首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Santa Barbara Channel, CA is a highly productive region where wind-driven upwelling and mesoscale eddies are important processes driving phytoplankton blooms. In recent years, the spring bloom has been dominated by the neurotoxin-producing diatom, Pseudo-nitzschia spp. In this paper, we relate a 1.5-year time series of Pseudo-nitzschia spp. abundance and domoic acid concentration to physical, chemical, and biological data to better understand the mechanisms controlling local Pseudo-nitzschia spp. bloom dynamics. The data were used to define the ranges of environmental conditions associated with Pseudo-nitzschia spp. bloom development in the Santa Barbara Channel. The time series captured three large toxic events (max. particulate domoic acid concentration, pDA ~6000 ng L?1; max. cellular domoic acid concentrations, cDA ~88 pg cell?1) in the springs of 2005–2006 and summer 2005 corresponding to bloom-level Pseudo-nitzschia spp. abundance (>5.0 × 104 cells L?1). In general, large increases in Pseudo-nitzschia spp. abundance were accompanied by increases in cDA levels, and cDA peaks preceded pDA peaks by at least one month in both the springs of 2005 and 2006. Statistical models incorporating satellite ocean color (MODIS-Aqua and SeaWiFS) and sea surface temperature (AVHRR) data were created to determine the probability that a remotely sensed phytoplankton bloom contains a significant population of toxic Pseudo-nitzschia spp. Models correctly estimate 98% of toxic bloom situations, with a 7–29% rate of false positive identification. Conditions most associated with high cDA levels are low sea surface temperature, high salinity, increased absorption by cDOM (412 nm), increased reflectance at 510/555 nm, and decreased particulate absorption at 510 nm. Future efforts to merge satellite and regionally downscaled forecasting products with these habitat models will help assess bloom forecasting capabilities in the central CA region and any potential connections to large-scale climate modes.  相似文献   

2.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

3.
Over 1200 samples were collected from Louisiana estuarine and coastal shelf waters between 1989 and 2002, and analyzed to examine the population dynamics of Pseudo-nitzschia and to assess the potential threat posed by domoic acid (DA), a potent neurotoxin produced by some members within this toxigenic diatom genus. Results demonstrated that three species in this region (Pseudo-nitzschia multiseries, P. pseudodelicatissima complex, P. delicatissima) produce DA, and that particulate toxin levels were highest (up to 3.05 μg L−1) during the spring bloom, while cellular concentrations were highest in the winter/early spring when P. multiseries was most abundant (up to 30 pg cell−1). These particulate toxin levels are comparable to those seen in other regions (e.g., United States west coast) where DA poisoning events have occurred in the past. Pseudo-nitzschia were most abundant under dissolved inorganic nitrogen-replete conditions coupled with lower silicate and/or phosphate concentrations, and in the early spring months when temperatures were cooler. Pseudo-nitzschia were occasionally well-represented in the phytoplankton assemblage (≥106 cells L−1 in 14% of samples, over 50% of total phytoplankton in 5% of samples), indicating that planktivores (e.g., Gulf menhaden, Brevoortia patronus) may have little choice but to consume Pseudo-nitzschia cells, thereby providing potential vectors for DA transfer to higher trophic levels. By comparison, eastern oysters (Crassostrea virginica) present in estuarine waters may be more exposed to this toxin when Pseudo-nitzschia cells are part of a mixed assemblage, reducing selective grazing by these bivalves. C. virginica may thus represent the most effective vector for DA exposure in humans.  相似文献   

