首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently demonstrated that not all organs with high rates of mutation in the lacZ transgene develop tumors using the Muta Mouse. To better understand the role of in vivo mutation in carcinogenesis, we examined the mutant frequencies (MF) of the lacZ transgene in tumor-bearing and non tumor-bearing organs. MF, recovered after 2 weeks (the data taken from our previous study) and after 26 weeks following oral doses of 125 mg kg-1 day-1 benzo[a]pyrene (BP) for five days were compared. The organs examined included the target organs (forestomach, spleen, and lung) and non-target organs (colon, glandular stomach, and liver) for BP carcinogenesis. The data indicated that lacZ MF were markedly increased over spontaneous frequencies in the organs examined and that the organ which showed the highest MF was the colon, followed by the forestomach>spleen>glandular stomach, liver, and lung in that order. These findings indicate that the MF of the lacZ transgene in each organ, even 26 weeks after the start of the treatment does not fully correlate with the known target organs of BP. Furthermore, the lacZ MF in a non-papilloma region of a forestomach with a papilloma was equivalent to the two highest MF observed in the healthy colon (non-target organ) of mice at 26 weeks. These observations also indicate that the generation of tumors requires the induction of mutations as well as other factor(s) specific to the target organs. These results clearly suggest that highly mutated organs do not always progress to tumors in the transgenic mouse.  相似文献   

2.
Aristolochic acid (AA) is found in a plant that causes urothelial carcinomas in patients with Chinese herb nephropathy (CHN). To evaluate the in vivo mutagenicity of AA, we analysed the mutant frequency (MF) in the lacZ and cII gene of 10 organs of the lambda/lacZ transgenic mouse (MutaMouse) after intragastric treatment with AA (15mg/kg per week x 4). Simultaneously, the clastogenicity of AA was evaluated by the peripheral blood micronucleus assay. The nature of the mutations induced by AA was revealed by the sequence analysis of the cII gene, which is also a phenotypically selectable marker in the lambda transgene. MFs in the target organs-forestomach, kidney, and bladder of AA-treated mice were significantly higher than those of control mice (forestomach 33- and 15-fold; kidney 10- and 9-fold; bladder 16- and 31-fold, for the lacZ and cII, respectively). The MFs in non-target organs, except the colon, showed only slight increases. Sequence analysis of cII mutants in target organs revealed that AA induced mainly A:T to T:A transversions whereas G:C to A:T transitions at CpG sites predominated among spontaneous mutations. These results suggested that AA, which is activated by cytochrome P450 and peroxidase to form cyclic nitrenium ions that bind to deoxyadenine, caused the A to T transversions in the target organs of mice.  相似文献   

3.
The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems. The ease at which iMARS has allowed us to carry out an exhaustive investigation to assess mutation distribution, mutation type, strand bias, target sequences and motifs, as well as predict mutation hotspots provides us with a valuable tool in helping to distinguish true chemically induced hotspots from background mutations and gives a true reflection of mutation frequency.  相似文献   

4.
J Ryu  J Youn  Y Kim  O Kwon  Y Song  H Kim  K Cho  I Chang 《Mutation research》1999,445(1):127-135
This paper describes the spectrum of mutations induced by 4-nitroquinoline N-oxide (4-NQO) in the lacI target gene of the transgenic Big Blue Rat2 cell line. There are only a few report for the mutational spectrum of 4-NQO in a mammalian system although its biological and genetic effects have been well studied. Big Blue Rat2 cells were treated with 0.03125, 0.0625 or 0.125 microg/ml of 4-NQO, the highest concentration giving 85% survival. Our results indicated that the mutant frequency (MF) induced by 4-NQO was dose-dependent with increases from three- to seven-fold. The DNA sequence analysis of lacI mutants from the control and 4-NQO treatment groups revealed an obvious difference in the spectra of mutations. In spontaneous mutants, transition (60%) mutations, especially G:C-->A:T transition (45%), were most frequent. However, the major type of base substitution after treatment of 4-NQO was transversions (68.8%), especially G:C-->T:A (43.8%), while only 25% of mutants were transitions. These results are consistent with those produced by 4-NQO in other systems and the transgenic assay system will be a powerful tool to postulate more accurately the mechanism of chemical carcinogenesis involved.  相似文献   

