首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular signal-regulated kinases (ERK) have fundamental roles in tumor progression. However, human clinical trials have shown little or no effect of inhibitors of their upstream signaling molecule, mitogen-activated protein kinase/ERK kinase (MEK), in advanced cancers. To determine the molecular mechanism underlying the limited antitumor effect, we cultured two human renal carcinoma cell lines, ACHN cells and VMRC-RCW cells in the presence of a MEK inhibitor PD98059 for more than 4 weeks (PD98059-exposed cells). PD98059-exposed ACHN cells showed elongated cell shape with scattering morphology, increase in vimentin expression, loss of β-catenin junctional localization, stress fiber formation, and increased motility. In contrast, VMRC-RCW cells showed scattered phenotype without PD98059-treatment, and this treatment failed to increase the expression of vimentin. Rho A activity was increased in PD98059-exposed ACHN cells. In these cells, enhanced stress fiber formation and motility were observed, both of which were inhibited by treatment with small interfering RNA for Rho A or an Rho kinase inhibitor Y27632. Our results suggest that long-term exposure of human renal carcinoma cells to PD98059 increases cell motility by upregulating Rho A–Rho kinase signaling.  相似文献   

2.
Bai J  Liu XS  Xu YJ  Zhang ZX  Xie M  Ni W 《生理学报》2007,59(3):311-318
本文旨在探讨细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)在慢性支气管哮喘大鼠气道平滑肌细胞(airway smooth muscle cells,ASMCs)增殖中的作用。建立慢性哮喘大鼠模型,用ERK激动剂表皮生长因子(epidermal growth factor,EGF)和抑制剂PD98059干预慢性哮喘大鼠ASMCs的培养。采用流式细胞仪、四甲基偶氮唑盐(MTT)法、^3H-thymidine(TdR)掺入法和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)免疫组织化学法检测ASMCs增殖情况,观察ERK信号通路对ASMCs增殖的影响。RT-PCR和Western blot检测ERK mRNA和ERK1/2、磷酸化ERK1/2(p-ERK1/2)蛋白的表达。与正常对照组ASMCs比较,慢性哮喘组ASMCs的G0/G1期细胞所占比例明显减少,S+G2/M期细胞所占比例增高;吸光度(A490)值、细胞DNA合成量和PCNA阳性表达量均明显增加,ERK mRNA、ERK1/2蛋白、P-ERK1/2蛋白的表达量以及ERK活化率显著增高。经PD98059干预之后,慢性哮喘组ASMCs的S+G2/M期细胞所占比例、A490值、细胞DNA合成量和PCNA阳性表达量明显降低,ERK mRNA、ERK1/2蛋白、p-ERK1/2蛋白的表达量以及ERK活化率显著降低。经EGF干预后,慢性哮喘组ASMCs的S+G2/M期细胞所占比例、A490值、细胞DNA合成量和PCNA阳性表达量进一步增高,而这一作用可以被PD98059抑制。以上结果提示,慢性哮喘大鼠ASMCs内源性增殖活性增加,ERK1/2参与其增殖活性的调控,ERK信号通路在哮喘气道重建的ASMCs增殖调控中具有重要作用。  相似文献   

3.
Imidazolium trans-imidazoledimethyl sulfoxide-tetrachlororuthenate (NAMI-A) is a novel ruthenium-containing experimental antimetastatic agent. Compelling evidence ascribes a pivotal role to endothelial cells in the orchestration of tumor angiogenesis and metastatic growth, suggesting antiangiogenic therapy as an attractive approach for anticancer treatment. In this context, activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway has been found fundamental in transducing extracellular stimuli that modulate a number of cellular process including cell proliferation, migration and invasion. Here we show that exposure of the transformed endothelial cell line ECV304 to NAMI-A significantly inhibited DNA synthesis, as well as the expression of the proliferating cell nuclear antigene (PCNA). These responses were associated with a marked down-regulation of ERK phosphorylation in serum-cultured cells. In addition, NAMI-A markedly reduced serum stimulated- and completely suppressed phorbol 12-myristate 13-acetate (PMA)-triggered MAPK/ERK kinase activity. NAMI-A was also able to inhibit the phosphorylation of MEK, the upstream activator of ERK, and, similar to both the protein kinase C (PKC) inhibitor GF109203X and the MAPK/ERK (MEK) inhibitor PD98059, it completely counteracted PMA-induced ERK phosphorylation. Finally, NAMI-A and PD98059 down regulated c-myc gene expression to the same extent in serum-cultured cells and dose-dependently counteracted, and ultimately abolished, the increase in c-myc gene expression elicited by PMA in serum-free cells. These results suggest that inhibition of MEK/ERK signaling by NAMI-A may have an important role in modulating c-myc gene expression and ECV304 proliferation.  相似文献   