4.
A toxic Pseudo-nitzschia spp. bloom in the Todos Santos Bay area (31.8°N), Mexico, is described. This is the southernmost report of the presence of domoic acid (DA) in the California Current System and it is also the first report of the distribution of toxic Pseudo-nitzschia species and DA on the Baja California west coast. The maximum cell abundance of Pseudo-nitzschia was 3.02 × 105 cells L?1 and the maximum concentration of DA in particulate matter (pDA) was 0.86 μg L?1. P. australis constituted the major proportion of cells identified as Pseudo-nitzschia. The environmental conditions associated with wind-driven upwelling were the cause for the accumulation of toxic cells. Maximum pDA and cell concentration were detected around 14 °C. The ratio of the concentration of macronutrients seemed to be the important factor for the accumulation of P. australis. The highest cell abundance was detected in areas with a high Si(OH)4 to N ratio in the entire water column. Therefore, the relative increase of silicate concentration related to upwelling conditions was the probable cause for the accumulation of P. australis. Maximum photosystem II (PSII) quantum efficiency of charge separation (Fv/Fm) was negatively correlated to the pDA to fucoxanthin ratio. This ratio was used in this work as an index of cellular DA content. Therefore, the photosynthetic competence of the cells might be an important factor that affected their DA cellular content.  相似文献   

5.
The gulfs that surround Península Valdés (PV), Golfo Nuevo and Golfo San José in Argentina, are important calving grounds for the southern right whale Eubalaena australis. However, high calf mortality events in recent years could be associated with phycotoxin exposure. The present study evaluated the transfer of domoic acid (DA) from Pseudo-nitzschia spp., potential producers of DA, to living and dead right whales via zooplanktonic vectors, while the whales are on their calving ground at PV. Phytoplankton and mesozooplankton (primary prey of the right whales at PV and potential grazers of Pseudo-nitzschia cells) were collected during the 2015 whale season and analyzed for species composition and abundance. DA was measured in plankton and fecal whale samples (collected during whale seasons 2013, 2014 and 2015) using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). The genus Pseudo-nitzschia was present in both gulfs with abundances ranging from 4.4 × 102 and 4.56 × 105 cell l−1. Pseudo-nitzschia australis had the highest abundance with up to 4.56 × 105 cell l−1. DA in phytoplankton was generally low, with the exception of samples collected during a P. australis bloom. No clear correlation was found between DA in phytoplankton and mesozooplankton samples. The predominance of copepods in mesozooplankton samples indicates that they were the primary vector for the transfer of DA from Pseudo-nitzschia spp. to higher trophic levels. High levels of DA were detected in four whale fecal samples (ranging from 0.30 to 710 μg g−1 dry weight of fecal sample or from 0.05 and 113.6 μg g−1 wet weight assuming a mean water content of 84%). The maximum level of DA detected in fecal samples (710 μg DA g−1 dry weight of fecal sample) is the highest reported in southern right whales to date. The current findings demonstrate for the first time that southern right whales, E. australis, are exposed to DA via copepods as vectors during their calving season in the gulfs of PV.  相似文献   

6.
The population dynamics of different Pseudo-nitzschia species, along with particulate domoic acid (pDA) concentrations, were studied from May 2012 to December 2013 in the Bay of Seine (English Channel, Normandy). While Pseudo-nitzschia spp. blooms occurred during the two years of study, Pseudo-nitzschia species diversity and particulate domoic acid concentrations varied greatly. In 2012, three different species were identified during the spring bloom (P. australis, P. pungens and P. fraudulenta) with high pDA concentrations (∼1400 ng l−1) resulting in shellfish harvesting closures. In contrast, the 2013 spring was characterised by a P. delicatissima bloom without any toxic event. Above all, the results show that high pDA concentrations coincided with the presence of P. australis and with potential silicate limitation (Si:N < 1), while nitrate concentrations were still replete. The contrasting environmental conditions between 2012 and 2013 highlight different environmental controls that might favour the development of either P. delicatissima or P. australis. This study points to the key role of Pseudo-nitzschia diversity and cellular toxicity in the control of particulate domoic acid variations and highlights the fact that diversity and toxicity are influenced by nutrients, especially nutrient ratios.  相似文献   

