首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of dissolved oxygen concentration (DO) on hybridoma cell physiology were examined in a continuous stirred tank bioreactor with a murine hybridoma cell line (167.4G5.3). Dissolved oxygen concentration was varied between 0% and 100% air saturation. Cell growth and viability, carbohydrate, amino acid, and energy metabolism, oxygen uptake, and antibody production rates were investigated. Cell growth was inhibited at both high and low DO. Cells could grow at 0% DO and maintain viability under a nitrogen atmosphere. Cell viability was higher at low DO. Glucose, glutamine, and oxygen consumption rates changed little at DO above 1% air saturation. However, the metabolic uptake rates changed below 1% DO, where growth became oxygen limited, and a Km value of 0.6% DO was obtained for the specific oxygen uptake rate. The metabolic rates of glucose, glutamine, lactate, and ammonia increased 2-3-fold as the DO dropped from 1% to 0%. Amino acid metabolism followed the same general pattern as that of glutamine and glucose. Alanine was the only amino acid produced. The consumption rates of amino acids changed little above 1% DO, but under anaerobic conditions the consumption rates of all amino acids increased severalfold. Cells obtained most of their metabolic energy from glutamine oxidation except under oxygen limitation, when glucose provided most of the energy. The calculated ATP production rate was only slightly influenced by DO and rose at 0% DO. Antibody concentration was highest at 35% DO, while the specific antibody production rate was insensitive to DO.  相似文献   

2.
Oxygen transport is a major limitation in large-scale mammalian cell culture. The effects of the dissolved oxygen concentration (DO; from 0.1 to 100% saturation with air) on Sp2/0-derived mouse hybridomas were investigated using continuous culture. The steady-state concentration of viable cells increased with decreasing DO until a critical dissolved oxygen concentration of 0.5% of air saturation was reached. The cell concentration declined at lower DO because of incomplete glutamine oxidation, and the specific lactate production from glucose increased to offset the reduced energy production from glutamine. Cell viability increased as the DO was decreased; the viability continued to increase even when the DO was reduced below 0.5%. The specific oxygen uptake rate was essentially constant for DO greater than or equal to 10% of air saturation and then decreased with decreasing DO. The P/O ratio (ATP molecules produced per O atom consumed) appears to change from 2 to 3 between 10 and 0.5% DO. The specific ATP production rate calculated using this assumption decreases only slightly with decreasing DO. The optimum DO of 50% for antibody production is different than the optimum (approximately 0.5% DO) for cell growth.  相似文献   

3.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

4.
The chemical decomposition of glutamine to ammonia and pyrrolidonecarboxylic acid was studied at 37 degrees C in a pH range of 6.8-7.8 in different media preparations containing various amounts of fetal bovine serum. The media type influenced the decomposition rate, and the first-order rate constants increased with increasing pH values. The serum concentration had little or no effect on the decomposition rate. The importance of chemical decomposition of glutamine on the analysis of glutamine and ammonia metabolism was illustrated by an example of batch cultivation of a hybridoma cell line. The difference between the apparent uptake rate of glutamine and the actual uptake rate (which is corrected for the chemical decomposition) is shown to be as high as 200%. Similar discrepancy between the apparent and actual ammonia production rate is observed. Mathematical analysis was carried out to develop the relationship between the apparent and actual glutamine uptake and ammonia production rates. The analysis reveals that there are three important dimensionless parameter ratios that govern the difference between the apparent and actual glutamine uptake and ammonia production rates.  相似文献   

5.
Oxygen is an important nutrient that may limit the productivity of commercial cell culture reactors. The transient responses of hybridoma growth and metabolism to step changes in the oxygen supply rate have been examined for dissolved oxygen concentrations (DO) ranging from 0.1% to 10% of air saturation in continuous culture. Metabolic quotients are reported for glucose, lactate, ammonia, oxygen, glutamine, alanine and other amino acids. A majority of the estimated ATP production was due to oxidative phosphorylation under all conditions tested. Decreases in the oxygen supply rate below the value required to maintain 0.5% DO caused the viable cell concentration to decrease. Glycolysis was enhanced at the lower oxygen concentrations, and after an initial decrease, the specific glutamine consumption rate was also higher. High residual glutamine concentrations occurred below 0.5% DO. Oxidation of other amino acids and production of serine were also inhibited. The cells subsequently adapted to low oxygen concentrations. The increase in cell concentration following the return to 10% DO was preceded by increased biosynthetic activity, as evidenced by transiently reduced yields of lactate from glucose, and alanine and ammonia from glutamine.  相似文献   

