首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three monoclonal antibodies, 1-7 (gamma 2b), 3-5 (gamma 1), and 8-30 (mu), specific to Fc epsilon receptors (Fc epsilon R) on human B cells were established. The two monoclonals (1-7 and 8-30) could inhibit the binding of IgE to Fc epsilon R in rosette formation assays, as well as FACS analysis, and were shown to recognize the same epitope of Fc epsilon R. The other monoclonal antibody (3-5) recognized the same molecule but a different epitope, and marginally inhibited the IgE binding. The molecules on RPMI 8866 cells recognized by these monoclonal antibodies had Mr of 46,000 and 25,000 to 30,000 daltons as determined by immunoprecipitation and SDS-PAGE analysis. By employing these monoclonal antibodies, the expression of Fc epsilon R on circulating lymphocytes was studied. Approximately 50% of B cells from normal, nonatopic individuals were found to express Fc epsilon R, and a remarkable increase in the expression of Fc epsilon R was observed in B cells of atopic patients. The expression of Fc epsilon R was not detected in T cells from atopic patients (including hyper IgE syndrome) as well as normal individuals. Incubation of B cells with PHA-conditioned medium plus IgE augmented the expression of Fc epsilon R in the Fc epsilon R+ B cell population but not in Fc epsilon R- population. PHA-conditioned medium plus IgE did not induce Fc epsilon R expression on T cells.  相似文献   

2.
During the course of generating tetanus toxoid (TT)-specific T cell clones frm an HLA-DR2,7 donor, four clones were obtained which proliferated in the presence of autologous monocytes alone without the addition of TT antigen. This proliferation was specifically inhibited by anti-HLA-DR framework mouse monoclonal antibody, and appeared to be HLA-DR-restricted. Two of the clones proliferated in response to HLA-DR2-bearing monocytes, and the other two clones proliferated in response to HLA-DR7-bearing monocytes. The capacity of these four autoreactive human T cell helper clones to induce IgE synthesis in B cells was studied. All four clones stimulated autologous peripheral blood B cells to synthesize IgE and IgG antibody. Induction of IgE synthesis in B cells by the autoreactive T cell clones followed the same pattern of HLA-DR restriction which governed the proliferative response of these clones. These results suggest that the interaction of autoreactive helper T cells with B cell HLA-DR antigens may be important in the activation of IgE immune responses in humans.  相似文献   

3.
Seventy-eight clones established from tonsillar T lymphocytes of two nonallergic children were tested under different experimental conditions for their ability to induce in vitro IgE synthesis by B cells from allergic or nonallergic donors. After 24 hr preactivation with phytohemagglutinin (PHA), 11 out of 32 CD4+ clones from the first and 17 out of 36 CD4+ clones from the second tonsil donor showed the ability to induce IgE synthesis in vitro by B cells from both allergic and nonallergic individuals, whereas none of 10 CD8+ clones nor T blasts of PHA-induced cell lines obtained from unfractionated T cell suspensions of the same tonsils had such an effect. Seven of the 11 T cell clones from the first tonsil donor active on IgE production after pre-activation with PHA also induced IgE synthesis in vitro by nonallergic and allergic B cells upon stimulation with anti-CD3 monoclonal antibody. Under the same experimental conditions, virtually all of the T cell clones able to induce IgE synthesis in vitro by target B cells showed the ability to stimulate IgG and IgM production as well. T cell clones were also established from the peripheral blood of a nonallergic donor and were tested for their ability to induce IgE synthesis in autologous B cells. After preactivation with PHA, seven out of 35 CD4+ clones induced the production of detectable amounts of both IgE and IgG in autologous B cells. The addition to the cultures of PHA-stimulated unfractionated T cells inhibited in a dose-dependent manner the IgE but not the IgG synthesis induced by an autologous helper T cell clone in autologous B cells. Taken together, these data indicate that a remarkable proportion of human T cell clones upon triggering of the CD3 molecular complex were able to provide help for the synthesis of IgE in B cells from both allergic and nonallergic individuals. The successful induction of IgE synthesis by single T cell clones was apparently related to the lack of concomitant suppressor activity to which IgE-producing cells appeared to be exquisitely sensitive.  相似文献   

