首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the genetic variation, correlation, correlated response and path analysis were conducted on 8 rice cultivars to bring out the association and channelling of the pathway of different components of resistance to Xanthomonas campestris pv. oryzae. High genotypic coefficient of variation coupled with high heritability and genetic gain was observed for lesion size (LS) and the area under disease progress curve (AUDPC) indicating the predominance of additive gene effects. There was a strong association among all the components both at genotypic and phenotypic levels. Genotypic correlations were higher than the corresponding phenotypic correlations indicating the modifying effect of environment on association of components at genotypic level. Maximum correlated response and relative selection efficiency on AUDPC was observed through indirect selection for LS followed by the number of bacteria per unit leaf area (NB). Path analysis revealed highest direct effect of LS on AUDPCboth at genotypic and phenotypic levels. Indirect effects of fairly high magnitude were also exerted by incubation period (ICP) and NB towards AUDPC.  相似文献   

2.
Quantitative resistance is generally associated with several genes, located in quantitative trait loci (QTLs). Although often described as non-isolate-specific and durable, some cases of erosion of this resistance have been observed. The likelihood of an erosion of quantitative resistance could be reduced, provided that this resistance rests on diversified mechanisms. We hypothesized that QTLs phenotypically expressed on different components, govern different mechanisms of resistance. A doubled haploid population of 91 lines, derived from a cross between the wheat cultivars Apache and Balance, was used to identify leaf rust resistance QTLs. After establishing a linkage map with 355 markers, 13 QTLs were found involved in field resistance, for over 2 years in two locations. Ten of these QTLs were associated with five resistance components (infection efficiency, latent period, lesion size, spore production per lesion and spore production per unit of sporulating tissue) measured in two greenhouse experiments. All but one of the QTLs found in the greenhouse were associated with one or two resistance components, supporting the hypothesis that different genetic factors are mostly involved in the expression of different resistance components. Analyzing separately different field scoring dates revealed QTLs involved at different stages of the epidemic. The QTLs displayed different degrees of isolate-specificity on field resistance, as measured by LOD scores and R 2, leading to the conclusion that isolate-specificity is both a qualitative and quantitative feature of quantitative resistance. A profile of each QTL was drawn, to evaluate its usefulness according to the objectives of the breeding program.  相似文献   

3.
Pyramiding and dissecting disease resistance QTL to barley stripe rust   总被引:3,自引:0,他引:3  
Quantitative resistance (QR) to disease is usually more durable than qualitative resistance, but its genetic basis is not well understood. We used the barley/barley stripe rust pathosystem as a model for the characterization of the QR phenotype and associated genomic regions. As an intermediate step in the preparation of near-isogenic lines representing individual QTL alleles and combinations of QTL alleles in a homogeneous genetic background, we developed a set of QTL introgression lines in a susceptible background. These intermediate barley near-isogenic (i-BISON) lines represent disease resistance QTL combined in one-, two-, and three-way combinations in a susceptible background. We measured four components of disease resistance on the i-BISON lines: latent period, infection efficiency, lesion size, and pustule density. The greatest differences between the target QTL introgressions and the susceptible controls were for the latter three traits. On average, however, the QTL introgressions also had longer latent periods than the susceptible parent (Baronesse). There were significant differences in the magnitudes of effects of different QTL alleles. The 4H QTL allele had the largest effect, followed by the alleles on 1H and 5H. Pyramiding multiple QTL alleles led to higher levels of resistance in terms of all components of QR except latent period.  相似文献   

4.
Components of partial resistance to Septoria nodorum in winter wheat   总被引:2,自引:0,他引:2  
Components of partial resistance to Septoria nodorum were investigated in 10 cultivars of winter wheat having similar field resistances. The components measured were infection frequency, latent period, size, shape and rate of growth of lesions, spore production and its rate of increase. Latent period was found to be lognormally distributed. Some of the components of resistance were found to be significantly different between cultivars. Cluster analysis also showed that cultivars could be distinguished on the basis of their components of resistance. Principal components analysis indicated that resistance could be broken down into four underlying factors, three of which could be readily interpreted. The measurements of the components of resistance were combined in a model, the r-index, based on Van der Plank's r. The amount of variation between cultivars cast some doubt on the predictive value of the index but all the cultivar values were well within the range bounded by two ‘synthetic’ cultivars made up of combinations of either the most resistant or the most susceptible components. It is considered that the r-index has potential in screening for field resistance. The possibility of incorporating the most resistant-type components into one cultivar is discussed. The use of cultivar mixtures containing cultivars having similar field resistances is also discussed in the light of the variability found in this study.  相似文献   