4.
5.
BRCA1 mutations and estrogen use are risk factors for the development of breast cancer. Recent work has identified estrogen receptors localized at the plasma membrane that signal to cell biology. We examined the impact of BRCA1 on membrane estrogen and growth factor receptor signaling to breast cancer cell proliferation. MCF-7 and ZR-75-1 cells showed a rapid and sustained activation of extracellular signal-related kinase (ERK) in response to estradiol (E2) that was substantially prevented by wild-type (wt) but not mutant BRCA1. The proliferation of MCF-7 cells induced by E2 was significantly inhibited by PD98059, a specific ERK inhibitor, or by dominant negative ERK2 expression and by expression of wt BRCA1 (but not mutant BRCA1). E2 induced the synthesis of cyclins D1 and B1, the activity of cyclin-dependent kinases Cdk4 and CDK1, and G(1)/S and G(2)/M cell cycle progression. The intact tumor suppressor inhibited all of these. wt BRCA1 also inhibited epidermal growth factor and insulin-like growth factor I-induced ERK and cell proliferation. The inhibition of ERK and cell proliferation by BRCA1 was prevented by phosphatase inhibitors and by interfering RNA knockdown of the ERK phosphatase, mitogen-activated kinase phosphatase 1. Our findings support a novel tumor suppressor function of BRCA1 that is relevant to breast cancer and identify a potential interactive risk factor for women with BRCA1 mutations.  相似文献   

6.
Hepatocyte growth factor (HGF) induces growth stimulation of a variety of cell types, but it also induces growth inhibition of several types of tumor cell lines. The molecular mechanism of the HGF-induced growth inhibition of tumor cells remains obscure. We have investigated the intracellular signaling pathway involved in the antiproliferative effect of HGF on the human hepatocellular carcinoma cell line HepG2. HGF induced strong activation of ERK in HepG2 cells. Although the serum-dependent proliferation of HepG2 cells was inhibited by the MEK inhibitor PD98059 in a dose-dependent manner, 10 microM PD98059 reduced the HGF-induced strong activation of ERK to a weak activation; and as a result, the proliferation inhibited by HGF was completely restored. Above or below this specific concentration, the restoration was incomplete. Expression of constitutively activated Ha-Ras, which induces strong activation of ERK, led to the proliferation inhibition of HepG2 cells, as was observed in HGF-treated HepG2 cells. This inhibition was suppressed by the MEK inhibitor. Furthermore, HGF treatment and expression of constitutively activated Ha-Ras changed the hyperphosphorylated form of the retinoblastoma tumor suppressor gene product pRb to the hypophosphorylated form. This change was inhibited by the same concentration of MEK inhibitor needed to suppress the proliferation inhibition. These results suggest that ERK activity is required for both the stimulation and inhibition of proliferation of HepG2 cells; that the level of ERK activity determines the opposing proliferation responses; and that HGF-induced proliferation inhibition is caused by cell cycle arrest, which results from pRb being maintained in its active hypophosphorylated form via a high-intensity ERK signal in HepG2 cells.  相似文献   