5.
We previously reported the development of mutation-specific Escherichia coli B tester strains WP3101 to WP3106 from strain WP2uvrA. In this study we constructed their pKM101-containing derivatives WP3101P to WP3106P, and further isolated their rfa derivatives WP4101-WP4106 and WP4101P-WP4106P. The six kinds of F' plasmids (lacI-, lacZ-, proAB+), each of which carries a different lacZ allele, contained in the above strains were originally derived from E. coli K-12 strains CC101-CC106. All the tester strains show Lac- and Trp- phenotype. Assays for transitions and transversions are based upon Lac+ reversion of a specific mutation located within the lacZ gene on an F' plasmid. The trpE65(ochre) allele in the same strains enables them to be used for Trp+ reversion assays as well. In the present paper, we evaluated the sensitivity, specificity, and usefulness of the newly developed tester strains. Strains WP3101P-WP3106P were highly sensitive to determine mutational profile of heterocyclic amines with S9 mix-mediated metabolic activation and most of the oxidative mutagens and free radical generators tested. Every type of base-pair substitutions induced by 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) or 5-diazouracil were detected in strains WP3101P-WP3106P, while A:T-->C:G and G:C-->A:T mutations induced by MeIQ, and A:T-->C:G, G:C-->A:T, and G:C-->C:G by 5-diazouracil were not detected in pKM101-free tester strains. In pKM101-carrying strains, cumene hydroperoxide induced all types of base substitutions, while formaldehyde preferentially induced G:C-->T:A transversions. Phenazine methosulfate induced predominantly G:C-->A:T transitions and G:C-->T:A transversions, while H2O2 induced predominantly G:C-->T:A and A:T-->T:A transversions. Introduction of the rfa mutation considerably enhanced sensitivity to bulky mutagens such as polycyclic aromatic compounds. All six possible base substitutions induced by 9, 10-dimethyl-1,2-benzanthracene (DMBA) were detected in tester strains WP4101P-WP4106P. In conclusion, our tester strains WP3101P-WP3106P and WP4101P-WP4106P permitted rapid and simple detection of specific mutations induced by variety of mutagens.  相似文献   

6.
Mutations induced by glyoxal and methylglyoxal in mammalian cells.   总被引:3,自引:0,他引:3  
To investigate the mutation spectra of glyoxal and methylglyoxal in mammalian cells, we analyzed mutations in a bacterial suppressor tRNA (supF) gene in the shuttle vector plasmid pMY189. The cytotoxicity and the mutation frequency increased according to the doses of glyoxal and methylglyoxal. The majority of glyoxal-induced mutations (65%) were base-pair substitutions, in which G:C-->C:G transversions were predominant. In the mutants induced by methylglyoxal, multi-base deletions were predominant (50%), followed by base-pair substitutions (35%), in which G:C-->C:G and G:C-->T:A transversions were predominant.  相似文献   

7.
Rats fed the hepatocarcinogen 2-acetylaminofluorene (2-AAF) have a low, but significantly increased, frequency of lymphocyte Hprt mutants. In this study, mutants from 2-AAF-fed and control F344 rats were examined for mutations in the Hprt gene in order to determine if the 2-AAF treatment resulted in an agent-specific mutation profile. The most common mutation from 2-AAF-treated rats was G:C-->T:A transversion (32% of all mutations) followed by 1-basepair (bp) deletion (19%); there were very few (5%) G:C-->A:T transitions. Among mutations from control rats, G:C-->A:T transition was the most common (43%), and there were very few G:C-->T:A transversions (5%) and no 1-bp deletions. The profile of mutations from 2-AAF-fed rats was significantly different from control rats (P = 0.003) and was consistent with the types of mutations produced by 2-AAF in vitro. The results of this study indicate that even weak mutational responses in the lymphocyte Hprt assay are capable of producing mutation profiles that reflect the DNA damage inducing them.  相似文献   

8.
Procarbazine, a drug used for cancer chemotherapy, is carcinogenic in rodent bioassays. We analyzed the mutagenicity of procarbazine in various organs and the clastogenicity of the drug in hematopoietic cells of the lacZ transgenic MutaMouse. This was part of the second collaborative study of the Mammalian Mutagenesis Study Group of the Japanese Environmental Mutagen Society on the transgenic mouse mutation assay. At 50 mg kg(-1), procarbazine induced micronuclei in hematopoietic cells, but it did not increase the lacZ mutant frequency (MF) in bone marrow. It was also negative in liver, testis, spleen, kidney, and lung. Five daily administrations of 150 mg kg(-1) yielded highly positive responses in the drug's target organs for carcinogenesis (lung, bone marrow, and spleen). Lower positive responses were detected in kidney, which is a minor target organ. Liver showed only a slight increase in lacZ MF and brain showed no increase. The testis MF more than doubled which suggest that procarbazine is mutagenic to germ cells. Thus, we demonstrated that procarbazine has a strong clastogenic effect in hematopoietic cells and is mutagenic in a variety organs after high dose treatment. The induced MF was especially high in procarbazine's target organs for carcinogenesis, which supports the relevance of the transgenic mouse mutation assay for the assessment of potential genotoxins in vivo.  相似文献   