6.
Two murine hybridoma cell lines (167.4G5.3 and S3H5/gamma2bA2) were adapted to grow in low-serum and serum-free media by a weaning procedure. The changes in cell growth, metabolic, and antibody production rates with adaptation were examined using biochemical and flow cytometric analyses. After adaptation to a particular serum level, the short-term serum response of the cells was experimentally determined. Specific growth rates, glucose and glutamine uptake and lactate and ammonia production rates, and specific antibody production rates were evaluated from the data. For both cell lines, an improvement in cell growth was observed after adaptation, and both higher growth rates and higher cell concentrations were obtained. The specific glucose and glutamine uptake rates and the lactate and ammonia production rates changed insignificantly with adaptation. Conversely, changes in the specific antibody production rate of the two cell lines differed. Cell line 167.4G5.3 showed a loss in antibody productivity at low serum levels, while the S3H5/gamma2bA2 kept its original productivity in low-serum-containing media. The intracellular antibody content for S3H5/gamma2bA2 cells remained unaltered by adaptation, but a low antibody containing cell population appeared in the 167.4G5.3 culture. The loss of specific antibody productivity in this cell line was due to the appearance of this population.  相似文献   

7.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

8.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

9.
Factors affecting cell growth and antibody production in a mouse hybridoma were investigated. Antibody was produced during the growth and decline phases of a batch culture with an increase in the specific rate of antibody production during the decline phase. The specific rate of antibody production was also increased in cells arrested by 2 mM thymidine, suggesting that cell proliferation and antibody production can be uncoupled. Reduced serum concentrations resulted in lower cell growth rates but increased antibody production rates. However, this trend was reversed in hybridomas which had been arrested by thymidine, since the highest antibody production rate was associated with high serum concentrations. Likewise, in proliferating cells, the optimum pH for antibody production (pH 6.8) was lower than the optimum pH for cell growth (pH 7.2), whereas in thymidine-blocked cells, the highest antibody production rate was at pH 7.2. High antibody production rates and product yields were also associated with low growth rates in continuous cultures. The possibility that antibody was under cell cycle control was investigated in synchronized hybridoma cultures. Antibody production occurred during G1 and G2 with a decline in the M phase and evidence of a further decline in the S phase. Thus antibody production was not restricted to the G1 and S phase in this hybridoma.  相似文献   

10.
Two on-line methods for the estimation of viable cell number in hybridoma cultivation were investigated. One used an empirical correlation between redox potential and animal cell density. The other was based on an ATP balance with ATP steady-state assumption. Oxygen uptake rate measurement provided the amount of ATP which was produced by oxidation of NADH. Oxygen uptake rate was measured either by stationary liquid phase balance with surface aeration or by gas balance during bubble aeration with headspace flushing with an inert gas. The amount of ATP produced through the glycolysis was estimated based on the amount of lactate produced. In cultures, in which pH was controlled via manipulation of the gas phase composition, the flow of CO(2) was linearly correlated with the lactate concentration. At constant dissolved oxygen levels, the viable cell density was proportional to the estimated ATP production rate, during exponential growth and during later phases. The estimated specific ATP production rate, however, varied from 2.2 pmol cell(-1) h(-1) at 10% air saturation to 4.5 pmol cell(-1) h(-1) at 100% air saturation. Specific rates of glutamine, glucose, and lactate followed the shape of the specific ATP production rate, whereas the specific oxygen uptake rate was minimal at around 50% air saturation. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
A mouse-mouse hybridoma cell line (167.4G5.3) was cultivated in a 1.5-L stirred-tank bioreactor under constant pH and dissolved oxygen concentration. The transient kinetics of cell growth, metabolism, and antibody production were followed by biochemical and flow cytometric methods. The cell-specific kinetic parameters (growth and metabolic rates) as well as cell size were constant throughout the exponential phase. Intracellular protein and RNA content followed a similar trend. Cell growth stopped when the glutamine in the medium was depleted. Glucose could not substitute for glutamine, as glucose consumption ceased after glutamine depletion. Ammonia and lactate production followed closely glutamine and glucose consumption, respectively. Alanine, glutamate, serine, and glycine were produced but other amino acids were consumed. The cells are estimated to obtain about 45% of the total energy from glycolysis, with the balance of the metabolic energy provided by oxidative phosphorylation. The antibody was produced at a constant rate in both the exponential and decline phases of growth. The intracellular antibody content of the cells remained relatively constant during the exponential phase of growth and decreased slightly afterwards.  相似文献   