7.
Serum deprivation induces apoptosis in NIH3T3 cells, which is associated with increased intracellular ceramide generation and with the activation of p38 mitogen-activated protein (MAP) kinase. Treatment of cells with transforming growth factor-beta1 (TGF-beta1) activated the extracellular signal regulated kinases 1 and 2 (ERK1/ERK2), inhibited the serum deprivation-induced p38 activation and the increase in intracellular ceramide formation, leading to the stimulation of cell proliferation and the suppression of apoptosis. Inhibition of p38 MAP kinase by SB203580 significantly reduced the serum-deprivation-induced apoptosis. Overexpression of p38 increased the cell apoptosis and reduced the antiapoptotic effect of TGF-beta1. Inhibition of ERK1/ERK2 by PD98059 completely inhibited the TGF-beta1-stimulated proliferation and partially inhibited the antiapoptotic effects of TGF-beta1. Neither SB203580 nor PD98059 has obvious effect on TGF-beta1-mediated inhibition of the increased ceramide generation. Serum-deprivation-induced apoptosis in NIH3T3 cells can also be blocked by broad-spectrum caspase inhibitor. TGF-beta1 treatment has an inhibitory effect on caspase activities. Our results indicate that ceramide, p38, and ERK1/ERK2 play critical but differential roles in cell proliferation and stress-induced apoptosis. TGF-beta1 suppresses the serum-deprivation-induced apoptosis via its distinct effects on complex signaling events involving the activation of ERK1/ERK2 and the inhibition of p38 activation and increased ceramide generation.  相似文献   

8.
Huang CD  Chen HH  Wang CH  Chou CL  Lin SM  Lin HC  Kuo HP 《Life sciences》2004,74(20):2479-2492
Neutrophils and their derived elastase are abundant in chronic inflammatory responses of asthma. This study aimed to investigate the mitogenic effect of elastase on airway smooth muscle (ASM) cells and the implicated signal transduction pathway. Near confluent cultured human ASM cells were treated with human neutrophil elastase (HNE, 0.01 to 0.5 microg/ml) or vehicle for 24 hours with or without extracellular signal-regulated kinase (ERK) inhibitor (PD98059, 30 microM), p38 kinase inhibitor (SB203580, 10 microM) or elastase inhibitor II (100 microg/ml). The ASM cell numbers were counted by a hemocytometer and DNA synthesis was assessed by flowcytometry. Western blots analysis for the expression of ERK, p38 and cyclin D1 was determined. HNE dose-dependently increased ASM cell numbers and the percentage of cells entering S-phase of cell cycle. This response was abolished by neutrophil elastase inhibitors and attenuated by PD98059, but not SB203580. HNE increased ERK phosphorylation and cyclin D1 expression. Pretreatment with PD98059 significantly inhibited elastase-induced cyclin D1 activity. The increased ASM cellular gap and cell shape change by proteolytic activity of HNE may be contributory to ERK activation and therefore cell proliferation. Our results demonstrate that HNE is mitogenic for ASM cells by increasing cyclin D1 activity through ERK signaling pathway.  相似文献   

9.
We previously demonstrated that human chorionic gonadotropin β (hCGβ) induced migration and invasion in human prostate cancer cells. However, the involved molecular mechanisms are unclear. Here, we established a stable prostate cancer cell line overexpressing hCGβ and tested hCGβ-triggered signaling pathways causing cell migration and invasion. ELISA showed that the hCGβ amount secreted into medium increased with culture time after the hCGβ-transfected cells were incubated for 3, 6, 9, 12 and 24 h. More, hCGβ standards promoted MAPK (ERK1/2) phosphorylation and increased MMP-2 expression and activity in both dose- and time-dependent manners in hCGβ non-transfected cells. In addition, hCGβ promoted ERK1/2 phosphorylation and increased MMP-2 expression and activity significantly in hCGβ transfected DU145 cells. Whereas ERK1/2 blocker PD98059 (25 µM) significantly downregulated phosphorylated ERK1/2 and MMP-2. Particularly, hCGβ promoted cell migration and invasion, yet the PD98059 diminished the hCGβ-induced cell motility under those conditions. These results indicated that hCGβ induced cell motility via promoting ERK1/2 phosphorylation and MMP-2 upregulation in human prostate cancer DU145 cells.  相似文献   

