首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dinosaur footprint assemblage from the Lower Jurassic Ziliujing Formation of Zigong City, Sichuan, China, comprises about 300 tracks of small tridactyl theropods and large sauropods preserved as concave epireliefs (natural molds). The theropod footprints show similarities with both the ichnogenera Grallator and Jialingpus. Three different morphotypes are present, probably related to different substrate conditions and extramorphological variation. A peculiar preservational feature in a morphotype that reflects a gracile trackmaker with extremely slender digits, is the presence of a convex epirelief that occurs at the bottom of the concave digit impressions. It is possibly the result of sediment compaction underweight load when the pes penetrated the substrate, being a resistant residue during exhumation and weathering. The sauropod tracks belong to a trackway with eight imprints consisting of poorly preserved pes and manus tracks and a better preserved set, probably all undertracks. The narrow-gauge trackway pattern resembles the ichnogenus Parabrontopodus well known from the Jurassic but other features such as the minor heteropody are different. The assemblage enriches the dinosaur record from the famous Zigong locality and the evidence from the Lower Jurassic in this area that was restricted to a few skeletal remains and footprints. Furthermore it proves the presence of small theropods, whereas skeletons of the group, well- known from the Middle-Upper Jurassic of Zigong, are of medium to large size only. Remarkable is the dominance of saurischians in these assemblages, which is characteristic of Jurassic dinosaur communities whereas the Cretaceous record shows an increase of ornithopod groups. An overview of the dinosaur trace and body fossil record of the Sichuan Basin supports this view. The paleoenvironment can be designated as a low-latitude tropical freshwater lake as it is indicated by bivalve shells.  相似文献   

2.
Literature concerning dinosaur footprints or trackways exhibiting abnormal gait or morphology reflecting pathology (ichnopathology) is rare. We report on a number of Jurassic and Cretaceous occurrences of theropod footprints from western North America with unusual morphologies interpreted herein as examples of inferred pathologies, or ichnopathologies. The majority of ichnopathologies are primarily manifested in the digit impressions and include examples of swelling, extreme curvature, dislocation or fracture, and amputation. A number of occurrences are single tracks on ex situ blocks with substantial deformation (inferred dislocation or fracture), or absence of a single digit impression. Two occurrences are from in situ natural mould trackways, one of which is a lengthy trackway of a presumed allosauroid with no noticeable deformation of the digits or feet but with strong inward rotation of the left footprint toward the midline and a pronounced, waddling limp. The other is a tyrannosaurid trackway consisting of three footprints (one right, two left) with the two left prints exhibiting repetitive ichnopathology of a partially missing Digit II impression.  相似文献   

3.
Dinosaur footprints occur in shallow marine sedimentary units of the Berriasian Villar del Arzobispo Formation in the Aliaga basin, NE Spain. Las Cerradicas is a small outcrop (25 m2), near Galve, with four dinosaur trackways. Three tridactyl trackways indicate bipedal animals, and have parallel orientation. A fourth or‐nithopod trackway indicates a quadrupedal animal and is the smallest among any reported in the literature (L = 23 cm, W = 23 cm of pes tracks). It has manus prints that are oval‐shaped impressions. These and other recent discoveries shed much light on the abundance of quadrupedal ornithopods during the early Cretaceous.  相似文献   

4.
We documented trackways of free-living Crocodylus acutus on beaches at the mouths of Tamarindo and Ventanas estuaries, Costa Rica. Our crocodiles had estimated total lengths of 1–3 meters or more. Manus prints have five digits, with digits I–III bearing claw marks. Pes prints have four digits, with claw marks on digits I–III. The pes is plantigrade. Claws generally dig into the substrate. Apart from claw marks, digit I and the heel of the pes are usually the most deeply impressed parts of footprints. Trackways are wide-gauge. Pes prints are usually positioned just behind ipsilateral manus prints of the same set and may overlap them. Manus and pes prints angle slightly outward with respect to the crocodile's direction of movement. Claw-bearing digits of both the manus and pes may create curved, concave-toward-the-midline drag marks as the autopodium is protracted. The tail mark varies in depth and clarity, and in shape from nearly linear to markedly sinuous. Sometimes the tail mark hugs the trackway midline, but sometimes it is closer to, or even cuts across, prints of one side. American crocodile footprints and trackways are similar to those observed in other extant crocodylian species, indicating substantial trackway conservatism across the group.  相似文献   

5.