12.
Optimization of culture conditions such as the dissolved O2 (DO) concentration, temperature and pH was attempted regarding both cell growth and the production of tissue plasminogen activator (TPA) in a microcarrier cell culture of human embryo lung cells. The growth rate was suppressed at a DO concentration below 30% saturation. From the pH range 7.2–7.6, both the specific growth rate and maximal cell concentration decreased. At a lower temperature than 37°C, although both the specific growth rate and the maximal cell concentration decreased, the cell concentration was maintained for a longer time during the production period, high TPA productivity being maintained. As the optimal conditions for culture growth, a DO concentration of 30% saturation or over, temperature of 37°C and pH of 7.4 are recommended. However, for TPA production after cell culture growth, the DO concentration should be in the range 20–30% O2 saturation, and the temperature and pH should be lowered to 33°C and 6.8, respectively.  相似文献   

13.
The murine B-lymphocyte hybridoma, CC9C10 was grown at steady state under serum-free conditions in continuous culture at dissolved oxygen (DO) concentrations in the range of 10% to 150% of air saturation. Cells could be maintained with this range at high viability in a steady state at a dilution rate of 1 d(-1), although with lower cell concentrations at higher DO. A higher specific antibody production measured at higher DO was matched by a decrease in the viable cell concentration at steady state, so that the volumetric antibody titre was not changed significantly. An attempt to grow cells at 250% of air saturation was unsuccessful but the cells recovered to normal growth once the DO was decreased.There was a requirement for cellular adaptation at each step-wise increase in dissolved oxygen. Adaptation to a DO of 100% was associated with an increase in the specific activities of glutathione peroxidase (x18), glutathione S-transferase (x11) and superoxide dismutase (x6) which are all known antioxidant enzymes. At DO above 100%, the activities of GPX and GST decreased possibly as a result of inactivation by reactive oxygen radicals.The increase in dissolved oxygen concentration caused changes in energy metabolism. The specific rate of glucose uptake increased at higher dissolved oxygen concentrations with a higher proportion of glucose metabolized anaerobically. Short-term radioactive assays showed that the relative flux of glucose through glycolysis and the pentose phosphate pathway increased whereas the flux through the tricarboxylic acid cycle decreased at high DO. Although the specific glutamine utilization rate increased at higher DO, there was no evidence for a change in the pattern of metabolism. This indicates a possible blockage of glycolytic metabolites into the TCA cycle, and is compatible with a previous suggestion that pyruvate dehydrogenase is inhibited by high oxygen concentrations.Analysis of the oxygen uptake rate of cell suspensions at steady state under all conditions showed a pronounced Crabtree effect which was manifest by a decrease (up to 40%) in oxygen consumption on addition of glucose. This indicates that the degree of aerobic metabolism in these cultures is highly sensitive to the glucose concentration. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 153-164, 1997.  相似文献   

14.
The use of partial cubic spline data interpolation for the calculation of volumetric metabolite exchange rates suggested the existence of three distinct metabolic phases during bioreactor culture of a hybridoma cell line. During phase 1, a rapid amino acid uptake rate and ammonia release rate were observed. The growth rate was low and glutamine synthetase activity fell. In phase 2, maximum growth rate and minimum glutamine assimilation and ammonium production rates were observed. Attempts to corroborate the apparent ammonia assimilation in this phase using (15)NH(4)Cl resulted in low incorporation rates into alanine and glutamine. Maximum glutamine synthetase activity took place during this period. Maximum antibody production rate was observed during phase 3 during which peaks in glutamine assimilation, ammonia release, and glutamine synthetase activity were observed. The apparent existence of the three phases prompted us to carry out Northern blot analysis of glutamine synthetase RNA at appropriate times during the process. This revealed a pattern of appearance and dis-appearance of mRNA consistent with the three phases indicated by the fermentation parameters. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
A murine hybridoma cell line (167.4G5.3) was cultured in batch mode using IMDM containing different serum concentrations and bovine serum albumin (BSA). Cell growth and death, metabolism and antibody production were studied in these cultures. The cells were more susceptible to shear in the stationary and in the decline phase of growth as evidenced by higher death rates. Cell growth was best at high serum concentrations with high specific growth and low specific death rates. When BSA was used instead of serum in IMDM, no protective effect was observed. Cell metabolism and monoclonal antibody production rates were not influenced by the level of serum or by BSA. The use of serum in commercial serum-free media (OPTI-MEM) also resulted in no change in both growth and death rates.  相似文献   

