice and mice carrying a TLR4 mutation (C3H/HeJ) were investigated for DC maturation induced by peptidoglycan (PGN), lipopolysaccharide (LPS), or lipoteichoic acids (LTAs). All stimuli induced maturation of murine bone marrow-derived DCs in control mice. TLR2(-)/- mice lacked maturation upon stimulation with PGN, as assessed by expression of major histocompatibility complex class II, CD86, cytokine, and chemokine production, fluorescein isothiocyanate-dextran uptake, and mixed lymphocyte reactions, while being completely responsive to LPS. A similar lack of maturation was observed in C3H/HeJ mice upon stimulation with LPS. DC maturation induced by LTAs from two different types of bacteria was severely impaired in TLR2(-)/-, whereas C3H/HeJ mice responded to LTAs in a manner similar to wild-type mice. We demonstrate that DC maturation is induced by stimuli from Gram-positive microorganisms, such as PGN and LTA, with similar efficiency as by LPS. Finally, we provide evidence that TLR2 and TLR4 interaction with the appropriate ligand is essential for bacteria-induced maturation of DCs.  相似文献   

10.
Dendritic cells (DCs) play a pivotal role in linking innate and adaptive immunity. Migration to the lymph nodes and maturation of DCs are crucial steps in the initiation of specific immune responses. The bacterial product CANTASTIM (CS) is a purified extract of Pseudomonas aeruginosa that induces non-specific protection against bacterial infection, enhances macrophage effector functions and modulates cytokines production. In this study, we used a mouse skin explant culture model and human monocyte-derived DCs to study the effect of CS on the migration and maturation of DCs, respectively. We noticed a significant increase in the number of DCs which migrated from the skin explants when CS was added to the culture medium. Also, CS was able to induce the expression of maturation-associated marker CD83 on human monocyte-derived DCs. DC-based tumor vaccines represent a promising approach for cancer immunotherapy and the migration rate and maturation state of DCs are important parameters for their clinical effectiveness. CS may be an attractive candidate to be tested for the production of DC-based vaccine.  相似文献   

11.
IFN-alpha is an important cytokine for the generation of a protective T cell-mediated immune response to viruses. In this study, we asked whether IFN-alpha can regulate the functional properties of dendritic cells (DCs). We show that monocytes cultured in the presence of GM-CSF and IFN-alpha can differentiate into DCs (IFN-alpha-derived DCs (IFN-DCs)). When compared with DCs generated in the presence of GM-CSF and IL-4 (IL-4-derived DCs), IFN-DCs exhibited a typical DC morphology and expressed, in addition to DC markers CD1a and blood DC Ag 4, a similar level of costimulatory and class II MHC molecules, but a significantly higher level of MHC class I molecules. After maturation with CD40 ligand, IFN-DCs up-regulated costimulatory, class I and II MHC molecules and expressed mature DC markers such as CD83 and DC-lysosome-associated membrane protein. IFN-DCs were endowed with potent functional activities. IFN-DCs secreted large amounts of the inflammatory cytokines IL-6, IL-10, TNF-alpha, IL-1beta, and IL-18, and promoted a Th1 response that was independent of IL-12p70 and IL-18, but substantially inhibited by IFN-alpha neutralization. Furthermore, immature IFN-DCs induced a potent autologous Ag-specific immune response, as evaluated by IFN-gamma secretion and expansion of CD8(+) T cells specific for CMV. Also, IFN-DCs expressed a large number of Toll-like receptors (TLRs), including acquisition of TLR7, which is classically found on the natural type I IFN-producing plasmacytoid DCs. Like plasmacytoid DCs, IFN-DCs could secrete IFN-alpha following viral stimulation or TLR7-specific stimulation. Taken together, these results illustrate the critical role of IFN-alpha at the early steps of immune response to pathogens or in autoimmune diseases.  相似文献   

