首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 390 毫秒
1.
Adenovirus type 2 (Ad2) grows 1,000 times less well in monkey cells than in human cells. This defect can be overcome, not only upon co-infection of cells with simian virus 40 (SV40), but also when the relevant part of the SV40 genome is integrated into the adenovirus genome to form an adenovirus-SV40 hybrid virus. We have used the nondefective Ad2-SV40 hybrid virus Ad2+ND1, which contains an insertion of 17% of the SV40 genome, to isolate host-range mutants which are defective in growth on monkey cells although they grow normally on human cells. Like Ad2, these mutants are defective in the synthesis of late proteins in monkey cells. A 30,000-molecular-weight protein (30K), unique to Ad2+ND1-infected cells, can be synthesized in vitro, using Ad2+ND1 mRNA that contains SV40 sequences. 30K is not seen in cells infected with those host-range mutants that are most defective in growth on monkey cells, and translation in vitro of SV40-specific mRNA from these cells produces new unique polypeptides, instead of 30K. Genetic and biochemical analyses indicate that these mutants carry point mutations rather than deletions.  相似文献   

2.
3.
Human adenoviruses fail to multiply effectively in monkey cells. The block to the replication of these viruses can be overcome by coinfection with simian virus 40 (SV40) or when part of the SV40 genome is integrated into and expressed as part of the adenovirus type 2 (Ad2) genome, as occurs in several Ad2+SV40 hybrid viruses, such as Ad2+ND1, Ad2+ND2, and Ad2+ND4. The SV40 helper-defective Ad2+SV40 hybrid viruses Ad2+ND5 and Ad2+ND4del were analyzed to determine why they are unable to grow efficiently in monkey cells even though they contain the appropriate SV40 genetic information. Characterization of the Ad2+ND5-SV40-specific 42,000-molecular-weight (42K) protein revealed that this protein is closely related, but not identical, to the SV40-specific 42K protein of the SV40 helper-competent Ad2+ND2 hybrid virus. Although the minor differences between these proteins may be sufficient to account for the poor growth of Ad2+ND5 in monkey cells, the most striking difference between helper-competent Ad2+ND2 and helper-defective Ad2+ND5 is in the production of the SV40-specific protein after infection of monkey cells. Whereas synthesis of the SV40-specific proteins of Ad2+ND2 is very similar in human and in monkey cells, production of the 42K protein of Ad2+ND5 is dramatically reduced in monkey cells compared with human cells. Similarly, the synthesis of the SV40-specific proteins of Ad2+ND4del is markedly reduced in monkey cells. Thus, it is likely that both Ad2+ND5 and Ad2+ND4del are helper defective because of a block in the production of their SV40-specific proteins rather than because their SV40-specific proteins are nonfunctional. This block, like the block to adenovirus fiber synthesis, is overcome by coinfection with SV40, with helper-competent hybrid viruses, or with host range mutants of adenoviruses. This suggests that the synthesis of fiber and the synthesis of SV40-specific proteins are similarly regulated in Ad2+SV40 hybrid viruses.  相似文献   

4.
Human adenovirus fails to multiply efficiently in monkey cells owing to a block to late viral gene expression. Ad2hr400 through Ad2hr403 are a set of host range (hr) mutants which were selected for their ability to readily grow in these cells at 37 degrees C. The mutations responsible for this extended host range have previously been mapped to the 5' portion of the gene encoding the 72-kilodalton DNA-binding protein (DBP). DNA sequence analyses indicate that all four hr mutants contain the same alteration at coding triplet 130, which changes a histidine codon to a tyrosine codon. These results extend those of Anderson et al. (J. Virol. 48:31-39, 1983), which suggested that only this change in the DBP amino acid sequence can expand adenovirus host range to monkey cells. The hr phenotype does not appear to require phosphorylation of this tyrosine residue, since no phosphotyrosine was detected in DBP isolated from Ad2hr400-infected monkey cells. The hr mutants Ad2hr400 through Ad2hr403, however, are cold sensitive for growth in monkey cells. The mutant Ad2ts400, which was derived from Ad2hr400, represents a second class of hr mutants which can grow efficiently in monkey cells at 32.5 degrees C. The cold-resistant hr mutation of Ad2ts400 has previously been mapped to the 5' region of the DBP gene (map units 63.6 through 66). DNA sequence analysis of this region shows that this mutant contains the original hr alteration at coding triplet 130 as well as a second alteration at coding triplet 148, which changes an alanine codon to a valine codon. We suspect that the alterations at amino acids 130 and 148 change the structure of the amino-terminal domain of the DBP, allowing it to better interact with monkey cell components required for late viral gene expression. Ad2ts400 also contains a temperature-sensitive mutation which has previously been mapped to the 3' portion of the DBP gene (map units 61.3 through 63.6). Sequence analysis of this region indicates that the DBP coding triplet 413 has been altered. This change from a serine codon to a proline codon is the same alteration reported in the previously sequenced DBP mutants Ad5ts125 (W. Kruijer et al., Nucleic Acids Res. 9:4439-4457, 1981) and Ad5ts107 (W. Kruijer et al., Virology 124:425-433, 1983). Thus it appears that only a very limited number of changes in either the 5' or the 3' portion of the DBP gene can give rise to the hr or temperature-sensitive phenotypes, respectively.  相似文献   