Background

Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks provide valuable information concerning the often poorly understood functional morphology of the early theropod forelimb.

Methodology/Principal Findings

Here we describe a well-preserved theropod trackway in a Lower Jurassic (∼198 million-year-old) lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-defined impressions made by both hands, the tail, and the ischial callosity.

Conclusions/Significance

The manus impressions corroborate that early theropods, like later birds, held their palms facing medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the theropod lineage than previously recognized, and may characterize all theropods.  相似文献   

6.
The new ichnospecies, Shenmuichnus wangi ichnosp. nov., is the first evidence for the presence of large ornithischians in the Early Jurassic of Yunnan Province, whereas the known skeletal record documents small species only. Until now Shenmuichnus was known from a single locality in Shaanxi Province by the ichnospecies Shenmuichnus youngteilhardorum. Compared with the latter, Shenmuichnus wangi is larger and shows a different trackway configuration, particularly in the relative position of manus and pes imprints. Palecologically, the occurrence of Shenmuichnus wangi in a red bed facies indicates the preference of distinctive environments of trackmakers of both ichnospecies, questioning former hypotheses of exclusivity of ornithischians in more humid climates. By abundance both skeletons and footprints of ornithischians suggest their role as a minor component in Early Jurassic saurischian dominated dinosaur faunas in this region.  相似文献   

7.
The Sundance Formation (Middle-Upper Jurassic) of Wyoming is well known for pterosaur footprints. Two new partial trackways from the upper Sundance Formation of the Bighorn Canyon National Recreation Area (BICA) of north-central Wyoming are enigmatic. The trackways are preserved in rippled, flaser bedded, glauconitic sand and mud. The deposits were laid down in tidal flats, behind barrier islands, along the mesotidal Sundance Sea.

The best-preserved print of the primary trackway possesses four impressions: three shorter digits with negative rotation and an elongate, caudally-oriented mark. The primary trackway has low pace angulation. The combination of morphology and pace angulation matches neither tracks nor body fossils of horseshoe crabs, theropod dinosaurs, pterosaurs, crocodylomorphs, “lacertoids,” or mammaliforms. The secondary trackway, possibly consisting of undertracks, similarly possesses elongate caudal impressions but differs from the former by possessing four subparallel, cranially-oriented digits. These prints also do not closely resemble any of the aforementioned taxa. While the secondary trackway does not lend itself to conclusion, the primary track maker could have been either an injured, pathologic pterosaur or a pterosaurian taxon otherwise unknown from the ichnological record.  相似文献   

8.
A new ichnotaxon is described from the Lower Jurassic (Upper Hettangian-Lower Sinemurian) carbonate tidal flats on the central-eastern Italian Alps. The narrow-gauge trackway is that of a large quadrupedal dinosaur. The pes is functionally tetradactyl with three rounded antero-medially directed digits, and the manus is pentadactyl. This quadrupedal form is close to Otozoum and Pseudotetrasauropus jaquesi both traditionally related to sauropodomorph trackmakers. The similarity with Otozoum is so marked that Lavinipes and Otozoum could be cogeneric. But the overall evidence today is that the Otozoum trackmaker was generally bipedal, whereas the trackmaker of L. cheminii is fully quadrupedal. The manual prints of L. cheminii show five short clawless digits and are different from the tetradactyl slender toed manual prints of Otozoum. The possible sauropodomorph affinity of the L. cheminii trackmaker is here discussed with an attempt to a revision of the Late Triassic-Jurassic tracks which have been traditionally related to sauropod and prosauropod.  相似文献   