4.
A hybridoma-producing monoclonal antibody blocking the binding of human IgE to lymphocytes Fc receptor (Fc epsilon R) was established by the fusion of murine myeloma cells. P3X63.653.Ag8, with BALB/c spleen cells immunized with Fc epsilon R(+) human B lymphoblastoid cell line cells, RPMI1788. A clone of the hybridoma (H107) produced a monoclonal IgG2b antibody that inhibited the rosette formation of Fc epsilon R(+) human B lymphoblastoid cell line cells (RPMI1788, RPMI8866, CESS, Dakiki, and IM9) with fixed ox red blood cells (ORBC) conjugated with human IgE (IgE-ORBC). In contrast, the rosette formation with IgG-conjugated ORBC (IgG-ORBC) on Fc gamma R(+), Fc epsilon R(-) Daudi cells were not affected by the H107 antibodies. A close association of Fc epsilon R and the antigenic determinant recognized by H107 antibody was suggested by the following results. First, the bindings of 125I-labeled IgE (125I-IgE) or 125I-labeled H107 IgG2b antibody (125I-H107) to RPMI8866 cells were inhibited by cold human IgE and H107 IgG2b but not by other classes of human Ig (IgA and IgG), MPC11 IgG2b, or unrelated monoclonal antibodies. Second, H107 antibody reacted with Fc epsilon R(+) B cell lines but not with Fc epsilon R(-) B cell lines as determined by an indirect immunofluorescence. Third, Fc epsilon R(+) cells were depleted by the incubation in the dish coated with H107 antibody or IgE but not in the dish coated with unrelated antibodies. Finally, there was a correlation between the increase of Fc epsilon R(+) cells and that of H107(+) cells in the peripheral blood lymphocytes of the patients with atopic dermatitis. The surface antigens on Fc epsilon R(+) RPMI8866 cells recognized by H107 antibodies had the molecular size of 45,000 as determined by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.  相似文献   

5.
Monoclonal antibody specific for T cell-derived human IgE binding factors   总被引:3,自引:0,他引:3  
A B cell hybridoma secreting monoclonal antibody against human IgE binding factors was obtained by immunization of BALB/c mice with partially purified IgE binding factors, and fusion of their spleen cells with SP-2/0-AG14 cells. The monoclonal antibody bound all of the 60,000, 30,000, and 15,000 dalton IgE binding factors from two T cell hybridomas and those from activated T cells of a normal individual. The antibody bound both IgE-potentiating factors, which had affinity for lentil lectin, and IgE-suppressive factors, which had affinity for peanut agglutinin. However, the monoclonal anti-IgE-binding factor bound neither Fc epsilon R on RPMI 8866 cells nor IgE binding factors from the B lymphoblastoid cells. A monoclonal antibody against Fc epsilon R on B cells (H107) bound the 60,000 and 30,000 dalton IgE binding factors from both T cell hybridomas and RPMI 8866 cells but did not bind the 15,000 dalton IgE binding factors from either T cells or B cells. The results indicate that T cell-derived IgE binding factors have a unique antigenic determinant that is lacking in both Fc epsilon R on B cells and B cell-derived IgE binding factors. The anti-IgE binding factor and anti-Fc epsilon R monoclonal antibodies both failed to stain cell surface components of IgE binding factor-producing T cell hybridomas. However, both antibodies induced the T cell hybridoma to form IgE binding factors. The results suggest that the T cell hybridomas bear low numbers of Fc epsilon R that share antigenic determinants with IgE binding factors secreted from the cells.  相似文献   