9.
Dimethylarsinic acid (DMA) induces DNA damage in the lung by formation of various peroxyl radical species. The present study was conducted to evaluate whether arsenite or its metabolite, DMA, could initiate carcinogenesis via mutagenic DNA lesions in vivo that can be attributed to oxidative damage. A transgenic mouse model, MutaMouse, was used in this study and mutations in the lacZ transgene and in the endogenous cII gene were assessed. When DMA was intraperitoneally injected into MutaMice at a dose of 10.6 mg/kg per day for 5 consecutive days, it caused only a weak increase in the mutant frequency (MF) of the lacZ gene in the lung, which was at most 1.3-fold higher than in the untreated control animals. DMA did not appreciably raise the MF in the bladder or bone marrow. Further analysis of the cII gene in the lung, the organ in which DMA induced the DNA damage, revealed only a marginal increase in the MF. Following DMA administration, no change in the cII mutation spectra was observed, except for a slight increase in the G:C to T:A transversion. Administration of arsenic trioxide (arsenite) at a dose of 7.6 mg/kg per day did not result in any increase in the MF of the lacZ gene in the lung, kidney, bone marrow, or bladder. Micronucleus formation was also evaluated in peripheral blood reticulocytes (RETs). The assay for micronuclei gave marginally positive results with arsenite, but not with DMA. These results suggest that the mutagenicity of DMA and arsenite might be too low to be detected in the MutaMouse.  相似文献   

10.
To investigate the mutation spectrum of a well-known mutagen, methylglyoxal, and the influence of nucleotide excision repair (NER) on methylglyoxal-induced mutations, we treated wild-type and NER-deficient (uvrA or uvrC) Escherichia coli strains with methylglyoxal, and analyzed mutations in the chromosomal lacI gene. In the three strains, the cell death and the mutation frequency increased according to the dose of methylglyoxal added to the culture medium. The frequencies of methylglyoxal-induced base-pair substitutions were higher in the NER-deficient strains than in the wild-type strain, in the presence and absence of mucAB gene. Paradoxically, the frequency of methylglyoxal-induced TGGC frameshifts was higher in the wild-type strain than in the NER-deficient strains. When the methylglyoxal-induced mutation spectra in the presence and absence of mucAB gene are compared, the ratios of base-pair substitutions to frameshifts were increased by the effects of mucAB gene. In the three strains, more than 75% of the base-pair substitutions occurred at G:C sites, independent of the mucAB gene. When the mucAB gene was present, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. When the mucAB gene was absent, the predominant mutations differed in the three strains: in the wild-type and uvrC strains, G:C-->A:T transitions were predominant, followed by G:C-->T:A transversions, while in the uvrA strains, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. These results suggest that NER may be involved in both the repair and the fixation of methylglyoxal-induced mutations.  相似文献   

11.
Quinoline is carcinogenic to the liver in rodents, but it is not clear whether it acts by a genotoxic mechanism. We previously demonstrated that quinoline does induce gene mutation in the liver of lambda/lacZ transgenic mice. In the present report, we reveal the molecular nature of the mutations induced by quinoline in the lambda cII gene, which is also a phenotypically selectable marker in the lambda transgene. (The cII gene has 294bp, which enables much easier sequence analysis than the original lacZ gene (3kb)). The liver cII mutant frequency was nine times higher in quinoline-treated mice than in control mice. Sequence analysis revealed that quinoline induced primarily G:C to C:G transversions (25 of 34). Thus, we have confirmed that quinoline is genotoxic in its target organ, and the G:C to C:G transversion is the molecular signature of quinoline-induced mutations.  相似文献   