9.
The functional anatomy of the hindlimb of bipedal dinosaurs has been intensively studied. Yet, surprisingly little work has been done concerning functional adaptation of digits for terrestrial locomotion. While complete and articulated pes skeletons are scarce, pes shape is abundantly recorded by fossil footprints. We elucidate the significance of footprint shape and size for locomotion using a large sample (n = 303) of tridactyl dinosaur footprints from a broad range of geographical localities and time slots. Size and shape variation are characterized separately for theropods and ornithischians, the two principal trackmaker taxa. At smaller sizes, theropod footprints are best discriminated from ornithischian footprints by their smaller interdigital angle and larger projection of digit III; at larger sizes digital widths are effective discriminants. Ornithischian footprints increase in size from the Early Jurassic to the Late Cretaceous, a trend not observed in theropod footprints. Size and function are argued to be important determinants of footprint shape, and an attempt made to infer function from shape. Digit III projection and length-to-width ratio of the footprints are negatively correlated with size in both groups; digit impression width is positively correlated with size only in ornithischians. Digit III projection appears to be positively correlated with cursorial ability. Increased interdigital angles are associated with a decrease in digital width, possibly an adaptation for stability. Weak digit III projection and increased digital width are interpreted as adaptations for graviportality. Footprints yield great potential for the understanding of the functional morphology of dinosaur feet.  相似文献   

10.
J. J. Moratalla  J. Hernan  S. Jimenez 《Ichnos》2013,20(2-4):229-240
The Los Cayos dinosaur tracksite is located at the eastern sector of the Cameros Basin (Cornago Township, La Rioja province), NE Spain. The sediments consist of interbedded terrigenous siliciclastics and carbonates belonging to the Enciso Group (Early Cretaceous, Aptian in age). The sedimentological and faunal evidence suggests that these sediments were deposited in a low gradient lacustrine environment. Los Cayos constitutes a relatively wide area with at least 6 localities that have yielded dinosaur tracks. More than 2,000 dinosaur tracks have been discovered to date. Medium to large theropod dinosaurs constitute about 95% of the ichnofauna. Ornithopod dinosaur tracks have been reported from only one of the outcrops (Los Cayos D). Los Cayos S has yielded theropod and sauropod tracks. One sauropod trackway shows a narrow-gauge locomotion pattern and a manus print morphology suggesting that the trackmaker was a titanosaurid, or at least a titanosauriform sauropod. Some pterosaur manus impressions, avian-like footprints of small size and possible turtle tracks complete the assemblage of one of the most impressive and best-preserved dinosaur tracksites of the European Lower Cretaceous.  相似文献   

11.
Abstract: New dinosaur tracksites are described from the Bajocian–Bathonian Bemaraha Formation of western Madagascar. Two track‐bearing surfaces can be followed over a distance of at least 4 km, suggesting the existence of a hitherto unrecognized megatracksite. The track assemblage is theropod dominated, but sauropod tracks also occur at one site. Qualitative and quantitative analysis of the abundant theropod track material suggests that most, if not all, theropod footprints are attributable to a single trackmaker and are referred to Kayentapus isp. Although this ichnogenus, originally described from the Lower Jurassic of North America, has never been recorded from Gondwana nor from the Middle Jurassic, track morphology strongly suggests this attribution. Palaeogeographical, sedimentological and ichnological data suggest that the dinosaur tracks formed in an intertidal to supratidal setting where the coastline influenced the preferred walking direction of the animals.  相似文献   

12.
The trackway of a quadrupedal dinosaur from the Early Cretaceous (Albian) Qingquan tracksite (Tancheng, Shandong Province) is redescribed, and the trackmaker is identified as a sauropod. The trackway makes a slight turn towards the northwest and is characterized by an extremely narrow gauge pattern and an unusual configuration, i.e., a conspicuous difference between the position of the left and right manus tracks with respect to the position of the preceding pes track. Left manus tracks are located on the inside of the trackway, very close (and sometimes even in connection) to the opposite right pes tracks. So far, the Qingquan trackway is possibly the only extremely narrow-gauge sauropod trackway known from China. However, it is not clear to what extent this extremely narrow gauge pattern is related to the turning or a special behavior, or even linked to an injury (“limping trackway”). We tentatively attribute the Qingquan trackway to cf. Parabrontopodus, even though it has a rather low heteropody that is significantly lower than in Parabrontopodus and not typical for narrow-gauge sauropod trackways, but occurs in the wide-gauge ichnotaxon Brontopodus. Because of this discrepancy, the Qingquan trackway cannot readily be attributed to a more basal sauropod, which is generally considered the producer of narrow-gauge trackways. Therefore, the identification of a distinct sauropod group is not possible presently. The only skeletal remains of sauropods from the Lower Cretaceous of Shandong Province belong to the large titanosauriform, Euhelopus zdanskyi.  相似文献   