5.
The components of partial resistance, incubation period, lesion area, latent period and sporulation were recorded on plants of six winter and two spring wheat cultivars which had been artificially inoculated with Septoria nodorum spores. Incubation period gave a guide as to how the cultivars would respond in the field to Septoria nodorum but statistical analysis showed that it could not be used alone to predict accurately the resistance of each cultivar to the pathogen. Average sporulation, however, could be used with more confidence for predicting the field resistance of the cultivars. From a regression analysis of NIAB rating versus incubation period, lesion area, latent period and sporulation, an equation was devised to obtain resistance indices for each cultivar. These resistance indices clearly reflected the NIAB ratings for the cultivars. It would therefore appear that resistance indices could be used as a pre-field evaluation method for identifying resistance to Septoria nodorum and thus be a valuable technique in breeding programmes.  相似文献   

6.
Four components of rate-reducing resistance to Cercospora leaf spot in sugar beet (infection efficiency of conidia RC1, incubation period RC2, size of necrotic spots RC3 and spore yield RC4), previously measured in single infection cycle experiments, were integrated into a model simulating the chain of infection cycles under field conditions, as influenced by weather. To integrate resistance components, variables accounting for infection frequency, incubation period, affected leaf area, and infectiousness – which are computed for a susceptible cultivar – were modified by means of coefficients which reduced (RC1, RC3, RC4) or increased (RC2) them. Outputs obtained by running the model and changing resistance components actually reduced the rate of disease progress and the area under the disease progress curve of epidemics (AUDPC), as happens at field level; therefore, the approach may be considered successful. Changes in single resistance components were closely correlated with changes in AUDPC: improvements in RC1, RC3 or RC4 reduced AUDPC by the same, over the whole range of variation in infection frequency, affected leaf area, and infectiousness; on the contrary, little improvements in RC2 were more effective than stronger ones. When components acted simultaneously, each of them reduced disease progress in proportion to its magnitude; when all components were improved by the same amount, they had about the same effectiveness in slowing the epidemic. Changing more components simultaneously reduced the disease development slightly more than additively. Advantages for plant breeders in improving their selection strategies are outlined.  相似文献   

7.
Components of partial resistance [disease incidence (DI), infection frequency (IF), latent period (LP), spores per lesion (SPL)] were assessed on glasshouse-grown barley seedlings following inoculation with spore suspensions of Rhynchosporium secalis at growth stage 12 (Zadoks, Chang & Konzak, 1974). Four experiments were carried out at different times during 1988. Three spring barley cultivars [two from Cyprus (cvs Kantara and Athenais) and one from the UK (cv. Triumph)] were used in the first three experiments. In the fourth experiment eight additional UK cultivars with NIAB resistance ratings ranging from 3 to 9 were used. Two races of R. secalis were used in the first three experiments and three in the fourth. The three cultivars, Kantara, Athenais and Triumph, were examined in all four experiments and significant differences detected for virtually all components of partial resistance in each. Differences, however, were often small and ranking of cultivars varied in different experiments. The greater susceptibility of cv. Kantara compared to cv. Athenais, observed under field conditions in Cyprus, would not be anticipated from the small differences in components of partial resistance observed in these experiments, but, for these cultivars, the possibility of a marked genotype x environment interaction cannot be discounted. Mean values for the components of partial resistance differed in the four experiments. LP was correlated with mean glasshouse temperature from inoculation to the onset of sporulation but differences in IF and SPL were not correlated with temperature. For these components, light quality and/or duration appeared to be more important. Overall, there were no differences between races but significant race X cultivar interactions were observed in two experiments. In the fourth experiment, examining 11 cultivars, there were significant differences between cultivars for all components of partial resistance. IF and LP were correlated but neither of these components was correlated with SPL indicating independent control of this latter component. Both IF and LP were correlated with field performance (NIAB ratings) but there was no correlation with SPL. However, combining IF with mean values of SPL restricted to the 5 days following the end of the LP, produced the best correlation (r= 0.92) with NIAB ratings. Problems of assessing components of partial resistance and possible means of improving assessments are discussed.  相似文献   

