首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
胚胎干细胞(ES细胞)和诱导型多能干细胞(iPS细胞)的研究进展为生物学基础研究注入了新的活力,然而免疫排斥、致瘤性以及诱导效率低等缺陷制约其进一步快速发展和临床应用.最近,科学家借鉴iPS细胞诱导技术和传统的诱导体系,将终末分化细胞直接诱导为功能性细胞,如心肌细胞、神经细胞和肝脏细胞,称为诱导型细胞.这些研究进展极大地促进了细胞分化、重编程和表观遗传学的研究,也为人类再生医学的研究提供了新的途径.  相似文献   

2.
视网膜退行性病变影响着全世界数百万人。然而,视网膜是人体再生能力很差的一类组织,成年机体无法自我更新那些病变中丢失的视网膜细胞,导致视网膜退行性病变的不可逆性。因此,恢复患者视觉将依赖于引入外源细胞替代丢失的视网膜神经元。胚胎干细胞(ES细胞)具有无限的自我更新能力和形成机体所有类型细胞的巨大分化潜力。这两个特性使得ES细胞成为细胞替代疗法的理想供体细胞。近年来,人们在探索将ES和诱导多能干细胞(iPS细胞)体外定向诱导分化为视网膜神经元,甚至整个视网膜方面已取得多项进展,并且体外形成的视网膜细胞可以与宿主视网膜整合。在此篇综述中,首先简要概括哺乳动物视网膜的组织结构、发育过程和调控机制,然后,重点阐述近年来科研工作者探索ES/iPS细胞体外诱导分化为视网膜细胞和组织的研究进展。  相似文献   

3.
Embryonic stem (ES) cells have the ability to differentiate into all germ layers, holding great promise not only for a model of early embryonic development but also for a robust cell source for cell-replacement therapies and for drug screening. Embryoid body (EB) formation from ES cells is a common method for producing different cell lineages for further applications. However, conventional techniques such as hanging drop or static suspension culture are either inherently incapable of large scale production or exhibit limited control over cell aggregation during EB formation and subsequent EB aggregation. For standardized mass EB production, a well defined scale-up platform is necessary. Recently, novel scenario methods of EB formation in hydrodynamic conditions created by bioreactor culture systems using stirred suspension systems (spinner flasks), rotating cell culture system and rotary orbital culture have allowed large-scale EB formation. Their use allows for continuous monitoring and control of the physical and chemical environment which is difficult to achieve by traditional methods. This review summarizes the current state of production of EBs derived from pluripotent cells in various culture systems. Furthermore, an overview of high quality EB formation strategies coupled with systems for in vitro differentiation into various cell types to be applied in cell replacement therapy is provided in this review. Recently, new insights in induced pluripotent stem (iPS) cell technology showed that differentiation and lineage commitment are not irreversible processes and this has opened new avenues in stem cell research. These cells are equivalent to ES cells in terms of both self-renewal and differentiation capacity. Hence, culture systems for expansion and differentiation of iPS cells can also apply methodologies developed with ES cells, although direct evidence of their use for iPS cells is still limited.  相似文献   

4.
Introduction

(1) Human embryonic stem (ES) cells are pluripotent but are difficult to be used for therapy because of immunological, oncological and ethical barriers. (2) Pluripotent cells exist in vivo, i.e., germ cells and epiblast cells but cannot be isolated without sacrificing the developing embryo. (3) Reprogramming to pluripotency is possible from adult cells using ectopic expression of OKSM and other integrative and non-integrative techniques. (4) Hurdles to overcome include i.e stability of the phenotype in relation to epigenetic memory.

Sources of data

We reviewed the literature related to reprogramming, pluripotency and fetal stem cells.

Areas of agreement

(1) Fetal stem cells present some advantageous characteristics compared with their neonatal and postnatal counterparts, with regards to cell size, growth kinetics, and differentiation potential, as well as in vivo tissue repair capacity. (2) Amniotic fluid stem cells are more easily reprogrammed to pluripotency than adult fibroblast. (3) The parental population is heterogeneous and present an intermediate phenotype between ES and adult somatic stem cells, expressing markers of both.

Areas of controversy

(1) It is unclear whether induced pluripotent stem (iPS) derived from amniotic fluid stem cells are fully or partially reprogrammed. (2) Optimal protocols to ensure highest efficiency and phenotype stability remains to be determined. (3) The “level” of reprogramming, fully vs partial, of iPS derived from amniotic fluid stem cells remain to be determined.