6.
Summary Twelve different kinds of blood group-specific lectins have been used along with monoclonal anti-A,-B and-H antibodies for detecting the corresponding antigens in selected human tissues. Although most of the lectins recognized the antigens in the tissue sections examined, they displayed marked differences in their recognition patterns in certain tissues.Helix asparsa agglutinin (HAA),Helix pomatia agglutinin (HPA) and monoclonal anti-A antibody recognized A antigens in the mucous cells of salivary glands from blood group A or AB nonsecretor as well as secretor individuals, whereasDolichos biflorus agglutinin (DBA).Griffonia simplicifolia agglutinin-I (GSA-I),Sophora japonica agglutinin (SJA) andVicia villosa agglutinin (VVA) did not bind to them from nonsecretors. A antigens in endothelial cells, lateral membrane of pancreatic acinar cells and small mucous-like cells of submandibular glands from some individuals were likewise recognized by HAA and HPA but not by other blood group A-specific lections. In contrast, both HAA and HPA did not recognize the A antigens in mucous cells of Brunner's glands while other A-specific lectins and monoclonal anti-A antibody reacted specifically with the antigens. Such a difference was not observed with lectins specific for blood group B. However, the B antigens in Brunner's glands were recognized by these lectins but not with monoclonal anti-B antibody. The difference in labelling ability was also noted among the blood group H-specific lectins and monoclonal anti-H antibody in endothelial cells of blood vessels.Ulex europaeus agglutinin-I reacted with these cells irrespective of ABO and the secretor status of the individuals, whileAnguilla anguilla agglutinin and monoclonal anti-H antibody reacted only with those cells from blood group O individuals. No reaction was observed withLotus tetragonolobus agglutinin in these tissue sites. These results suggest a great diversity of blood group antigens in different human tissues.  相似文献   

7.
Summary Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins. However, difference was also observed between monoclonal antibody and lectin staining, that is, monoclonal anti-A antibody reacted weakly but consistently with granules from blood group A nonsecretors but DBA (HPA) did not; staining with UEA-I was observed in granules from the secretor individuals of any blood groups whereas monoclonal anti-H antibody reacted with granules from blood group O and some A secretor individuals but not from B and AB secretor individuals; GSAI-B4 reacted uniformly with granules throughout the cells whereas monoclonal anti-B antibody bound to limited number of granules in the same cells. This was confirmed by the double labeling experiments with the lectin and the antibody. These results suggest that the different types of antigens as to the binding ability for monoclonal antibodies and lectins are expressed on different granules in the same cell.  相似文献   

8.
Murine monoclonal antibodies specific for antigen E (AgE), the major allergen isolated from short ragweed pollen, have been produced and characterized. These monoclonal antibodies, when coupled to Sepharose and used as immunoadsorbents, specifically bound AgE when a crude pollen extract was passed through the column. Three antigenic sites (A, B, and C) on AgE were identified by using five of these monoclonal antibodies in both inhibition and double-bind solid-phase ELISA. These three antigenic sites appear to be nonoverlapping and nonrepeated, that is, present only once on each AgE molecule. Site C on AgE could readily be bound by the monoclonal antibody specific for that site, but only when AgE was in solution or "presented" by an anti-site A or anti-site B antibody. Site C appears to be only marginally available for binding when AgE is directly adsorbed to polyvinyl chloride microtiter wells. The majority of monoclonal antibodies isolated after immunization of BALB/c mice were specific for site A on AgE. In addition, the binding to AgE of pooled BALB/c polyclonal, hyperimmune antisera against AgE was blocked approximately 80% by a monoclonal antibody directed against site A, but was only blocked approximately 20% by an anti-site B monoclonal antibody. This suggests that site A on AgE is the predominant antigenic site in the BALB/c immune response and that site B represents a less dominant site. The binding of IgE in pooled human serum from ragweed-allergic individuals is blocked approximately 50% by a monoclonal antibody directed to site A on AgE and also approximately 50% by a monoclonal antibody directed against site B. A series of individual human short ragweed allergic antisera also showed significant, although varied, inhibition of IgE binding to AgE by both anti-site A and anti-site B monoclonal antibodies. Simultaneous addition of anti-site A and anti-site B was somewhat additive and inhibited up to 80% of the binding of human IgE specific for AgE. The conclusion from these data is that site A and site B defined by two murine monoclonal antibodies represent two very major allergenic sites in the human response to this molecule.  相似文献   