8.
Components of early blight resistance were quantified in leaves of different ages in four potato cultivars. The components of resistance: incubation period (IP), lesion number (LN), early blight severity, lesion expansion rate (LER), latent period (LP) and spore production by lesion area (SPLA), were evaluated separately in the lower, middle and upper leaves of four potato cultivars. Plants of cultivar Aracy (resistant), Delta (moderately resistant), Desirée (susceptible) and Bintje (susceptible) were inoculated with an Alternaria solani isolate at the beginning of the flowering stage. Disease severity varied in different plant parts. In all cultivars, regardless of resistance, the smallest values of LN, and severity were recorded on the upper leaves, suggesting that young tissues are less susceptible. In cultivar Aracy, the IP was long, with small values of LN and LER and consequently, low values of early blight severity in all leaf positions were recorded. Although IP was long in cultivar Aracy, no differences between the moderately resistant cultivar Delta and the susceptible cultivars Bintje and Desirée could be detected for this component. The IP was only influenced by leaf position in cultivar Aracy. Clear differences in resistance levels among cultivars could be detected regarding LN, severity and LER. However, neither LP nor SPLA were associated with resistance level of cultivars or with leaf position. Analyses according to plant part suggest that evaluations on leaves of the middle third part are most suitable for screening for early blight resistance in potato.  相似文献   

9.
Stagonospora nodorum blotch is an important foliar and glume disease in cereals. Inheritance of resistance in wheat appears to be quantitative. To date, breeding of partially resistant cultivars has been the only effective way to combat this pathogen. The partial resistance components, namely length of incubation period, disease severity, and length of latent period, were evaluated on a population of doubled haploids derived from a cross between the partially resistant Triticum aestivum 'Liwilla' and susceptible Triticum aestivum 'Begra'. Experiments were conducted in a controlled environment and the fifth leaf was examined. Molecular analyses were based on bulked segregant analyses using 240 microsatellite markers. Four QTLs were significantly associated with partial resistance components and were located on chromosomes 2B, 3B, 5B, and 5D. The percentage of phenotypic variance explained by a single QTL ranged from 14 to 21% for incubation period, from 16 to 37% for disease severity, and from 13 to 28% for latent period,  相似文献   

10.
Six spring barley cultivars with no known genes for resistance to specific virulences but varying in partial resistance to Rhynchosporium secalis, were crossed in all combinations (6 × 6 diallel including reciprocals). In addition to seeds from naturally selfed plants, seeds of all parent cultivars were also produced by artificial selfing (emasculation followed by pollination using pollen from the same cultivar). This ensured comparability between seeds of parents and F1. Both sets of parents, F1 and F2 families were grown in the field as single spaced plants and inoculated at Zadoks growth stage 49 with spore suspensions (2 × 106 spores ml-1) of three races (pathotypes) of R. secalis (Zadoks, Chang & Konzak, 1974). Components of partial resistance, incubation period (ICP), infection frequency (IF) and spore production per lesion (SP/L) were assessed on each plant. There were highly significant differences for all three components of partial resistance in both sets of parent cultivars but rank order in both sets was similar as evidenced by correlation coefficients, r= 0.96 for ICP and IF and r= 0.87 for SP/L. All three components of partial resistance were strongly correlated with NIAB (National Institute of Agricultural Botany, Cambridge, UK) resistance ratings. Means of F1 and F2 families were correlated with mid-parent values for ICP and IF but not SP/L. No difference in aggressiveness was found between races but for each component of partial resistance there was a significant interaction between race and parent cultivar (artificial selfs) and, for IF and ICP, a significant interaction between race and F1 family. There was no evidence of interaction between parent (natural selfs) and race nor between race and F2 family. Examination of genetic control of resistance showed evidence of strong additive effects (combining ability) in both F1 and F2 for ICP and IF but not for SP/L. There was no evidence for maternal or reciprocal differences, but there was evidence for dominance effects although their nature differed between components of partial resistance and between F1 and F2 generations. In the F1, but not the F2 generation, several elements of dominance (direction, distribution of dominant genes between parent cultivars, specific combining ability) showed for ICP or IF (but not SP/L) significant interaction with race.  相似文献   