Growing points

Banking of fully reprogrammed cells may be important both for (1) autologous and allogenic applications in medicine, and (2) disease modeling.  相似文献   

5.
The mechanism by which extracellular molecules control serotonergic cell fate remains elusive. Recently, we showed that noggin, which inactivates bone morphogenetic proteins (BMPs), induces serotonergic differentiation of mouse embryonic (ES) and induced pluripotent stem cells with coordinated gene expression along the serotonergic lineage. Here, we created a rapid assay for serotonergic induction by generating knock‐in ES cells expressing a naturally secreted Gaussia luciferase driven by the enhancer of Pet‐1/Fev, a landmark of serotonergic differentiation. Using these cells, we performed candidate‐based screening and identified BMP type I receptor kinase inhibitors LDN‐193189 and DMH1 as activators of luciferase. LDN‐193189 induced ES cells to express the genes encoding Pet‐1, tryptophan hydroxylase 2, and the serotonin transporter, and increased serotonin release without altering dopamine release. In contrast, TGF‐β receptor inhibitor SB‐431542 selectively inhibited serotonergic differentiation, without changing overall neuronal differentiation. LDN‐193189 inhibited expression of the BMP signaling target gene Id, and induced the TGF‐β target gene Lefty, whereas the opposite effect was observed with SB‐431542. This study thus provides a new tool to investigate serotonergic differentiation and suggests that inhibition of BMP type I receptors and concomitant activation of TGF‐β receptor signaling are implicated in serotonergic differentiation.

  相似文献   


6.
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming.  相似文献   

7.
8.
Though cardiac progenitor cells should be a suitable material for cardiac regeneration, efficient ways to induce cardiac progenitors from embryonic stem (ES) cells have not been established. Extending our systematic cardiovascular differentiation method of ES cells, here we show efficient and specific expansion of cardiomyocytes and highly cardiogenic progenitors from ES cells. An immunosuppressant, cyclosporin-A (CSA), showed a novel effect specifically acting on mesoderm cells to drastically increase cardiac progenitors as well as cardiomyocytes by 10-20 times. Approximately 200 cardiomyocytes could be induced from one mouse ES cell using this method. Expanded progenitors successfully integrated into scar tissue of infracted heart as cardiomyocytes after cell transplantation to rat myocardial infarction model. CSA elicited specific induction of cardiac lineage from mesoderm in a novel mesoderm-specific, NFAT independent fashion. This simple but efficient differentiation technology would be extended to induce pluripotent stem (iPS) cells and broadly contribute to cardiac regeneration.  相似文献   

9.
Embryonic stem (ES) cells are pluripotent stem cells and give rise to a variety of differentiated cell types including neurons. To study a molecular basis for differentiation from ES cells to neural cells, we searched for proteins involved in mouse neurogenesis from ES cells to neural stem (NS) cells and neurons by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting, using highly homogeneous cells differentiated from ES cells in vitro. We newly identified seven proteins with increased expression and one protein with decreased expression from ES cells to NS cells, and eight proteins with decreased expression from NS cells to neurons. Western blot analysis confirmed that a tumor-specific transplantation antigen, HS90B, decreased, and an extracellular matrix and membrane glycoprotein (such as laminin)-binding protein, galectin 1 (LEG1), increased in NS cells, and LEG1 and a cell adhesion receptor, laminin receptor (RSSA), decreased in neurons. The results of RT-PCR showed that mRNA of LEG1 was also up-regulated in NS cells and down-regulated in neurons, implying an important role of LEG1 in regulating the differentiation. The differentially expressed proteins identified here provide insight into the molecular basis of neurogenesis from ES cells to NS cells and neurons.  相似文献   

10.
Embryonic stem (ES) cells have been tested for potential cell transplantation therapy for CNS disorders. Understanding their differentiation mechanism and identifying factors involved in driving excitatory and inhibitory neuron lineages should enhance the efficacy and efficiency of the cell transplantation therapy. We tested the hypothesis that selective expression of Src family tyrosine kinases is required for phenotype-specific differentiation and functional maturation of ES cell derived neurons. Cultured mouse pluripotent ES cells were treated with retinoic acid (RA) to induce neural differentiation. After RA induction, neurons derived from ES cells showed significant neurite growth, increased expression of Src, Fyn and Lck and an extension of Src kinase expression from cell body to neurite processes. ES cell derived neuron-like cells expressed neurofilament, synaptophysin, glutamate receptors, NMDA and kainate currents, became vulnerable to excitotoxicity and formed functional excitatory synapses. These developmental events were blocked or attenuated when cells were grown in the presence of Src family kinase inhibitor PP2. However, there was no change in the expression of GABAergic-specific protein GAD67 during PP2 treatment. Our data suggest that Src tyrosine kinases are involved in the terminal differentiation of excitatory neuronal phenotype during ES cell neural differentiation after RA induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号