7.
《Harmful algae》2007,6(1):1-14
Amnesic shellfish poisoning (ASP) has proved problematic in Irish king scallop, Pecten maximus fisheries necessitating restrictions on the sale of fresh scallops (in-shell), which achieve a higher market price than frozen processed product. An investigation of variability in domoic acid (DA) concentration in king scallop from 69 sampling sites within a limited area off the southeast coast of Ireland was performed. Variation in DA concentration was examined in the whole area, within smaller sub-areas, with size, age, and water depth. Mean DA concentrations in whole scallop ranged from 6.5 to 154.3 μg g−1, with an overall mean of 40.6 ± 30.8 μg g−1. The concentration in gonad exceeded 20 μg g−1 in 17 sites and in adductor muscle in 3 sites. Significant differences in DA concentration were detected between scallops from different sampling stations. Whole scallop tissue and individual scallop tissues with the exception of gonad, exhibited significant negative correlations with water depth. Highest DA concentrations were recorded in inshore, shallow sites and lowest DA concentrations in deeper offshore waters. Significant positive correlations between DA concentration in hepatopancreas and scallop size were exhibited at inshore sites but not at offshore sites. High inter-animal and spatial variability in toxin concentration demonstrated the importance of a reliable sampling protocol for the management of ASP outbreaks to ensure public safety and to avoid unnecessary fishery closures.  相似文献   

8.
Studies of epiphytic dinoflagellates in Peter the Great Bay, Sea of Japan in 2008–2011 revealed the presence of 13 species. Five of the species are known as potentially toxic: Amphidinium carterae, A. operculatum, Ostreopsis cf. ovata, O. cf. siamensis and Prorocentrum lima. The maximum species richness and abundance of epiphytic dinoflagellates were observed in autumn (from September to October). Ostreopsis spp. were most widely distributed and predominated, amounting to 99% of the total density of dinoflagellates. Multi-year seasonal dynamics of Ostreopsis spp. in Peter the Great Bay showed that these cells appear as epiphyton in August after maximum warming of surface waters (22–24 °С) and disappear in early November, when the water temperature decreases below 7 °С. Ostreopsis spp. proliferation occurred in September, when the water temperature was 17.2–21.0 °C. The highest densities of Ostreopsis spp. were recorded on September 9, 2010 on the rhodophyte Neorhodomela aculeata – 230 × 103 cells g−1 DW or 52 × 103 cells g−1 FW. The spatial distribution of epiphytic dinoflagellates was investigated in the near-shore areas of Peter the Great Bay during the second half of September 2010 to evaluate the role of hydrodynamic conditions. Epiphytic dinoflagellates were not found in sheltered sites having weak mixing hydrodynamics. However, the abundances of Ostreopsis spp. were significantly higher at sites having moderate turbulence compared to biotopes experiencing strong wave action. Densities of Ostreopsis spp. were not significantly different on macrophytes with branched thallus of all taxonomic divisions. However, the average cell densities of Ostreopsis spp. on green algae with branched thallus were significantly higher than on green algae having laminar thallus.  相似文献   

9.
Harmful algal blooms caused by Cochlodinium polykrikoides are annual occurrences in coastal systems around the world. In New York (NY), USA, estuaries, bloom densities range from 103 to 105 mL?1 with higher densities (≥104 cells mL?1) being acutely toxic to multiple fish and shellfish species. Here, we report on the toxicity of C. polykrikoides strains recently isolated from New York and Massachusetts (USA) estuaries to juvenile fish (Cyprinodon variegates) and bay scallops (Argopecten irradians), as well as on potential mechanisms of toxicity. Cultures of C. polykrikoides exhibited dramatically more potent ichthyotoxicity than raw bloom water with 100% fish mortality occurring within ~1 h at densities as low as 3.3 × 102 cells mL?1. More potent toxicity in culture was also observed in bioassays using juvenile bay scallops, which experienced 100% mortality during 3 days exposure to cultures at cell densities an order of magnitude lower than raw bloom water (~3 × 103 cells mL?1). The toxic activity per C. polykrikoides cell was dependent on the growth stages of cultures with early exponential growth cultures being more potent than cultures in late-exponential or stationary phases. The ichthyotoxicity of cultures was also dependent on both cell density and fish size, as a hyperbolic relationship between the death time of fish and the ratio of algal cell density to length of fish was found (~103 cells mL?1 cm?1 yielded 100% fish mortality in 24 h). Simultaneous exposure of fish to C. polykrikoides and a second algal species (Rhodomonas salina or Prorocentrum minimum) increased survival time of fish, and decreased the fish mortality suggesting additional cellular biomass mitigated the ichthyotoxicity. Frozen and thawed-, sonicated-, or heat-killed-, C. polykrikoides cultures did not cause fish mortality. In contrast, cell-free culture medium connected to an active culture through a 5 μm nylon membrane caused complete mortality in fish, although the time required to kill fish was significantly longer than direct exposure to the whole culture. These results indicate that ichthyotoxicity of C. polykrikoides isolates is dependent on viability of cells and that direct physical contact between fish and cells is not required to cause mortality. The ability of the enzymes peroxidase and catalase to significantly reduce the toxicity of live cultures and the inability of hydrogen peroxide to mimic the ichthyotoxicity of C. polykrikoides isolates suggests that the toxicity could be caused by non-hydrogen peroxide, highly reactive, labile toxins such as ROS-like chemicals.  相似文献   