12.
We previously reported that the majority of base-pair substitutions induced by an endogenous mutagen, methylglyoxal, were G:C-->T:A transversions and G:C-->A:T transitions in wild-type and nucleotide excision repair (NER)-deficient (uvrA or uvrC) Escherichia coli strains. To investigate the mutation spectrum of methylglyoxal in mammalian cells and to compare the spectrum with those detected in other experimental systems, we analyzed mutations in a bacterial suppressor tRNA (supF) gene in the shuttle vector plasmid pMY189. We treated pMY189 with methylglyoxal and immediately transfected it into simian COS-7 cells. The cytotoxicity and the mutation frequency (MF) increased according to the dose of methylglyoxal. In the mutants induced by methylglyoxal, multi-base deletions were predominant (50%), followed by base-pair substitutions (35%), in which 89% of the substitutions occurred at G:C sites. Among them, G:C-->C:G and G:C-->T:A transversions were predominant. The overall distribution of methylglyoxal-induced mutations detected in the supF gene was different from that for the spontaneous mutations. These results suggest that methylglyoxal may take part in causing G:C-->C:G and G:C-->T:A transversions in vivo.  相似文献   

13.
The o-aminoazotoluene (AAT) has been evaluated as a possible human carcinogen by the International Agency for Research on Cancer. In rodents, it is carcinogenic mainly in the liver, and also in lung following long term administration. We previously examined in lambda/lacZ transgenic mice for the induction of lacZ mutations in liver, lung, urinary bladder, colon, kidney, bone marrow, and testis. AAT induced gene mutations strongly in the liver and colon. In the present report, we reveal the molecular nature of mutations induced by AAT in the lambda cII gene (the cII gene, a phenotypically selectable marker in the lambda transgene, has 294bp, which makes it easier to sequence than the original target, the 3kb lacZ gene). The cII mutant frequency in liver and colon was five and nine times higher, respectively, in AAT-treated mice than in control mice. Sequence analysis revealed that AAT induced G:C to T:A transversions, whereas spontaneous mutations consisted primarily of G:C to A:T transitions at CpG sites.  相似文献   

14.
We have examined the mutational specificity of 1-nitroso-8-nitropyrene (1,8-NONP), an activated metabolite of the carcinogen 1,8-dinitropyrene, in the lacI gene of Escherichia coli strains which differ with respect to nucleotide excision repair (+/- delta uvrB) and MucA/B-mediated error-prone translesion synthesis (+/- pKM101). Several different classes of mutation were recovered, of which frameshifts, base substitutions, and deletions were clearly induced by 1,8-NONP treatment. The high proportion of point mutations (> 92%) which occurred at G.C sites correlates with the percentage of 1,8-NONP-DNA adducts which occur at the C(8) position of guanine. The most prominent frameshift mutations were -(G.C) events, which were induced by 1,8-NONP treatment in all strains, occurred preferentially in runs of guanine residues, and whose frequency increased markedly with the length of the reiterated sequence. Of the base substitution mutations G.C-->T.A transversions were induced to the greatest extent by 1,8-NONP. The distribution of the G.C-->T.A transversions was not influenced by the nature of flanking bases, nor was there a strand preference for these events. The presence of plasmid pKM101 specifically increased the frequency of G.C-->T.A transversions by a factor of 30-60. In contrast, the -(G.C) frameshift mutation frequency was increased only 2-4-fold in strains harboring pKM101 as compared to strains lacking this plasmid. There was, however, a marked influence of pKM101 on the strand specificity of frameshift mutation; a preference was observed for -G events on the transcribed strand. The ability of the bacteria to carry out nucleotide excision repair had a strong effect on the frequency of all classes of mutation but did not significantly influence either the overall distribution of mutational classes or the strand specificity of G.C-->T.A transversions and -(G.C) frameshifts. Deletion mutations were induced in the delta uvr, pKM101 strain. The endpoints of the majority of the deletion mutations were G.C rich and contained regions of considerable homology. The specificity of 1,8-NONP-induced mutation suggests that DNA containing 1,8-NONP adducts can be processed through different mutational pathways depending on the DNA sequence context of the adduct and the DNA repair background of the cell.  相似文献   