5.
The adenovirus type 2 (Ad2) host range mutant Ad2hr400 grows efficiently in cultured monkey cells at 37 degrees C, but is cold sensitive for plaque formation and late gene expression at 32.5 degrees C. After nitrous acid mutagenesis of an Ad2hr400 stock, cold-resistant variants were selected in CV1 monkey cells at 32.5 degrees C. One such variant, Ad2ts400, was also temperature sensitive (ts) for growth in both CV1 and HeLa cells. Marker rescue analysis has been used to show that the two phenotypes, cold resistant and temperature sensitive, are due to two independent mutations, each of which resides in a different segment of the gene encoding the 72-kilodalton DNA binding protein (DBP). The cold-resistant mutation (map coordinates 63.6 to 66) is a host range alteration that enhances the ability of the virus to express late genes and grow productively in monkey cells at 32.5 degrees C. The temperature-sensitive mutation is in the same complementation group and maps to the same segment of the DBP gene (map coordinates 61.3 to 63.6) as the well-characterized DBP mutant Ad5ts125. Like Ad5ts125, Ad2ts400 is unable to replicate viral DNA or to properly shut off early mRNA expression at the nonpermissive temperature. Two sets of experiments with Ad2ts400 suggest that DBP contains separate functional domains. First, when CV1 cells are coinfected at the nonpermissive temperature with Ad2 plus Ad2ts400 (Ad2 allows DNA replication and entry into, but not completion of, the late phase of infection), normal late gene expression and productive growth occur. Second, temperature shift experiments show that, although DNA replication is severely restricted at the nonpermissive temperature in ts400-infected monkey cells, late gene expression occurs normally. These results indicate that the DBP activity required for normal late gene expression in monkey cells is functional even when the DBP's DNA replication activity is disrupted.  相似文献   

6.
In a previous report (Klessig, J. Virol. 21:1243--1246, 1977), the isolation of a variant (H2hr400) of adenovirus serotype 2 (Ad2) that overcomes the block to multiplication of wild-type Ad2 in simian cells was described. H2hr400 replicates efficiently on both human and simian cells, resulting in virus yields that are comparable to those found when wild-type Ad2 infects permissive, human cells. An extensive comparison of the genome of H2hr400 with that of its parent by restriction endonuclease, electron microscopic, and hybridization analyses failed to detect any differences and excludes the possibility that simian virus 40 sequences, which in certain Ad2-simian virus 40 hybrid viruses (e.g., Ad2+ND1) allow adenovirus to multiply efficiently in simian cells, are present in H2hr400. In contrast to Ad2, H2hr400 can fully express its late genes in both simian and human cells. The mutation has been mapped by a modified marker rescue technique to the segment of the viral genome located between coordinates 59 and 80.  相似文献   