13.
Recent discoveries of abundant fossil footprints from the new Grand Staircase‐Escalante National Monument of southern Utah, have important implications for the spatial and temporal distribution of Mesozoic vertebrates in Triassic and Jurassic time. Since the monument's creation in 1996, fossil footprints have been reported from at least seven formations in the Mesozoic (Triassic‐Cretaceous) within the monument. By far the most significant of these discoveries are sauropod and theropod tracks from the upper part of the Middle Jurassic Entrada Sandstone and a large Apatopus trackway from the Late Triassic Chinle Formation. Tracks in the Entrada Sandstone are found at the same stratigraphic level as those in the Moab megatracksite, and so considerably extend this large ichnological complex. A wide‐gauge sauropod trackway (cf. Brontopodus) from this unit represents the first reported from the Entrada Sandstone, and so is the oldest known from the western United States. This trackway also reveals a tail trace, which is the first reliable record of a sauropod tail trace.  相似文献   

14.
15.
Ardley Quarry, Oxfordshire, central England, preserves a most remarkable ichnological record of dinosaur activity on a single 168 Ma old trackway-bearing horizon. This horizon reveals over 40 dinosaur trackways, most of them sauropod, but including several giant theropod trackways tentatively attributed to Megalosaurus, the first creature of its kind recognized and assigned to Dinosauria. A 60 meter-long portion of one theropod trackway (no. 80) is systematically characterized in terms of pitch, yaw, and roll of successive footprints. Variations among these parameters correspond closely with acceleration/deceleration intervals in the trackway, impressed by the animal in wet calcareous mud within the tidewater zone of a mid-Jurassic coastal plain. Energy expended (1.4 watts) by the animal in making each footprint in the trackway is comparable to the resting metabolic rate of modern birds and mammals. Efforts by the theropod to accelerate are reflected by intervals of forward pitch of footprints; here the backward component of the force exerted upon the ground exceeds the forward component. Conversely, during braking (deceleration) intervals, footprints tend to exhibit a backward pitch in which the forward component of the force will have exceeded the backward component. Maximum positive yaw (outward from the midline of the trackway) generally corresponds with forward pitch. Positive yaw is greatest where positive (outward) roll is maximum. Measurements of pitch, yaw, and roll of dinosaur footprints hold potential for revealing fundamental locomotor characteristics of dinosaurs and for estimating acceleration and speed of an animal from its footprint record.  相似文献   

16.
A tetradactyl pes impression and tridactyl manus impression are described as the type specimen of Hatcherichnus sanjuanensis ichnogen. et ichnosp. nov., a probable large crocodilian ichnite from the Salt Wash Member of the Upper Jurassic Morrison Formation in eastern Utah. A similar pes track from the Morrison Formation at Garden Park, Colorado, may also belong to this ichnogenus. The type specimen from Utah consists of plaster replicas of natural casts of a left pes impression and a left manus impression. Associated with the type specimen were possible tail and body drag impressions. The tracks do not appear to be part of a walking trackway and may be swim tracks associated with an animal in shallow water. The tracks occur at a visible contact between slightly fining‐upward channel sandstone units.  相似文献   

17.
Avanzini, M., Piñuela, L. & García‐Ramos, J.C. 2011: Late Jurassic footprints reveal walking kinematics of theropod dinosaurs. Lethaia, Vol. 45, pp. 238–252. This study describes a set of theropod footprints collected from the Late Jurassic Lastres Formation (Asturias, N Spain). The footprints are natural casts (tracks and undertracks) grouped into three morphotypes, which are characterized by different size frequency, L/W relationship and divarication angles: ‘Grallatorid’ morphotype, ‘Kayentapus–Magnoavipes’ morphotype, ‘Hispanosauropus’ morphotype. The tracks were produced in firm, stiff and soft sediments. The infills of deep tracks, which are typically formed in soft mud, lack fine anatomical details, but they can reveal the walk kinematics of the trackmaker through the morphology of internal track fills and sinking traces. In all footprints, a horizontal outwardly directed translation movement and rotation are recognizable. The amount and geometry of digit penetration in the ground also show a pronounced difference. It can be inferred from the described sample that different theropoda‐related ichnogenera share common kinematics. □Asturias, dinosaur footprint, late jurassic, theropods, walking kinematics.  相似文献   