10.
Huang X  Zhao T  Zhao H  Xiong L  Liu ZH  Wu LY  Zhu LL  Fan M 《生理学报》2008,60(3):437-441
本文旨在探讨细胞外信号调节激酶(extracellular signal-regulated kinase 1/2, ERK1/2)对小鼠神经干细胞增殖的影响.分离E14.5小鼠皮层神经干细胞,通过Western blot检测神经干细胞增殖过程中磷酸化ERK1/2的表达情况,以及不同浓度PD98059处理对神经干细胞ERK1/2磷酸化及神经球形成的影响,并用CCK-8法检测PD98059对神经干细胞增殖的影响.结果显示:ERK1/2在体外培养的神经下细胞增殖过程中被激活;PD98059显著抑制ERK1/2磷酸化及神经干细胞的成球率,且存在剂量效应依赖关系;加入PD98059后神经干细胞的生长被抑制.以上结果表明,ERK1/2在小鼠神经干细胞增殖中具有重要的作用,阻断ERK1/2信号通路后可抑制神经干细胞的增殖.  相似文献   

11.
Yu XJ  Li CY  Wang KY  Dai HY 《Regulatory peptides》2006,137(3):134-139
Psoriasis is a chronic disease characterized by abnormal epidermal proliferation, inflammation and angiogenesis. The pathogenetic process resulting in hypervascularity remains to be further investigated. It has been reported that a potent angiogenic factor, vascular endothelial growth factor (VEGF) is overexpressed in psoriatic epidermis and that the level of calcitonin gene-related peptide (CGRP) is elevated in psoriasis lesions and CGRP-containing neuropeptide nerve fibers are denser in the psoriatic epidermis. We hypothesized that CGRP might regulate the expression of VEGF by human keratinocytes. VEGF expression in the CGRP-treated human keratinocytes was investigated and the CGRP signaling pathways were examined with respect to VEGF expression. The mRNA and protein levels of VEGF by CGRP were increased in a concentration-dependent manner. However, this increase was abrogated by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor PD98059. The CGRP-mediated VEGF induction was also effectively inhibited by a pretreatment with the CGRP receptor antagonist CGRP 8-37. In addition, CGRP treatment induced rapid phosphorylation of ERK1/2, PD98059 and CGRP 8-37 were able to inhibit CGRP-induced ERK1/2 phosphorylation. These results suggest that CGRP regulates the expression of VEGF through the CGRP receptor and ERK1/2 MAPK signaling pathway in human HaCaT keratinocytes.  相似文献   

12.
The purpose of this study was to evaluate whether the mitogen-activated protein kinase (MAPK) signaling pathway contributes to 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mononuclear differentiation in the human myeloblastic leukemia ML-1 cells. Upon TPA treatment, the activity of ERK1 and ERK2 rapidly increased, with maximal induction between 1 and 3 h, while ERK2 protein levels remained constant. The activity of JNK1 was also significantly induced, with JNK1 protein levels increasing moderately during exposure to TPA. Treatment of cells with PD98059, a specific inhibitor of mitogen-activated protein kinase kinase (MEK), inhibited TPA-induced ERK2 activity. Furthermore, PD98059 completely blocked the TPA-induced differentiation of ML-1 cells, as assessed by a number of features associated with mononuclear differentiation including changes in morphology, nonspecific esterase activity, phagocytic ability, NADPH oxidase activity, mitochondrial respiration, and c-jun mRNA inducibility. We conclude that activation of the MEK/ERK signaling pathway is necessary for TPA-induced mononuclear cell differentiation.  相似文献   