10.
This study confirms the presence of the toxigenic benthic dinoflagellates Gambierdiscus belizeanus and Ostreopsis spp. in the central Red Sea. To our knowledge, this is also the first report of these taxa in coastal waters of Saudi Arabia, indicating the potential occurrence of ciguatera fish poisoning (CFP) in that region. During field investigations carried out in 2012 and 2013, a total of 100 Turbinaria and Halimeda macroalgae samples were collected from coral reefs off the Saudi Arabian coast and examined for the presence of Gambierdiscus and Ostreopsis, two toxigenic dinoflagellate genera commonly observed in coral reef communities around the world. Both Gambierdiscus and Ostreopsis spp. were observed at low densities (<200 cells g−1 wet weight algae). Cell densities of Ostreopsis spp. were significantly higher than Gambierdiscus spp. at most of the sampling sites, and abundances of both genera were negatively correlated with seawater salinity. To assess the potential for ciguatoxicity in this region, several Gambierdiscus isolates were established in culture and examined for species identity and toxicity. All isolates were morphologically and molecularly identified as Gambierdiscus belizeanus. Toxicity analysis of two isolates using the mouse neuroblastoma cell-based assay for ciguatoxins (CTX) confirmed G. belizeanus as a CTX producer, with a maximum toxin content of 6.50 ± 1.14 × 10−5 pg P-CTX-1 eq. cell−1. Compared to Gambierdiscus isolates from other locations, these were low toxicity strains. The low Gambierdiscus densities observed along with their comparatively low toxin contents may explain why CFP is unidentified and unreported in this region. Nevertheless, the presence of these potentially toxigenic dinoflagellate species at multiple sites in the central Red Sea warrants future study on their possible effects on marine food webs and human health in this region.  相似文献   

11.
The dynamics of Dinophysis acuminata and its associated diarrhetic shellfish poisoning (DSP) toxins, okadaic acid (OA) and dinophysistoxin-1 (DTX1) as well as pectenotoxins (PTXs), were investigated within plankton and shellfish in Northport Bay, NY, USA, over a four year period (2008–2011). Over the course of the study, Dinophysis bloom densities ranged from ~104 to 106 cells L−1 and exceeded 106 L−1 in 2011 when levels of total OA, total DTX1, and PTX in the water column were 188, 86, and 2900 pg mL−1, respectively, with the majority of the DSP toxins present as esters. These cell densities exceed – by two orders of magnitude – those previously reported within thousands of samples collected from NY waters from 1971 to 1986. The bloom species was positively identified as D. acuminata via scanning electron microscopy and genetic sequencing (cox1 gene). The cox1 gene sequence from the D. acuminata populations in Northport Bay was 100% identical to D. acuminata from Narragansett Bay, RI, USA and formed a strongly supported phylogenetic cluster (posterior probability = 1) that included D. acuminata and Dinophysis ovum from systems along the North Atlantic Ocean. Shellfish collected from Northport Bay during the 2011 bloom had DSP toxin levels (1245 ng g−1 total OA congeners) far exceeding the USFDA action level (160 ng g−1 total OA of shellfish tissue) representing the first such occurrence on the East Coast of the U.S. D. acuminata blooms co-occurred with paralytic shellfish poisoning (PSP) causing blooms of Alexandrium fundyense during late spring each year of the study. D. acuminata cell abundances were significantly correlated with levels of total phytoplankton biomass and Mesodinium spp., suggesting food web interactions may influence the dynamics of these blooms. Given that little is known regarding the combined effects of DSP and PSP toxins on human health and the concurrent accumulation and depuration of these toxins in shellfish, these blooms represent a novel managerial challenge.  相似文献   