9.
Polyclonal anti-human IgE reagents were earlier shown to contain variable amounts of nonisotype-specific antibodies depending on the strategy used for their preparation. The presence of these antibodies in two commercial anti-IgE reagents was demonstrated in this work by (a) their binding to human Ig-surface-positive lymphoblastoid cells specifically selected by one of the polyclonal anti-human IgE reagents and (b) their binding to the non-IgE immunoglobulins secreted by those lymphoblastoid cells. Peripheral blood B lymphocytes from two normal and two atopic patients were immortalized with Epstein-Barr virus (EBV) and then selected for cells that rosette with anti-IgE-coated erythrocytes. Selection was repeated four times and cells were then cloned. The cloned cells formed rosettes and their supernatants agglutinated erythrocytes coated with rabbit anti-IgE. The immunoglobulins of these clones were positive in an ELISA for IgE, using two different polyclonal anti-human IgE reagents. They were shown, however, to be 19 S IgMs. This discrepancy was due apparently to substantial contamination of anti-non-IgE-isotype-specific antibodies in the polyclonal anti-IgE reagents used both in the selection of cells and in the ELISA. The human monoclonal B-cell lines which were applied here as targets amplified the non-IgE-isotype specific antibody contamination present in the polyclonal anti-human IgE reagents. Because of the normally very low frequency of IgE-positive cells, the use of polyclonal anti-IgE reagents to detect these cells has to be carefully evaluated.  相似文献   

10.
A general method for the production of carbohydrate-specific hybridoma antibodies is illustrated by generation of monoclonal antibody to the antigenic determinant of human blood group B. This trisaccharide determinant was chemically synthesized and covalently coupled to bovine serum albumin and human blood group O red cells. Soluble protein antigen and the 'artificial' B red cells were used to immunize BALB/c mice before fusion of spleen cells with the Sp2/0 plasmacytoma cell line. ELISA screening of putative hybrids for B-specific binding activity was facilitated by the availability of a second synthetic conjugate, B-horse hemoglobin. IgM-producing clones were identified by class-specific ELISA reagents and by hemagglutination assay. In this way, clones suitable for blood typing were rapidly identified. The precise antigenic specificity and Ig class of such monoclonal antibodies were defined by inhibition of precipitation and by gel filtration. Hybridoma antibodies were obtained from two separate fusion experiments. One of these, clone 3E-4, was of the IgM class and possessed a binding site that was completely satisfied (100% inhibition) by the trisaccharide determinant of the B blood group. This antibody is shown to be suitable for use in blood typing.  相似文献   

11.
In the present study, we used monoclonal antidinitrophenol (DNP) antibodies to determine certain of the biophysical characteristics of precipitating and nonprecipitating antibodies. In addition, we studied the dynamics of immune complex (IC) formation when precipitating antibodies react with antigen in the presence of nonprecipitating antibodies. The antigen utilized in these studies was DNP-bovine serum albumin. All isolated nonprecipitating anti-DNP antibodies were of the IgG2b isotype, whereas all antibodies with other isotypes (IgG1, IgG3, IgM, IgA and IgE) were precipitating. Nonprecipitating antibodies did not differ significantly from precipitating antibodies in affinity, valence, or isoelectric point. Nonprecipitating antibodies inhibited the formation of precipitable IC between antigen and precipitating antibodies. In addition, preformed IC precipitates were solubilized by nonprecipitating antibodies. The solubilization of IC precipitates was influenced by the isotype of the precipitating antibody and by the antibody:antigen ratio in the IC precipitate. By isokinetic sucrose density centrifugation, we determined that solubilization of IC precipitates by nonprecipitating antibodies was associated with release of free precipitating antibody and formation of soluble IC between the antigen and the nonprecipitating antibody. In conclusion, in this study the nonprecipitating property of mouse anti-DNP antibodies is isotype-specific. Nonprecipitating antibodies compete and displace precipitating antibodies from the antigen, resulting in inhibition of IC precipitation and in IC solubilization. On the basis of the present results, we postulate that antibody-antibody interactions are important determinants of precipitating ability, and that these interactions are a characteristic of antibody isotype.  相似文献   