13.
This work examined the importance of radiation-induced and ligand-induced EGFR-ERK signaling for the regulation of DNA repair proteins XRCC1 and ERCC1 in prostate carcinoma cells, DU145 (TP53(mut)), displaying EGFR-TGFA-dependent autocrine growth and high MAPK (ERK1/2) activity, and LNCaP (TP53(wt)) cells expressing low constitutive levels of ERK1/2 activity. Using quantitative RT-PCR and Western analyses, we determined that ionizing radiation activated the DNA repair genes XRCC1 and ERCC1 in an ERK1/2-dependent fashion for each cell line. After irradiation, a rapid increase followed by a decrease in ERK1/2 activity preceded the increase in XRCC1/ERCC1 expression in DU145 cells, while only the rapid decrease in ERK1/2 preceded the increase in XRCC1/ERCC1 expression in LNCaP cells. Administration of EGF, however, markedly increased the up-regulation of phospho-ERK, ERCC1 and XRCC1 in both cell lines. Although the EGFR inhibitor tyrphostin (AG-1478) and the MEK inhibitor PD90859 both attenuated EGF-induced levels of the ERCC1 and XRCC1 protein, PD98059 blocked the induction of ERCC1 and XRCC1 by radiation more effectively in both cell lines. Inhibition of ERK at a level that reduced the up-regulation of DNA repair led to the persistence of apurinic/apyrimidinic (AP) sites of DNA damage and increased cell killing. Taken together, these data imply a complex control of DNA repair activation that may be more generally dependent on MAPK (ERK1/2) signaling than was previously noted. These data provide novel insights into the capacity of the EGFR-ERK signaling to modulate DNA repair in cancer cells and into the functional significance of this signaling.  相似文献   

14.
The molecular mechanism by which tumor cells increase their resistance to therapeutic radiation remains to be elucidated. We have previously reported that activation of nuclear factor-kappaB (NF-kappaB) is causally associated with the enhanced cell survival of MCF+FIR cells derived from breast cancer MCF-7 cells after chronic exposure to fractionated ionizing radiation. The aim of the present study was to reveal the context of NF-kappaB pathways in the adaptive radioresistance. Using cell lines isolated from MCF+FIR populations, we found that the elevated NF-kappaB activity was correlated with enhanced clonogenic survival, and increased NF-kappaB subunit p65 levels were associated with a decrease in phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK in all radioresistant MCF+FIR cell lines. Further irradiation with 30 fractions of radiation also inhibited MEK/ERK phosphorylation in paired cell lines of MCF+FIR and parental MCF-7 cells. Activation of ataxia-telangiectasia mutated (ATM) protein, a sensor to radiation-induced DNA damage, was elevated with increased interaction with NF-kappaB subunits p65 and p50. The interaction between p65 and MEK was also enhanced in the presence of activated ATM. In contrast, both interaction and nuclear translocation of p65/ERK were reduced. Inhibition of NF-kappaB by overexpression of mutant IkappaB increased ERK phosphorylation. In addition, MEK/ERK inhibitor (PD98059) reduced the interaction between p65 and ERK. Taken together, these results suggest that NF-kappaB inhibits ERK activation to enhance cell survival during the development of tumor adaptive radioresistance.  相似文献   

15.
Whereas the p38 MAP kinase has largely been associated with anti-proliferative functions, several observations have indicated that it may also have positive effects on proliferation. In hepatocytes, we have found that p38 has opposing effects on DNA synthesis when activated by EGF and HGF. Here we have studied the function of p38 in EGF- and HGF-induced DNA synthesis in the two pancreatic carcinoma cell lines AsPC-1 and Panc-1. In Panc-1 cells, the MEK inhibitor PD98059 reduced EGF- and HGF-induced DNA synthesis, while the p38 inhibitor SB203580 strongly increased the basal DNA synthesis and reduced expression of the cyclin-dependent kinase inhibitor (CDKI) p21. In contrast, in AsPC-1 cells, EGF- and HGF-induced DNA synthesis was not significantly reduced by PD98059 but was inhibited by SB203580. Treatment with SB203580 amplified the sustained ERK phosphorylation induced by these growth factors and caused a marked upregulation of the expression of p21, which could be blocked by PD98059. These results suggest that while DNA synthesis in Panc-1 cells is enhanced by ERK and strongly suppressed by p38, in AsPC-1 cells, p38 exerts a pro-mitogenic effect through MEK/ERK-dependent downregulation of p21. Thus, p38 may have suppressive or stimulatory effects on proliferation depending on the cell type, due to differential cross-talk between the p38 and MEK/ERK pathways.  相似文献   