7.
A genetic system is described which allows the isolation and propagation of adenovirus mutants containing lesions in early region 2A (E2A), the gene encoding the multifunctional adenovirus DNA-binding protein (DBP). A cloned E2A gene was first mutagenized in vitro and then was introduced into the viral genome by in vivo recombination. The E2A mutants were propagated by growth in human cell lines which express an integrated copy of the DBP gene under the control of a dexamethasone-inducible promoter (D. F. Klessig, D. E. Brough, and V. Cleghon, Mol. Cell. Biol. 4:1354-1362, 1984). The protocol was used to construct five adenovirus mutants, Ad5d1801 through Ad5d1805, which contained deletions in E2A. One of the mutants, Ad5d1802, made no detectable DBP and thus represents the first DBP-negative adenovirus mutant, while the four other mutants made truncated DBP-related polypeptides. All five mutants were completely defective for growth and plaque formation on HeLa cell monolayers. Furthermore, the two mutants which were tested, Ad5d1801 and Ad5d1802, did not replicate their DNA in HeLa cells. The mutant Ad5d1804 encoded a truncated DBP-related protein which contained an entire amino-terminal domain derived from the host range mutant Ad5hr404, a variant of Ad5 which multiplies efficiently in monkey cells. While results of a previous study suggest that the amino-terminal domain of DBP could act independently of the carboxyl-terminal domain to enhance late gene expression in monkey cells, the Ad5d1804 polypeptide failed to relieve the block to late viral protein synthesis in monkey cells. The mutant Ad5d1802 was used to study the role of DBP in the regulation of early adenovirus gene expression in infected HeLa cells. These experiments show that E2A mRNA levels are consistently reduced approximately fivefold in Ad5d1802-infected cells, suggesting either a role for DBP in the expression of its own gene or a cis-acting defect caused by the E2A deletion. DBP does not appear to play a significant role in the regulation of adenovirus early regions 1A, 1B, 3, or 4 mRNA levels in infected HeLa cell monolayers since wild-type Ad5- and Ad5d1802-infected cells showed very little difference in the patterns of expression of these genes.  相似文献   

8.
Human adenovirus type 2 (Ad2) grows poorly in monkey cells, although this defect can be overcome by co-infection with simian virus 40 (SV40). The nondefective Ad2-SV40 hybrid virus, Ad2(+)ND1, replicates efficiently in both human and African green monkey kidney cells, presumably due to the insertion of SV40 sequences into the Ad2 DNA. Several mutants of Ad2(+)ND1 have been isolated that grow and plaque poorly in monkey cells, although they retain the ability to replicate and plaque efficiently in HeLa cells. One of these mutants (H39) has been examined in detail. Studies comparing the DNA of the mutant with Ad2(+)ND1 either by the cleavage patterns produced by Escherichia coli R.RI restriction endonuclease digestion or by heteroduplexing reveal no differences. The pattern of protein synthesis of Ad2(+)ND1 and H39 in monkey cells is quite different with the mutant resembling Ad2, which is defective in the synthesis of late proteins. However, in human cells, the proteins synthesized by H39 and the parent Ad2(+)ND1 are very similar. The production of SV40 U antigen in H39-infected cells is different from that in Ad2(+)ND1-infected cells. Finally, the growth of H39 in monkey cells can be complemented by SV40.  相似文献   

9.
The proteins that interact with cytoplasmic and nuclear polyadenylated RNA in adenovirus type 5 (Ad5) infection of HeLa cells were examined by UV-induced RNA-protein cross-linking in intact cells. The Ad5 100-kilodalton late nonvirion protein (100K protein) was cross-linked to both host and viral polyadenylated cytoplasmic RNA (mRNA). The cross-linking of the 100K protein to mRNA appears to correlate with productive infection, because the protein is not cross-linked to mRNA in abortive infection of wild-type Ad5 in monkey cells (CV-1) even though normal amounts of it are produced. However, when CV-1 cells are infected with Ad5 hr404, and Ad5 mutant which overcomes the host restriction to wild-type Ad5 infection in these cells, the 100K protein is cross-linked to mRNA. To identify and obtain antibodies to RNA-contacting proteins, a mouse was immunized with oligo(dT)-selected cross-linked RNA-protein complexes from Ad5-infected cells and the serum was used for immunoblotting experiments. It was found that in addition to the 100K protein, the Ad5 72K DNA-binding protein is also associated with RNA in the infected cells. The 72K DNA-binding protein is cross-linked to polyadenylated nuclear RNA sequences. These findings indicate that adenovirus proteins interact with RNAs in the infected cell and suggest possible mechanisms for the effects of the virus on mRNA metabolism.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号