18.
The aim of the present contribution is to describe large felipedid footprints from a new ichnological site from the Late Pleistocene of Buenos Aires Province, Argentina. The prints are referred as the new ichnospecies Felipeda miramarensis nov. ichnosp. Based on size and morphology, this new ichnotaxon may have been produced by the large machairodontine felid Smilodon populator. Track analysis indicates that the producer of the tracks had fully retractile claws, a plantigrade feet, and lacked strong supination capabilities on pes and manus. The size and depth differences between manus and pes prints indicate that the producer had notably robust anterior limbs. If correctly assigned, the new ichnospecies reinforces the idea that Smilodon was an ambush predatory mammal.  相似文献   

19.
Only two vertebrate trackways are known from the Paleocene of western Canada and are among the few Paleocene vertebrate trackways known worldwide.

A natural cast trackway consisting of five prints (three pes, two manus) on a fallen block was found along the Red Deer River, near the town of Red Deer, Alberta, in 1927. The discoverers, Ralph Rutherford and Loris Russell, identified the strata the track block had fallen from as belonging to the Paskapoo Formation (upper Paleocene: middle Tiffanian). The trackway was attributed to a mammalian track-maker in two subsequent publications. However, the prints are more characteristic of a reptilian (crocodylian) track-maker.

A natural cast track-bearing block was discovered on Signal Hill in the city of Calgary during the preparation of a new residential subdivision in 1990. The large track-bearing block was found in a rock pile but is suspected to have originated from strata belonging to the Porcupine Hills Formation (Upper Paleocene: late Torrejonian), which was being excavated at the time. This large slab contains twelve prints (six pes, six manus) and is associated with extensive mud cracks. The mammalian affinity of the trackmaker was recognized by researchers from the Royal Tyrrell Museum of Palaeontology.  相似文献   

20.
Kevin Padian 《Ichnos》2013,20(2-4):115-126
The tracks ascribed to pterosaurs from the Late Jurassic limestones at Crayssac, France, must be pterosaurian because the manus prints are so far outside those of the pes, the pes print is four times longer than wide, and the manus prints appear to preserve distinct traces of a posteromedially directed wing-finger. These tracks are different in important ways from previously described Pteraichnus trackways, which have been variably considered pterosaurian, crocodilian, or indeterminate. No Pteraichnus (sensu stricto: those not from Crayssac) tracks have diagnostic features of pterosaurs and in none can a complete phalangeal or digital formula be reconstructed; however, all published Pteraichnidae tracks fulfill the criteria of poor preservation, and some have some diagnostic features of crocodile tracks. Reconstructions of pterosaurs walking in pteraichnid tracks do not fit those tracks well, but crocodiles do. In contrast, the Crayssac tracks demonstrate the erect stance and parasagittal gait previously reconstructed for pterosaurs. They also demonstrate that the footfall pattern was not as in typical reptiles (LH-RF-RH-LF), but that the manus must have been raised before the next forward step of the ipselateral foot (LH-LF-RH-RF), suggesting that the quadrupedal pattern was secondary. The metatarsus in pterosaurs was set low at the beginning of a stride, as it is in crocodilians and basal dinosaurs. The diagnosis of the Ichnofamily Pteraichnidae comprises features of possible crocodilian trackmakers, but not of possible pterosaurian trackmakers. Trackways considered for attribution to pterosaurs should show (1) manus prints up to three interpedal widths from midline of body, and always lateral to pes prints, (2) pes prints four times longer than wide at the metatarso-phalangeal joint, and (3) penultimate phalanges longest among those of the pes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号