12.
A rat hybridoma producing a high-affinity IgG2a monoclonal antibody (B3B4) directed against against the murine lymphocyte IgE receptor (Fc epsilon R) was established by using purified Fc epsilon R from Fc epsilon R+ murine hybridoma B cells as immunogen. The monoclonal and polyclonal anti-Fc epsilon R inhibited the binding of IgE to the murine lymphocyte Fc epsilon R and were also used to isolate the Fc epsilon R. B3B4 specifically recognized only the 49-Kd Fc epsilon R on murine B lymphocyte as determined by immunoprecipitation and SDS-PAGE analysis. In addition to its reaction with intact Fc epsilon R, B3B4 also recognized Fc epsilon R fragments that were present in the culture media of Fc epsilon R+ hybridoma cells. The predominant fragments isolated were 38 Kd and 28 Kd by SDS-PAGE analysis. When tested for reactivity with other cell types, B3B4 was highly specific for murine B lineage cells in that it did not significantly react with Fc epsilon R on macrophages and T cells and, in addition, did not react with the high affinity mast cell Fc epsilon R. B3B4 completely blocked IgE rosetting, and a reciprocal inhibition of binding was seen in a dose-dependent fashion between IgE and B3B4, indicating a close proximity of the IgE and B3B4 binding sites. Saturation binding analysis indicated that the Fab' fragment of B3B4 bound to twice as many sites/cell as IgE, suggesting that there are two identical B3B4 determinants per 49-Kd Fc epsilon R or that the IgE binding site is formed by the association of at least two 49-Kd Fc epsilon R. However, unlike IgE, neither B3B4 nor F(ab')2-B3B4 nor Fab'-B3B4 were very effective in causing Fc epsilon R upregulation on murine hybridoma B cells; in fact, B3B4 prevented this upregulation when added in combination with IgE. These results suggest that a site-specific interaction provided only by IgE may be essential for ligand-specific upregulation. Both polyclonal and monoclonal antibodies will be useful in further studies concerning the functional relationship between the membrane Fc epsilon R and the soluble Fc epsilon R fragments.  相似文献   

13.
A rat monoclonal antibody of IgE isotype (B48-14) raised against Schistosoma mansoni has been generated by the fusion of mesenteric lymph node cells from LOU/M rats immunized with a preparation of adult schistosome worms and IR973F nonsecreting rat myeloma cells. Investigation of the in vitro effector functions of this IgE antibody showed a high level of cytotoxicity against S. mansoni schistosomula in the presence of eosinophils, macrophages, and platelets. A significant level of protection (40 to 60%) against a challenge infection with S. mansoni cercariae was achieved by passive transfer experiment of B48-14 IgE to naive recipient rats. By immunoprecipitation, B48-14 IgE antibodies were shown to react with an antigen of 26 kDa present in excretion-secretion products of schistosomula, previously described as a potential immunogen eliciting a protective IgE response against schistosomiasis.  相似文献   

14.
The objective of this study was to elucidate the cellular mechanism of IgE nonresponse to the Cryptomeria japonica (Japanese cedar) pollen antigen (CPAg), which was shown in our previous study to be HLA-linked (1). We established an assay system for the measurement of small amounts of anti-CPAg IgE antibody, both in an antigen-specific and isotype-specific manner, and a culture system to induce antigen-driven IgE antibody synthesis in vitro. By using these methods, we clarified that the function of the HLA-DR molecule in the CPAg-driven IgE response is similar to that of I-A or I-E molecule in mice, namely the product of immune response genes (Ir-genes), because anti-HLA-DR monoclonal antibody blocked the response, and the interaction between monocyte and monocyte-depleted peripheral blood lymphocytes (PBL) to respond to CPAg was restricted by HLA-DR. Furthermore, PBL from nonresponders revealed a specific IgE response to CPAg when the Leu-2+3- T cell fraction was depleted, thereby suggesting that even nonresponders have Leu-2-3+ T cell and B cell clones specific for CPAg, and they apparently show no response due to the presence of CPAg-specific Leu-2+3- suppressor T cells. This suppressor T cell fraction abolished the IgE response of the autologous B + monocyte + Leu-2-3+ T cell in a CPAg-specific manner. The current cellular analysis together with our previous genetic analysis strongly suggest that the HLA-linked IgE nonresponse to CPAg is mediated by CPAg-specific suppressor T cells. The HLA-linked gene controlling the nonresponsiveness to CPAg is thus designated as the immune suppression gene for CPAg (Is-CPAg). Mapping of Is-CPAg within HLA-DQ subregion is discussed.  相似文献   