12.
Dendritic cell (DC) vaccines have emerged as a promising strategy to induce antitumoral cytotoxic T cells for the immunotherapy of cancer. The maturation state of DC is of critical importance for the success of vaccination, but the most effective mode of maturation is still a matter of debate. Whereas immature DC carry the risk of inducing tolerance, extensive stimulation of DC may lead to DC unresponsiveness and exhaustion. In this study, we investigated how short-term versus long-term DC activation with a Toll-like receptor 9 agonist influences DC phenotype and function. Murine DC were generated in the presence of the hematopoietic factor Flt3L (FL-DC) to obtain both myeloid and plasmacytoid DC subsets. Short activation of FL-DC for as little as 4 h induced fully functional DC that rapidly secreted IL-12p70 and IFN-α, expressed high levels of costimulatory and MHC molecules and efficiently presented antigen to CD4 and CD8 T cells. Furthermore, short-term activated FL-DC overcame immune suppression by regulatory T cells and acquired high migratory potential toward the chemokine CCL21 necessary for DC recruitment to lymph nodes. In addition, vaccination with short-term activated DC induced a strong cytotoxic T-cell response in vivo and led to the eradication of tumors. Thus, short-term activation of DC generates fully functional DC for tumor immunotherapy. These results may guide the design of new protocols for DC generation in order to develop more efficient DC-based tumor vaccines.  相似文献   

13.
Why are dendritic cells central to cancer immunotherapy?   总被引:7,自引:0,他引:7  
Dendritic cell (DC)-based immunotherapy is rapidly emerging as a viable alternative to radiation or chemotherapy in the treatment of cancer. The resurgence of interest in cancer immunotherapy reflects the promising results that have been obtained in both animal models and early clinical trials with the DC-based approach. Here I suggest that this optimism is justified because the efficient capture and presentation of antigens by DCs is central to the induction of an immune response. I argue that the mechanism by which DCs capture antigen suggests that the immune system might actually be 'blind' to tumours, thereby challenging the theory of immune surveillance.  相似文献   

14.
党旖旎  李军 《生物磁学》2013,(26):5197-5200,5186
树突状细胞(dendriticcells,DCs)是目前已知功能最强的抗原提呈细胞(antigenpresentingcell,APC),是介导固有免疫和适应性免疫的桥梁,在机体抗感染、抗肿瘤等方面发挥重要作用。Toll样受体(toll.1ikereceptor,TLRs)是一类重要的模式识别受体(paRemrecognitionreceptors,PRRs),可识别入侵的病原体相关分子模式(pathogen-associatedmoleculepatterns,PAMPs),通过招募接头蛋白、活化蛋白激酶和激活转录因子进行信号传导,从而引起效应细胞的活化和促炎因子的释放。不同亚型的DCs分布有不同的TLRs,多种TLRs可识别外来入侵的病原体成分,发挥重要的免疫学作用:诱导DCs分化成熟,摄取递呈抗原,促进DCs分泌多种细胞因子发挥作用。在炎症、病毒感染、自身免疫性疾病和肿瘤等疾病状态下,DCs表面TLRs的表达上调或下调,并且存在功能障碍,可影响DCs的分化成熟,导致其功能低下,这与疾病的发生和发展密切相关。本文综述了TLRs及其信号通路对树突状细胞的活化及功能的影响。  相似文献   

15.
BackgroundThe maturation cocktail composed of interleukin (IL)-6, IL-1β, tumor necrosis factor-α and prostaglandin E2 is considered the “gold standard” for inducing the maturation of dendritic cells (DCs) for use in cancer immunotherapy. Nevertheless, although this maturation cocktail induces increased expression of several activation markers, such as CD83, the co-stimulation molecules CD80, CD86 and CD40 and the chemokine receptor involved in DC homing in lymph nodes CCR7, the DC immune stimulatory function in vivo contrasts with this mature phenotype, and good clinical outcomes in patients with cancer treated with DC-based vaccines remain rare.MethodsPhenotypic characterization of the immunosuppressive status of DCs differentiated from peripheral blood mononuclear cells of healthy volunteers and matured with the “gold standard” cocktail was performed. Glucocorticoid-induced leucine zipper (GILZ) targeting small interfering RNA (siRNA) was electroporated into DCs after maturation to increase their immunogenicity.ResultsThe mature phenotype of DCs treated for 48 h with this cocktail was associated with the expression of several immunosuppressive regulators, including programmed cell death 1 ligand 1 (PD-L1), IL-10 and GILZ. Electroporation is a very efficient and safe way to deliver siRNA into DCs (80% of DCs receive at least one molecule of siRNA). Silencing GILZ in clinical-grade DCs by siRNA leads to a decrease of the PD-L1 expression associated with an increase in their IL-12 secretion and T-cell induction capability.ConclusionsGILZ silencing is a promising approach to achieving complete clinical-grade DC maturation and avoiding the immunosuppressive effects of the maturation cocktail on DCs intended for clinical use.  相似文献   