12.
The potentially toxic diatom Pseudo-nitzschia is common in the northern Gulf of Mexico. Seven sites along the Alabama Gulf Coast have been monitored weekly to bi-weekly for Pseudo-nitzschia spp., which were detected in 489 of 829 samples (59%) taken between November 2003 and July 2008. Mean population density peaked at 19.6 ± 3.2 °C but bloom densities (>106 cells L−1) occurred at 20–32 °C. Mean population density peaked at a salinity of 30.1 ± 3.2, with blooms occurring between salinities of 26 and 32. Peaks in abundance occurred in April–May, with secondary peaks in fall. A cluster analysis of the relative frequency distributions of abundance by site showed that Little Lagoon Pass had a strong dissimilarity compared to other sites, due to a higher frequency of bloom densities and a lower frequency of absences. Salinities at Little Lagoon Pass were higher and less variable than at other sites. Pseudo-nitzschia spp. were absent more frequently from sites at the mouths of Perdido and Mobile Bays, where salinity was lower and more variable. Freshwater transport from Baldwin County, which lies between these bays, has previously been shown to be primarily through submarine groundwater discharge into the Gulf of Mexico. Groundwater in Baldwin County has high nitrate concentrations and discharge is most likely to occur adjacent to Little Lagoon. Blooms of Pseudo-nitzschia spp. at Little Lagoon Pass in spring were highly correlated with discharge from the Styx River, a proxy for groundwater discharge. Little Lagoon Pass may therefore be a hot-spot for blooms of Pseudo-nitzschia spp., because local maxima in discharge result in nutrient availability without significant reductions in salinity.  相似文献   

13.
The toxic diatom genus Pseudo-nitzschia produces environmentally damaging harmful algal blooms (HABs) along the U.S. west coast and elsewhere, and a recent ocean warming event coincided with toxic blooms of record extent. This study examined the effects of temperature on growth, domoic acid toxin production, and competitive dominance of two Pseudo-nitzschia species from Southern California. Growth rates of cultured P. australis were maximal at 23 °C (∼0.8 d−1), similar to the maximum temperature recorded during the 2014–2015 warming anomaly, and decreased to ∼0.1 d−1 by 30 °C. In contrast, cellular domoic acid concentrations only became detectable at 23 °C, and increased to maximum levels at 30 °C. In two incubation experiments using natural Southern California phytoplankton communities, warming also increased the relative abundance of another potentially toxic local species, P. delicatissima. These results suggest that both the toxicity and the competitive success of particular Pseudo-nitzschia spp. can be positively correlated with temperature, and therefore there is a need to determine whether harmful blooms of this diatom genus may be increasingly prevalent in a warmer future coastal ocean.  相似文献   

14.
The formation of marine snow (MS) by the toxic diatom Pseudo-nitschia australis was simulated using a roller table experiment. Concentrations of particulate and dissolved domoic acid (pDA and dDA) differed significantly among exponential phase and MS formation under simulated near surface conditions (16 °C/12:12-dark:light cycle) and also differed compared to subsequent particle decomposition at 4 °C in the dark, mimicking conditions in deeper waters. Particulate DA was first detected at the onset of exponential growth, reached maximum levels associated with MS aggregates (1.21 ± 0.24 ng mL−1) and declined at an average loss rate of ∼1.2% pDA day−1 during particle decomposition. Dissolved DA concentrations increased throughout the experiment and reached a maximum of ∼20 ng mL−1 at final sampling on day 88. The succession by P. australis from active growth to aggregation resulted in increasing MS toxicity and based on DA loading of particles and known in situ sinking speeds, a significant amount of toxin could have easily reached the deeper ocean or seafloor. MS formation was further associated with significant dDA accumulation at a ratio of pDA: dDA: cumulative dDA of approximately 1:10:100. Overall, this study confirms that MS functions as a major vector for toxin flux to depth, that Pseudo-nitzschia-derived aggregates should be considered ‘toxic snow’ for MS-associated organisms, and that effects of MS toxicity on interactions with aggregate-associated microbes and zooplankton consumers warrant further consideration.  相似文献   