11.
A group of 69 rice cultivars with diverse degrees of resistance to rice blast disease (at least in a qualitative sense) was chosen for a detailed study of some components of race non-specific resistance, i.e. relative disease efficiency, latent period, and sporulation capacity. Large differences amongst cultivars were found. The overlapping of the normal curves for the qualitative reaction and the components of race non-specific resistance point out the difficulties of rapid screening for blast resistance by simple observation in the field. One approach to overcome these difficulties could be to use component(s) analysis in the evaluation of rice germplasm to identify parents or progeny having the attributes of race non-specific resistance.  相似文献   

12.
Components of quantitative resistance, spore production, incubation period, infection frequency and mean lesion size were measured in 17 sunflower accessions inoculated with conidia of Alternuria helianthi under controlled conditions. The same accessions were also rated for disease reaction in the field in 1994 and 1995 using a generated epidemic and varied in their disease reactions from highly susceptible to highly resistant. Spearman's ranking of accessions was highly correlated (r = 0.9) for both years; however, the ranking of components measured under controlled conditions with field severity was generally poor. Regression analysis of components with field severity ratings of the accessions showed that mean lesion size was highly correlated (r = O.74) and infection frequency was moderately correlated (r = 0.58) with the field severity ratings taken over the two years. Infection frequency was also well correlated (r = 0.75) with mean lesion size. Spore production and incubation period were poorly correlated with the field severity ratings for both years. An index based on infection frequency and mean lesion size gave a better correlation with the 1995 field severity ratings than either component alone, but in 1994 the index was not as well correlated with field severity as mean lesion size alone. It is suggested that mean lesion size, determined from plants 7–9 days after inoculation could be used to select for resistance to A. helianthi in the greenhouse. Infection frequency could also be used as a predictor of resistance, but to a lesser degree.  相似文献   

13.
The CNA-IRAT 5 upland rice population has been improved for 4 years by recurrent selection for blast resistance in Brazil. In order to predict the efficiency of recurrent selection in different test systems and to compare the relative advantage of hybrids versus pure line breeding, a combined genetic analysis of partial blast resistance in the CNA-IRAT 5 population was undertaken. A three-level hierarchical design in inbreeding and a factorial design were derived from the base population. Partial blast resistance of lines and hybrids was evaluated in the greenhouse and in the field by inoculation with one virulent blast isolate. The means and genetic variances of the hybrids and lines were estimated. Genetic advance by recurrent selection was predicted from estimates of variance components. The inheritance of partial blast resistance was mainly additive but non-additive effects were detected at both levels of means and variances. Mean heterosis ranged from 4%–8% for lesion size and lesion density to 10–12% for leaf and panicle resistance. High dominance or homozygous dominance variances relative to additive variance and negative covariance between additive and homozygous dominance effects were estimated. A low frequency of favourable alleles for partial resistance would explain the observed organisation of genetic variability in the base population. Recurrent selection will efficiently improve partial blast resistance of the CNA-IRAT 5 population. Genetic advance for line or hybrid values was expected to be higher testing doubled haploid lines than S1 lines, or than general combining ability. Two components of partial resistance assessed in the greenhouse, lesion size and lesion density, could be used as indirect selection criteria to improve field resistance. On the whole, hybrid breeding for partial blast resistance appeared to be slightly more advantageous than pure line breeding.  相似文献   