16.
17.
CXCL16 is a unique chemokine with characteristics as a receptor for phosphatidylserine and oxidized low density lipoproteins in macrophages, and is involved in the accumulation of cellular cholesterol during atherosclerotic lesion development. In this study, we report a new function of CXCL16 as a novel angiogenic factor in human umbilical vein endothelial cells (HUVEC). CXCL16 stimulated proliferation and chemotaxis of HUVEC in a dose-dependent manner, reaching a maximum at 1 nM. CXCL16 also significantly induced tube formation of HUVEC on Matrigel. Further, exposure of HUVEC to CXCL16 led to a time- and dose-dependent activation of mitogen-activated protein kinase (ERK1/2), which was completely inhibited by a mitogen-activated protein kinase kinase inhibitor, PD98059. Proliferation and tube formation in response to CXCL16 were also blocked by the pretreatment with PD98059, but not CXCL16-induced chemotaxis. Thus, our data indicate that CXCL16 may act as a novel angiogenic factor for HUVEC and that ERK is involved as an important signaling molecule to mediate its angiogenic effects.  相似文献   

18.
Psoriasis is a chronic disease characterized by keratinocyte hyperproliferation and inflammation. It has been demonstrated that the expression of calcitonin gene-related peptide (CGRP) is elevated in psoriasis lesions and CGRP-containing neuropeptide nerve fibers are denser in the psoriatic epidermis. CGRP has been previously described to influence proliferation of several cell types, such as Schwann cell, tracheal epithelial cells, and human gingival fibroblasts. In the present study, we determined the effect of CGRP on HaCaT keratinocyte proliferation and the role of mitogen-activated protein kinases (MAPKs) in CGRP induced keratinocyte proliferation. Our data indicate CGRP increased [3H]-thymidine incorporation and MTT activity of HaCaT in a concentration-dependent manner. CGRP also enhanced serum-induced HaCaT cell proliferation. HaCaT cells cultured with CGRP had a significant increase in phosphorylated ERK1/2, p38 and JNK, and CGRP induced DNA synthesis was inhibited by PD 98059 or SB 203580, selective inhibitors of MAP kinase kinase (MEK, which is upstream from ERK) and p38, respectively. These findings suggest that HaCaT cell proliferate in response to CGRP, which is mediated by phosphorylation of ERK1/2 and p38 MAPK.  相似文献   

19.
20.
Osteosarcoma is the most common primary malignant bone tumor, accounting for approximately 20% of all primary sarcomas in bone. Although treatment modalities have been improved over the past decades, it is still a tumor with a high mortality rate in children and young adults. Based on histological considerations, osteosarcoma arises from impaired differentiation of these immature cells into more mature types and that correction of this impairment may reduce malignancy and increase the efficiency of chemotherapy. The purpose of this study was to determine the effect of specific inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK) and p38 on the differentiation of human osteosarcoma cell line SaOS-2 cells. We found that PD98059, a specific inhibitor of MEK, inhibited the serum-stimulated proliferation of SaOS-2 cells; whereas SB203580, a specific inhibitor of p38 MAPK, had little effect on it. SB203580 suppressed ALPase activity, gene expression of type I collagen, and expression of ALP and BMP-2 mRNAs; whereas PD98059 upregulated them dose dependently. In addition, immunoblot and immunostaining analysis revealed that phosphorylation of ERK was increased by treatment with SB203580; whereas PD98059 increased the phosphorylation of p38, which implies a seesaw-like balance between ERK and p38 phosphorylation. We suggest that osteosarcoma cell differentiation is regulated by the balance between the activities of the ERK and p38 pathways and that the MEK/ERK pathway negatively regulates osteosarcoma cell differentiation, whereas the p38 pathway does so positively. MEK inhibitor may thus be a good candidate for altering the expression of the osteosarcoma malignant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号