15.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

16.
Brown tides caused by the pelagophyte Aureoumbra lagunensis DeYoe et Stockwell have formed ecosystem disruptive algal blooms in shallow lagoons of Texas (TX), USA, for more than two decades but have never been reported elsewhere. During the summer of 2012, a dense brown tide occurred in the Mosquito Lagoon and northern Indian River Lagoon along the east coast of Florida (FL), USA. While chlorophyll a levels in this system have averaged 5 μg L−1 during the past two decades, concentrations during this brown tide reached ∼200 μg L−1. Concurrently, levels of nitrate were significantly lower than average and levels of dissolved organic nitrogen were significantly higher than average (p < 0.001 for both). Sequences of the 18S rRNA gene of the bloom community and of single cell isolates were identical to those of Aureoumbra lagunensis DeYoe et Stockwell from TX. The A. lagunensis brown tide in FL bloomed to densities exceeding 106 cells mL−1 (quantified with a species-specific immuno-label) from July through September, began to dissipate in October, but maintained densities exceeding 105 cells mL−1 in some regions through December of 2012. The decline of the bloom was associated with near-hypoxic conditions and more than 30 fish kills reported within the Mosquito Lagoon in September 2012, a number far exceeding all prior monthly reports in this system dating to 1996. Wild northern quahog populations (a.k.a. hard clam, Mercenaria mercenaria) suffered mass die offs during the brown tide and eastern oysters (Crassostrea virginica) that settled during 2012 were significantly smaller than prior years. Clearance rates of hard clams and eastern oyster were significantly reduced in the presence of Mosquito Lagoon bloom water and A. lagunensis monocultures isolated from the Mosquito Lagoon at densities of ∼106 cells L−1. The expansion of harmful brown tides caused by A. lagunensis to these estuaries represents a new threat to the US southeast coast.  相似文献   

17.
All three macroalgal clades (Chlorophyta, Rhodophyta, and Phaeophyceae) contain bloom-forming species. Macroalgal blooms occur worldwide and have negative consequences for coastal habitats and economies. Narragansett Bay (NB), Rhode Island, USA, is a medium sized estuary that is heavily influenced by anthropogenic activities and has been plagued by macroalgal blooms for over a century. Over the past decade, significant investment has upgraded wastewater treatment from secondary treatment to water-quality based limits (i.e. tertiary treatment) in an effort to control coastal eutrophication in this system. The goal of this study was to improve the understanding of multi-year macroalgal bloom dynamics through intensive aerial and ground surveys conducted monthly to bi-monthly during low tides in May–October 2006–2013 in NB. Aerial surveys provided a rapid characterization of macroalgal densities across a large area, while ground surveys provided high resolution measurements of macroalgal identity, percent cover, and biomass.Macroalgal blooms in NB are dominated by Ulva and Gracilaria spp. regardless of year or month, although all three clades of macroalgae were documented. Chlorophyta cover and nutrient concentrations were highest in the middle and upper bay. Rhodophyta cover was highest in the middle and lower bay, while drifting Phaeophyceae cover was patchy. Macroalgal blooms of >1000 g fresh mass (gfm)/m2 (max = 3510 gfm/m2) in the intertidal zone and >3000 gfm/m3 (max = 8555 gfm/m3) in the subtidal zone were observed within a heavily impacted embayment (Greenwich Bay). Macroalgal percent cover (intertidal), biomass (subtidal), and diversity varied significantly between year, month-group, site, and even within sites, with the highest species diversity at sites outside of Greenwich Bay. Total intertidal macroalgal percent cover, as well as subtidal Ulva biomass, were positively correlated with temperature. Dissolved inorganic nitrogen concentrations were correlated with the total biomass of macroalgae and the subtidal biomass of Gracilaria spp. but not the biomass of Ulva spp. Despite seasonal reductions in the nutrient output of wastewater treatment facilities emptying into upper Narragansett Bay in recent years, macroalgal blooms still persist. Continued long-term monitoring of water quality, macroalgal blooms, and ecological indicators is essential to understand the changes in macroalgal bloom dynamics that occur after nutrient reductions from management efforts.  相似文献   