15.
The studies presented herein describe (1) a sensitive, quantitative, and objective assay for detecting cell membrane-bound form of Fc receptors for IgE displayed on human lymphoid cells based on measuring unlabeled Fc epsilon R-bound IgE by a solid-phase RIA of cell lysate fluids; (2) the development and characterization of an IgM monoclonal antibody, termed 7E4, which is specific for human lymphocyte Fc epsilon RII (CD23) molecules; and (3) a system for reproducibly inducing de novo synthesis and expression of Fc epsilon RII proteins on human lymphocytes following exposure to the mitogenic lectin, pokeweed mitogen. The Fc epsilon RII molecules induced by exposure to PWM were proven to be present on lymphocytes, and not on other cell types in several ways, including (1) documenting sensitivity of such proteins to both acid pH and trypsin treatment, the latter manipulation being ineffective in removing Fc epsilon RII molecules on basophils and mast cells; (2) demonstrating specific reactivity of the expressed Fc epsilon RII molecules with the 7E4 monoclonal antibody, which is specific for human lymphocyte Fc epsilon RII molecules and does not react with Fc epsilon R molecules on other cell types; and (3) observing the required concomitant presence of both T and B lymphocytes during the induction process and proving that the induced Fc epsilon R+ cells are indeed B cells of the Leu-12+ phenotype by fluorescence analysis. The ability to induce expression of Fc epsilon RII molecules on human lymphocytes exposed to a mitogen such as PWM requires special technical attention to the method of preparation and isolation of human lymphoid cells from peripheral blood. This in vitro system for up-regulating Fc epsilon RII expression on human lymphocytes should provide us with an important new tool to analyze the participation of such cells in the regulatory mechanisms controlling the human IgE antibody system.  相似文献   

16.
Peripheral blood leukocytes (PBL) from noninstitutionalized individuals with trisomy 21, paired with closely age-matched and/or family members as controls, were analyzed for different aspects of their cellular and humoral immune responses, and were phenotypically characterized by means of various monoclonal antibodies. Both the in vitro PBL proliferative and antibody responses to a bacterial antigen (tetanus toxoid) and to viral antigens (influenza A/Bangkok and B/Singapore) were significantly decreased in trisomy 21. In addition, bacterial and viral antigen-induced in vitro interleukin 2 (IL 2) production was markedly reduced, although mitogen (PHA)-stimulated IL 2 production was not impaired. The functional abnormalities observed in trisomy 21 PBL occur concomitantly with numerical alterations in circulating lymphocyte subsets in these same individuals. Although no difference was observed between the trisomic and control groups in the percentage of total T and B lymphocytes, a decreased level of Leu-3a + 3b-positive cells (T helper/inducer cells) and an increased level of Leu-2a-positive cells (T suppressor/cytotoxic cells) that co-expressed Leu-15 (suppressor alone) were noted.  相似文献   

17.
Selective growth of human basophilic granulocytes was obtained in suspension cultures of mononuclear cells from umbilical cord blood. Approximately 50 to 80% of nonadherent cells recovered from 2- to 3-wk-old cultures contained metachromatic granules, and these cells were identified as human basophilic granulocytes by electron microscopy. Histamine content of cultured human basophils was comparable to that in peripheral blood basophils. Cultured basophils bear 2.7 to 3.7 X 10(5) IgE receptors per cell that bind both human IgE and rodent IgE with comparable affinity. Average equilibrium constants of the receptors for human IgE and mouse IgE were 2.56 +/- 0.88 X 10(9) M-1 and 1.85 +/- 0.86 X 10(9) M-1, respectively. The cell-surface component of the IgE receptors on cultured basophils has a m.w. of 64,000. Cultured basophils could be passively sensitized with human IgE and mouse IgE monoclonal antibody, and sensitized basophils released characteristic cytoplasmic granules and both histamine and arachidonate upon challenge with either anti-human IgE or antigen. Incubation of cultured basophils with ionophore A23187 or F-Met-Leu-Phe resulted in histamine release. However, compound 48/80 failed to induce histamine release from the cells.  相似文献   