15.
Although chemicals usually induce very similar frequencies of mutations in transgenes and endogenous genes in vivo when given acutely, chronic exposure to N-ethyl-N-nitrosourea (ENU) produced a more complex pattern in which the endogenous locus was spared many mutations. Here, we demonstrate that the effect is neither ENU-specific nor locus-specific, and thus, may be important in the extrapolations of risk assessment and in understanding mutational mechanisms. During chronic mutagen exposure, mutations at the transgene accumulate linearly with time, i.e. in direct proportion to the dose received. In contrast, mutations at the endogenous gene are much less frequent than those of the transgene early in the exposure period and the accumulation is not linear with time, but rather accelerates as the exposure continues. Previous comparisons involved the endogenous Dlb-1 locus and the lacI transgene from the Big BlueMouse in the small intestine. These experiments involved the Dlb-1 locus and the lacZ transgene from the MutaMouse in the small intestine and the hprt locus and the lacZ transgene in splenocytes. Comparisons were made in both tissues after acute and chronic exposures to ENU, the original mutagen, and in the small intestine after exposures to benzo(a)pyrene. All comparisons showed that during chronic exposures mutations at the transgene accumulate linearly with the increasing duration of exposure, whereas induced mutations of the endogenous gene initially accumulate at a slower rate. Thus, the difference in mutational response observed during low chronic treatment is not unique to a particular transgene, endogenous gene, tissue, or mutagen used, but may be a general phenomenon of such genes.  相似文献   

16.
Dinitropyrenes (DNPs), 1,3-, 1,6- and 1,8-dinitropyrene, are carcinogenic compounds found in diesel engine exhaust. DNPs are strongly mutagenic in the bacterial mutation assay (Ames test), mainly inducing frameshift type mutations. To assess mutagenicity of DNPs in vivo is important in evaluating their possible involvement in diesel exhaust-induced carcinogenesis in human. For this purpose, we used the lambda/lacZ transgenic mouse (Muta Mouse) to examine induction of mutations in multiple organs. A commercially available mixture of DNPs (1,3-, 1,6-, 1,8-, and unidentified isomer (s) with a content of 20.2, 30.4, 35.2, and 14.2%, respectively) was injected intragastrically at 200 and 400mg/kg once each week for 4 weeks. Seven days after the final treatment, liver, lung, colon, stomach, and bone marrow were collected for mutation analysis. The target transgene was recovered by the lambda packaging method and mutation of lacZ gene was analyzed by a positive selection with galE(-) E. coli. In order to determine the sequence alterations by DNPs, the mutagenicity of the lambda cII gene was also examined by the positive selection with hfl(-) E. coli. Since cII gene (294bp) is much smaller than the lacZ (3024bp), it facilitated the sequence analysis. Strongest increases in mutant frequencies (MFs) were observed in colon for both lacZ (7.5x10(-5) to 43.3x10(-5)) and cII (2.7x10(-5) to 22.5x10(-5)) gene. Three-four-fold increases were observed in stomach for both genes. A statistically significant increase in MFs was also evident in liver and lung for the lacZ gene, and in lung and bone marrow for the cII gene. The sequence alterations of the cII gene recovered from 37 mutants in the colon were compared with 50 mutants from untreated mice. Base substitution mutations predominated for both untreated (91%) and DNP-treated (84%) groups. The DNPs treatment increased the incidence of G:C to T:A transversion (2-43%) and decreased G:C to A:T transitions (70-22%). The G:C to T:A transversions, characteristic to DNPs treatment, is probably caused by the guanine-C8 adduct, which is known as a major DNA-adduct induced by DNPs, through an incorporation of adenine opposite the adduct ("A"-rule). The present study showed a relevant use of the cII gene as an additional target for mutagenesis in the Muta Mouse and revealed a mutagenic specificity of DNPs in vivo.  相似文献   

17.
1,3-Butadiene (BD) is carcinogenic and mutagenic in B6C3F1 mice. BD inhalation induces an increased frequency of specific base substitution mutations in the bone marrow and spleen of B6C3F1 lacI transgenic mice. BD is bioactivated to at least three mutagenic metabolites: 1,2-epoxybutene (EB), 1,2-epoxy-3,4-butanediol (EBD), and 1,2,3,4-diepoxybutane (DEB), however, the contribution of these individual metabolites to the in vivo mutational spectrum of BD is uncertain. In the present study, lacI transgenic mice were exposed by inhalation (6h per day, 5 days per week for 2 weeks) to 0 or 29.9ppm of the BD metabolite, EB to assess its contribution to the in vivo mutational spectrum of BD. No increase in lacI mutant frequency was observed in the bone marrow or spleen of EB-exposed mice. The lack of mutagenicity in the bone marrow or spleen likely relate to insufficient levels of EB reaching these tissues. The lacI mutant frequency was increased 2.7-fold in the lungs of EB-exposed mice (mean+/-S.D., 9.9+/-3.0x10(-5)) compared to air control mice (3.6+/-0.7x10(-5)). DNA sequence analysis of 65 and 66 mutants from the lungs of air control and EB-exposed mice, respectively, revealed an increase in the frequency of two categories of base substitution mutation and deletions. Like mice exposed to BD, EB-exposed mice had an increased frequency of A:T-->T:A transversions. However, in contrast to the BD mutational spectra, G:C-->A:T transitions at 5'-CpG-3' sequences, occurred with increased frequency in the EB-exposed mice. The increased frequency of deletions as well as the induction of two tandem mutations and a tandem deletion in the lungs of EB-exposed mice are also inconsistent with previous mutational spectra from BD-exposed mice or EB-exposed cells in culture. We hypothesize that the direct in vivo mutagenicity and further in situ metabolism of EB in the lungs of EB-exposed mice played a prominent role in the generation of the current mutational spectrum.  相似文献   