18.
《Harmful algae》2011,10(6):540-547
We conducted field and laboratory experiments to determine whether the Pseudo-nitzschia-derived metabolite, domoic acid (DA), functions as a microzooplankton grazing suppressant. Using the seawater dilution technique in natural plankton communities along the Pacific Northwest coast, we found no significant relationship between dissolved DA and microzooplankton grazing rate on Pseudo-nitzschia spp. Dilution experiments amended with either 50 or 80 nM dissolved DA also showed no evidence that microzooplankton community grazing was affected by DA. The relationship between Pseudo-nitzschia spp. intracellular DA and microzooplankton grazing was less clear. On a subset of data where small Pseudo-nitzschia spp. cells dominated community composition, an apparent negative relationship between intracellular DA and microzooplankton grazing was observed. However, we provide evidence that this relationship is a microzooplankton response to Pseudo-nitzschia spp. growth rate, rather than cellular DA. In laboratory experiments, two diatom-consuming dinoflagellates, Protoperidinium excentricum and P. pellucidum, were fed single and mixed diets of a toxic and non-toxic Pseudo-nitzschia species and an optimal prey, Ditylum brightwellii. P. excentricum did not grow or ingest either the toxic or non-toxic Pseudo-nitzschia. However, P. pellucidum grew as well on the toxic Pseudo-nitzschia multiseries as it did on D. brightwellii, but did not grow on the non-toxic Pseudo-nitzschia pungens. Both dinoflagellates were capable of growing if Pseudo-nitzschia spp. diets were mixed with D. brightwellii. Addition of dissolved DA also had no negative effect on dinoflagellate growth when fed the optimal diatom diet. We conclude that domoic acid has no functional role in deterring microzooplankton grazing or growth rates. Further, our findings highlight the difficulty of defining the complex mechanisms that regulate predator and prey interactions within microplankton food webs.  相似文献   

19.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

20.
A bloom of Karenia brevis Davis developed in September 2007 near Jacksonville, Florida and subsequently progressed south through east Florida coastal waters and the Atlantic Intracoastal Waterway (ICW). Maximum cell abundances exceeded 106 cells L−1 through October in the northern ICW between Jacksonville and the Indian River Lagoon. The bloom progressed further south during November, and terminated in December 2007 at densities of 104 cells L−1 in the ICW south of Jupiter Inlet, Florida. Brevetoxins were subsequently sampled in sediments and seagrass epiphytes in July and August 2008 in the ICW. Sediment brevetoxins occurred at concentrations of 11–15 ng PbTx-3 equivalents (g dry wt sediment)−1 in three of five basins in the northern ICW during summer 2008. Seagrass beds occur south of the Mosquito Lagoon in the ICW. Brevetoxins were detected in six of the nine seagrass beds sampled between the Mosquito Lagoon and Jupiter Inlet at concentrations of 6–18 ng (g dry wt epiphytes)−1. The highest brevetoxins concentrations were found in sediments near Patrick Air Force Base at 89 ng (g dry wt sediment)−1. In general, brevetoxins occurred in either seagrass epiphytes or sediments. Blades of the resident seagrass species have a maximum life span of less than six months, so it is postulated that brevetoxins could be transferred between epibenthic communities of individual blades in seagrass beds. The occurrence of brevetoxins in east Florida coast sediments and seagrass epiphytes up to eight months after bloom termination supports observations from the Florida west coast that brevetoxins can persist in marine ecosystems in the absence of sustained blooms. Furthermore, our observations show that brevetoxins can persist in sediments where seagrass communities are absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号