16.
The effects of dissolved oxygen concentration on hybridoma cell growth, metabolism, and antibody production were studied. A mouse hybridoma cell line producing an IgG1 directed at a consensus -interferon was grown in batch cultures in a 5 dm3 stirred bioreactor at dissolved oxygen (DO) concentrations of 5, 30, 90 and 95% or air saturation. High oxygen tension (95% of air saturation) reduced specific growth rate without affecting cell viability. At lower dissolved oxygen levels, specific growth rates were approximately independent of DO, although changes in mitochondrial function and antibody production were observed. Flow cytometry assays of a fluorescent mitochondria-specific marker (Rhodamine 123) show significant single-cell heterogeneities during late exponential growth and greater average fluorescence in cultures grown at 95% DO. The quantity of cell-surface immunoglobulin, measured by an immunofluorescent flow cytometric technique, was the same at high (95%) and low (5%) dissolved oxygen concentrations. Myeloma cells of the type used in constructing the above hybridoma line were much less sensitive to dissolved oxygen level. Specific respiration rate, pyruvate utilization rate, cytochrome oxidase activity, and succinate-cytochrome c oxidoreductase activity were significantly greater (62–116%) for the hybridoma cells than for the myeloma cells in T-flask cultures.  相似文献   

17.
The effects of dissolved oxygen and the concentration of essential amino acids upon the metabolism of two mammalian cell lines (rCHO producing human active (t-PA) and a mouse-mouse hybridoma) were investigated in batch, chemostat, and perfusion cultures. Intracellular amino acid concentrations were measured for both cell lines during repeated batch cultures and the KS-values for the essential amino acids were calculated using Monod equations via computer simulation. The KS-values were in the range of 10 mmol L−1 and the pool of most intracellular amino acids remained constant at about 10–100 fold higher in concentration than in the medium. No significant differences were observed between the hybridoma and CHO cell. The specific nutrient uptake rates corresponded with the cell specific growth rate and the effects of reduced dissolved oxygen concentrations only became evident when the DO dropped below 5% of air saturation (critical concentration below 1%). Nevertheless, a correlation between nutrient concentration and specific oxygen uptake was detected. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
CO(2) partial pressure (pCO(2)) in industrial cell culture reactors may reach 150-200 mm Hg, which can significantly inhibit cell growth and recombinant protein production. The inhibitory effects of elevated pCO(2) at constant pH are due to a combination of the increases in pCO(2) and [HCO(-) (3)], per se, and the associated increase in osmolality. To decouple the effects of pCO(2) and osmolality, low-salt basal media have been used to compensate for this associated increase in osmolality. Under control conditions (40 mm Hg-320 mOsm/kg), hybridoma cell growth and metabolism was similar in DMEM:F12 with 2% fetal bovine serum and serum-free HB GRO. In both media, pCO(2) and osmolality made dose-dependent contributions to the inhibition of hybridoma cell growth and synergized to more extensively inhibit growth when combined. Elevated osmolality was associated with increased apoptosis. In contrast, elevated pCO(2) did not increase apoptotic cell death. Specific antibody production also increased with osmolality although not with pCO(2). In an effort to understand the mechanisms through which elevated pCO(2) and osmolality affect hybridoma cells, glucose metabolism, glutamine metabolism, intracellular pH (pHi), and cell size were monitored in batch cultures. Elevated pCO(2) (with or without osmolality compensation) inhibited glycolysis in a dose-dependent fashion in both media. Osmolality had little effect on glycolysis. On the other hand, elevated pCO(2) alone had no effect on glutamine metabolism, whereas elevated osmolality increased glutamine uptake. Hybridoma mean pHi was approximately 0.2 pH units lower than control at 140 mm Hg pCO(2) (with or without osmolality compensation) but further increases in pCO(2) did not further decrease pHi. Osmolality had little effect on pHi. Cell size was smaller than control at elevated pCO(2) at 320 mOsm/kg, and greater than control in hyperosmotic conditions at 40 mm Hg.  相似文献   

19.
The transient and steady-state responses of hybridoma growth and metabolism to glutamine pulse and step changes have been examined. Metabolic quotients are reported for oxygen, glucose, lactate, ammonia, glutamine, alanine, and other amino acids. The specific glutamine consumption rate increased rapidly after all glutamine additions, but the responses of the glucose and oxygen consumption rates and the cell concentration were found to depend on the intial feed glutamine concentration. The glucose consumption rate was 1.4-10.9 times that of glutamine, and serine and branched-chain amino acids were consumed in larger amounts at the higher glucose: glutamine uptake ratios. It was estimated that maintenance accounted for ca. 60% of the cellular ATP requirements at specific growth rates ranging from 0.57 to 0.68 day(-1).  相似文献   

20.
This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 106 cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation–aeration systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号