14.
Slow rusting is considered a crucial component of durable resistance to wheat leaf rust caused by Puccinia triticina and is often expressed in the form of a prolonged latent period. Selection for a longer latent period is considered an effective approach to developing wheat cultivars with improved durable resistance to leaf rust. A recombinant inbred line (RIL) population derived from CI 13227 (long latent period) × Suwon 92 (short latent period) was phenotyped for latent period in two greenhouse experiments in separate years, and amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers were analyzed in the same population. Among the RILs, the frequency distribution for latent period was continuous, and latent period was highly correlated between years (r=0.94, P<0.0001). A quantitative trait locus (QTL) prolonging the latent period of P. triticina, designated as QLrlp.osu-2DS, explained 42.8% and 54.5% of the phenotypic and genetic variance in the two experiments, respectively. QLrlp.osu-2DS was mapped on the distal region of chromosome 2DS. Two other QTLs for latent period, QLrlp.osu-2B and QLrlp.osu-7BL, were localized on chromosome 2B and the long arm of chromosome 7B, respectively. Multiple regression analysis showed that these three QTLs collectively explained 58.0% and 73.8% of the phenotypic and genetic variance over two experiments, respectively. Fourteen RILs that carried all three alleles for long latent period at three AFLP loci flanking QLrlp.osu-2DS, QLrlp.osu-2B, and QLrlp.osu-7BL had a mean latent period of 12.5 days, whereas 13 RILs without any long-latent-period alleles at the corresponding loci had a mean latent period of 7.4 days. Three SSR markers closely linked to these QTLs have potential to be applied in marker-assisted selection for prolonged latent period in wheat.  相似文献   

15.
Genetically coupled antagonistic coevolution between host and parasites can select for the maintenance of recombination in the host. Mechanistically, maintenance of recombination relies on epistatic interactions between resistance genes creating linkage disequilibria (LD). The role of epistasis in host resistance traits is however only partly understood. Therefore, we applied the joint scaling principle to assess epistasis and other nonadditive genetic components of two resistance traits, survival, and parasite spore load, in population crosses of the red flour beetle Tribolium castanaeum under infections with the microsporidian Nosema whitei. We found nonadditive components only in infected populations but not in control populations. The genetic architecture underlying survival under parasite infection was more complex than that of spore load. Accordingly, the observed negative correlation between survival and spore load was mainly based on a correlation between shared additive components. Breakdown of resistance was especially strong in F2 crosses between resistant lines indicating that multiple epistatic routes can lead to the same adaptation. In general, the wide range of nonoverlapping genetic components between crosses indicated that parasite resistance in T. castanaeum can be understood as a multi peaked fitness landscape with epistasis contributing substantially to phenotypic differentiation in resistance.  相似文献   

16.
During vegetative period 2004–2005 powdery mildew (Erysiphe graminis DC. f. sp. hordei Em. Marchal) field resistance of spring barley cultivars was investigated at the Lithuanian Institute of Agriculture. The spring barley genotypes tested were Lithuania-registered cultivars, cultivars from genetic resources collection, and the new cultivars used for initial breeding. In total, 23 resistance genes were present in the 84 cultivars studied. Among mono-genes only mlo and 1-B-53 showed very high resistance. Slight powdery mildew necroses (up to 3 scores) formed on cultivars possessing these genes. The maximal powdery mildew (PM) severity reached a score of 8.5 and the area under disease progress curve (AUDPC) a value of 1216.8. The cultivars ‘Primus’, ‘Astoria’, ‘Power’, ‘Harrington’ and ‘Scarlett’ were the most resistant among the non mlo cultivars. Severity of PM on ‘Primus’ reached a score of 3.5 (3.0 of PM necrosis) in average, the other cultivars were diseased from 4.5 (3.0) to 5.0 (2.0). The AUDPC values for these cultivars except ‘Scarlett’ were the lowest (85.0–145.3) among the other cultivars. The highest contrast in development of the other leaf diseases was between highly resistant and susceptible to PM cultivar groups. The fast development of PM depressed development of the other diseases 4.7 times.  相似文献   

17.
Lecanicillium fungicola (formerly Verticillium fungicola) is responsible for dry bubble disease in the white button mushroom Agaricus bisporus. Selection for resistance to this pathogen raises an important challenge for mushroom breeders. We have investigated the inheritance of resistance to dry bubble under artificial inoculation in three independent experiments, using a progeny of 89 hybrids derived from an intervarietal A. bisporus var. bisporus×A. bisporus var. burnettii cross. Overall, phenotypic correlations were highly significant between the different experiments. Principal component analysis, together with analysis of variance results stated that the disease reactions were accurately assessed using the percentage of bubbles (PB) and the percentage of spotty cap mushrooms (PS) separately rather than with the combination of both. An original contribution of this study lies in the effective use of area under the disease-progress curve (AUDPC) to describe the dry bubble resistance. The continuous phenotypic distribution observed for the resistance traits suggested that tolerance to dry bubble was under polygenic control. Heritability estimates for either PB or AUDPC were high (0.67-0.86) while it was inconsistent for PS (0.33-0.68) suggesting a strong impact of the environment on this latter trait. Earliness and latent period were found highly correlated with disease incidence. The earliest strains appeared to be the most resistant ones. These results contribute to disentangle the complex fungal-fungal A. bisporus / L. fungicola interaction and to provide genetic basis as a prerequisite for mushroom breeding program.  相似文献   