18.
We describe a method for incorporating monoclonal antibody molecules onto viable murine lymphocytes and summarize the biologic activity of these artificial receptors on B cells. Mouse spleen cells incubated overnight with palmitate conjugates of a monoclonal anti-DNP IgA (protein 315) in the presence of deoxycholic acid incorporate about 50,000 antibody molecules per cell. When concentrations of deoxycholate and palmitoyl-protein 315 are carefully controlled, this labeling procedure does not affect the viability or the normal functions of the receptor-decorated cells. The incorporated antibody specifically binds DNP-antigens, although it appears to be unable to communicate directly with internal cellular components. Yet when these receptor-decorated, unprimed cells are challenged with any one of several DNP-antigens, up to 42,000 per 10(6) B cells differentiate into Ig-secreting cells. This response is about 23-fold greater than that induced in normal cell cultures and is of the same magnitude as that induced by the polyclonal B cell activator LPS. This, in addition to the observation that only about 3.6% of receptor-decorated B cells responding to DNP-conjugated polymerized flagellin (DNP-POL) produce hapten-specific antibody, demonstrates that these antigens cause polyclonal B cell differentiation. Normal spleen cells in the presence of DNP-POL and irradiated spleen cells bearing the artificial receptors do not exhibit the polyclonal antibody response. Also, the response of receptor-decorated B cell is blocked by high but nontoxic concentrations of the nonimmunogenic hapten DNP-lysine. These observations demonstrate that the polyclonal B cell response in this system requires the binding of antigen to artificial receptors on functionally viable cells. The polyclonal B cell response to a thymus-dependent antigen DNP-conjugated bovine gamma-globulin (DNP-BGG) requires the presence of the carrier-primed T cells. On the other hand, T cell depletion by anti-Thy-1.2 monoclonal antibody and complement causes only a slight reduction in the number of receptor-decorated B cells that respond to the relatively thymus-independent antigen DNP-POL. This type of phenomenon is also seen with natural antigen-specific B cells. Thus, polyclonal activation of receptor-decorated B cells exhibits the same gross helper cell requirements as antigenic activation of natural antigen-specific B cells. The results of this study are discussed in the context of the role of membrane-bound surface Ig in antigen-dependent B cell activation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The production of anti-trinitrophenyl (TNP) antibodies of different isotypes from in vivo primed B cells was studied using the plaque-forming cell method. It was shown that these B cells secrete anti-trinitrophenyl antibodies of different isotypes only in the presence of Th2 cells specific for keyhole limpet hemocyanin (KLH) and the hapten-carrier conjugate TNP-KLH. Lipopolysaccharide-stimulated primed B cells without cells from the Th2 clone did not produce anti-TNP-specific IgG1 or IgE antibodies even in the presence of the hapten-carrier antigen TNP-KLH. Supernatants from these Th2 clones cultured with antigen-presenting cells and the complete antigen were unable to activate primed B cells for antibody secretion. Cognate interaction between primed B cells and carrier-specific Th2 cells is a prerequisite for hapten-specific IgG1 or IgE production. Anti-IL-4 antibody inhibited secretion of anti-hapten IgE antibody. Therefore, for production of anti-hapten antibody of the IgE isotype IL-4 is also necessary.  相似文献   

20.
Conalbumin (CA)-specific type 2 helper T cell (Th2) clone, D10G4.1 (D10) produces IL4 when stimulated with varying doses of TNP-CA in the presence of mitomycin C-treated C3H spleen cells or purified B cells as antigen-presenting cells (APC). The production of IL4 was assessed by bioassay and by expression of IL4 mRNA. IL4 production reached maximum at 100 micrograms/ml of TNP-CA, whereas 1 microgram/ml of the antigen induced less than 10% of the maximum level of IL4. This lower level of IL4 production was augmented to the maximum level when monoclonal anti-TNP IgG1 was added to the culture at 0.5-1 microgram/ml. Anti-TNP IgE, but not anti-TNP IgM, was also effective, though IgE was 1/10 as effective as IgG1. IgG1 with an irrelevant specificity and F(ab')2 of anti-TNP IgG1 did not show augmenting effects. Moreover, the enhancement by anti-TNP IgG1 was completely abolished by monoclonal antibody against murine Fc gamma RII, 2.4G2. These results suggest that a low dose of the antigen complexed with IgG1 is focused on APC by means of Fc gamma RII, processed, and presented efficiently to the Th2 clone. On the other hand, the co-culture of D10 with normal C3H B cells in the presence of 1-100 micrograms/ml TNP-CA resulted in polyclonal IgE production. Anti-TNP IgG1 markedly augmented the lower level of IgE production induced by a suboptimal dose of the antigen (1 microgram/ml). This augmentation was shown to be dependent on endogenous IL4 because the enhancement was abolished by monoclonal anti-IL4 (11B11).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号