16.
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is a high-incidence tumor in southern China. Latent membrane proteins 2 (LMP2) is a subdominant antigen of EBV. The present study was to develop a dendritic cells (DCs)-based cancer vaccine (rAd-LMP2-DC) and to study its biological characteristics and its immune functions. Our results showed that LMP2 gene transfer did not alter the typical morphology of mature DC, and the representative phenotypes of mature DC (CD80, CD83, and CD86) were highly expressed in rAd-LMP2-DCs. The expression of LMP2 in rAd-LPM2-DCs was about 84.54%, which suggested efficient gene transfer. Transfected DCs markedly increased antigen-specific T-cell proliferation. The specific cytotoxicity against NPC cell was significantly higher than that in controls (p < 0.05), and enhanced with increased stimulations by transfected DCs. In addition, phenotypic analysis demonstrated that the LMP2-specific CTLs consisted of both CD4(+) and CD8(+) T cells. These results showed that development of DC-based vaccine by transfection with malignancy-associated virus antigens could elicit potent CTL response and provide a potential strategy of immunotherapy for EBV-associated NPC.  相似文献   

17.
Han S  Koo J  Bae J  Kim S  Baik S  Kim MY 《BMB reports》2011,44(2):129-134
Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.  相似文献   

18.
Xia D  Moyana T  Xiang J 《Cell research》2006,16(3):241-259
Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor suppressor genes. Central to all these therapies is the development of efficient vectors for gene therapy. By far, adenovirus (AdV)-mediated gene therapy is one of the most promising approaches, as has confirmed by studies relating to animal tumor models and clinical trials. Dendritic cells (DCs) are highly efficient, specialized antigen-presenting cells, and DC- based tumor vaccines are regarded as having much potential in cancer immunotherapy. Vaccination with DCs pulsed with tumor peptides, lysates, or RNA, or loaded with apoptotic/necrotic tumor cells, or engineered to express certain cytokines or chemokines could induce significant antitumor cytotoxic T lymphocyte (CTL) responses and antitumor immunity. Although both AdV-mediated gene therapy and DC vaccine can both stimulate antitumor immune responses, their therapeutic efficiency has been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or to growth inhibition of small tumors. However, this approach has been unsuccessful in combating well-established tumors in animal models. Therefore, a major strategic goal of current cancer immunotherapy has become the development of novel therapeutic strategies that can combat well-established tumors, thus resembling real clinical practice since a good proportion of cancer patients generally present with significant disease. In this paper, we review the recent progress in AdV-mediated cancer gene therapy and DC-based cancer vaccines, and discuss combined immunotherapy including gene therapy and DC vaccines. We underscore the fact that combined therapy may have some advantages in combating well-established tumors vis-a-vis either modality administered as a monotherapy.  相似文献   

19.
Today, cancers pose a major public health burden. Although a myriad of cancer treatments are available, only a few have achieved clinical efficacy. This is partly attributed to cancers capability to evade host immunity by converting dendritic cells (DCs) from potent stimulators to negative modulators of immunity. Dendritic cell-based immunotherapy attempts to resolve this problem by manipulating the functional characteristics of DCs. Plant-derived polysaccharides (PDPs) can stimulate the maturation of DCs conferring on them the capacity to present internalised tumorigenic antigens to naïve T cells and subsequently priming T cells to eliminate tumours. PDPs have been used as immune modulators and later as anti-cancer agents by Traditional Chinese Medicine practitioners for centuries. They are abundant in nature and form a large group of heterogeneous though structurally related macromolecules that exhibit diverse immunological properties. They can induce antigen pulsed DCs to acquire functional characteristics in vitro which can subsequently be re-introduced into cancer patients. They can also be used as adjuvants in DC-based vaccines or independently for their intrinsic anti-tumour activities. Clinically, some in vitro generated DCs have been shown to be both safe and immunogenic although their clinical application is limited in part by unsatisfactory functional maturation as well as impaired migration to draining lymph nodes where T cells reside. We review the relative potencies of individual PDPs to induce both phenotypic and functional maturation in DCs, their relative abilities to activate anti-cancer immunity, the possible mechanisms by which they act and also the challenges surrounding their clinical application.  相似文献   

20.
Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号