18.
ABSTRACT: BACKGROUND: Adaptation of pathogens to their hosts depends critically on factorsaffecting pathogen reproductive rate. While pathogen reproduction is the end result of an intricate interaction between host and pathogen, the relative contributions of host and pathogen genotype to variation in pathogen life history within the hostare not well understood. Untangling these contributions allows us to identify traits withsufficient genetic variation for selection to act and to identify mechanisms of coevolution between pathogens and their hosts. We investigated the effects of pathogen and host genotype on three life-history components of pathogen fitness; infection efficiency, latent period, and sporulation capacity, in the oat crown rust fungus, Puccinia coronata f.sp. avenae, as it infects oats (Avena sativa). RESULTS: We show that both pathogen and host genotype significantly affect total spore production butdo so through their effects on different life-history stages. Pathogen genotype has the strongest effect on the early stage of infection efficiency, while host genotype most strongly affects the later life-history stages of latent period and sporulation capacity.In addition, host genotype affected the relationship between pathogen density and the later life-history traits oflatent period and sporulation capacity. We did not find evidence of pathogen-by-host genotypic (GxG) interactions. CONCLUSION: Our results illustrate mechanisms by which variation in host populationswill affect the evolution of pathogen lifehistory. Results show that differentpathogen life-history stages have the potential to respond differently to selection by host or pathogen genotypeand suggest mechanisms of antagonistic coevolution. Pathogen populations may adapt tohost genotype through increased infection efficiency while their plant hosts may adapt by limiting the later stages ofpathogen growthand spore production within the host.  相似文献   

19.
The most reliable method to control the wheat yellow rust disease is cultivation of resistance cultivars. To provide resistance, it is necessary to be aware of the amount and the quality of pathogenesis of disease factors and resistant specifications. In this study, 82 wheat promising lines with Bolani susceptible cultivar in randomised complete block design were tested in the seedling stage. This experiment was carried out in greenhouse condition, and it was assessed by two races: 166E254A+Yr27+ and 6E150A+, which were more and less pathogenic, respectively. The attributes of resistance were measured for infection type (IT), latent period (LP), pustule size (PS) and density. Results of variance analysis relating two races between wheat genotypes for these four attributes of resistance showed that there is a difference in the probability at 1% level. The statistical analyses for these components of resistance indicated that there is negative and high solidarity between IT and LP, and also among the number and density of pustules. The correlation between IT and LP and both races were -0.90 and -0.98, respectively. Cluster analysis of lines to each race was classified as resistant, semi-resistant and susceptible. The first group of the resistant lines were 27 lines in which their ITs of 0–2, mean LP of 18?days PS of 2.8 and pustule density of 1.1 were recorded.  相似文献   

20.
Quantitative resistance ofSalix toMelampsora larici-epitea leaf rust was studied in 2Salix mapping populations. One population was a backcross between aS. schwerinii ×S. viminalis hybrid andS. viminalis, and the other was an F2 population betweenS. viminalis andS. dasyclados. A leaf disc bioassay was used to study the components of quantitative resistance (latent period, uredinia number, and uredinia size) to 3 isolates of the leaf rust. The analysis of quantitative trait loci (QTLs) revealed 9 genomic regions in the backcross population and 7 genomic regions in the F2 population that were important for rust resistance, with QTLs explaining 8–26% of the phenotypic variation. An important genomic region was identified for the backcross population in linkage group 2, where QTLs were identified for all resistance components for 2 of the rust isolates. Four of the QTLs had overlapping mapping intervals, demonstrating a common genetic background for latent period, uredinia diameter, and uredinia number. QTLs specific to some rust isolates and to some resistance components were also found, indicating a combination of common and specific mechanisms involved in the various resistance components. Breeding implications in relation to these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号