18.
Although N-nitrosodiethylamine (NDEA) is a potent carcinogen in rodents and a probable human carcinogen, little attempts were made to characterize its mutation spectrum in higher eukaryotes. We have compared forward mutation frequencies at multiple (700) loci with the mutational spectrum induced at the vermilion gene of Drosophila, after exposure of post- and pre-meiotic male germ cells to NDEA. Among 30 vermilion mutants collected from post-meiotic stages were 12 G:C-->A:T transitions (40%), 8 A:T-->T:A transversions (27%), and 4 structural rearrangements (13%). The remainder were three A:T-->G:C transitions, two G:C-->C:G transversions and one G:C-->T:A transversion. The results show that although NDEA induces predominantly transitions (40% G:C-->A:T and 10% A:T-->G:C), the frequencies of transversions (37%, of which 27% of A:T-->T:A transversions) and especially of rearrangements (13%) are remarkably high. This mutation spectrum differs significantly from that produced by the direct-ethylating agent N-ethylnitrosourea (ENU), although the relative distribution of ethylated DNA adducts is similar for both carcinogens. These differences, in particular the occurrence of rearrangements, are most likely the result of the requirement of NDEA for bioactivation. Since all four rearrangements were collected from non-metabolizing spermatozoa (or late spermatids), it is hypothesized that they derived from acetaldehyde, a stable metabolite of NDEA. Due to its cytotoxicity, attempts to isolate vermilion mutants from NDEA-exposed pre-meiotic cells were largely unsuccessful, because only two mutants (one A:T-->G:C transition and one 1bp insertion) were collected from those stages. Our results show that NDEA is capable of generating carcinogenic lesions other than base pair substitutions.  相似文献   

19.
In the bacterium Escherichia coli, oxidized pyrimidines are removed by two DNA glycosylases, endonuclease III and endonuclease VIII (endo VIII), encoded by the nth and nei genes, respectively. Double mutants lacking both of these activities exhibit a high spontaneous mutation frequency, and here we show that all of the mutations observed in the double mutants were G:C-->A:T transitions; no thymine mutations were found. These findings are in agreement with the preponderance of C-->T transitions in the oxidative and spontaneous mutational databases. The major oxidized purine lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is processed by two DNA glycosylases, formamidopyrimidine DNA glycosylase (Fpg), which removes 8-oxoG opposite C, and MutY DNA glycosylase, which removes misincorporated A opposite 8-oxoG. The high spontaneous mutation frequency previously observed in fpg mutY double mutants was significantly enhanced by the addition of the nei mutation, suggesting an overlap in the substrate specificities between endo VIII and Fpg/MutY. When the mutational specificity was examined, all of the mutations observed were G:C-->T:A transversions, indicating that in the absence of Fpg and MutY, endo VIII serves as a backup activity to remove 8-oxoG. This was confirmed by showing that, indeed, endo VIII can recognize 8-oxoG in vitro.  相似文献   

20.
We examined whether strand identity with respect to DNA replication influences strand bias for 8-oxo-7,8-dihydroguanine (8-oxoG) mutagenesis. The specificity of 8-oxoG mutagenesis was determined in a mutM mutY or a mutT strain carrying the supF gene on one of two vectors that differed only in the orientation of supF with respect to a unique origin of replication. Most of the supF mutations in the mutM mutY strain were base substitutions (67%), predominantly G:C-->T:A transversions (> 64%), while the majority in the mutT strain were base substitutions (> 92%), predominantly A:T-->C:G transversions (> 91%). The distributions of frequently mutated sites of G:C-->T:A and A:T-->C:G transversions in the supF gene in the mutM mutY and mutT strains, respectively, did not differ markedly between the two vectors. These results suggest that gene orientation is not an important determinant of the strand bias of 8-oxoG mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号