首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impacts of watershed urbanization on streams have been studied worldwide, but are rare in China. We examined relationships among watershed land uses and stream physicochemical and biological attributes, impacts of urbanization on overall stream conditions, and the response pattern of macroinvertebrate assemblage metrics to the percent of impervious area (PIA) of watersheds in the middle section of the Qiantang River, Zhejiang Province, China. Environmental variables and benthic macroinvertebrates of 60 stream sites with varied levels of watershed urban land use were sampled in April, 2010. Spearman correlation analysis showed watershed urbanization levels significantly correlated with increased stream depth, width, and values of conductivity, total nitrogen, ammonia, phosphate, calcium, magnesium, and chemical oxygen demand for the study streams. There was significant difference in total taxa richness, Empheroptera, Plecoptera, and Trichoptera (EPT) taxa richness, and Diptera taxa richness, percentages of individual abundances of EPT, Chironomidae, shredders, filterers, and scrapers, and Shannon–Wiener diversity index between reference streams and urban impacted streams. In contrast, percentages of individual abundances for collectors, oligochaeta, and tolerant taxa, and biotic index were significantly higher in urban impacted than reference streams. All the above metrics were significantly correlated with PIA. The response patterns of total taxa richness, EPT taxa richness, and Shannon–Wiener diversity index followed a drastic decrease at thresholds of 3.6, 3.7, and 5.5% of PIA, respectively. Our findings indicate that stream benthic macroinvertebrate metrics are effective indicators of impacts of watershed urban development, and the PIA-imperviousness thresholds we identified could potentially be used for setting benchmarks for watershed development planning and for prioritizing high valued stream systems for protection and rehabilitation.  相似文献   

2.
In the last few years, awareness in developed countries has increased regarding the importance of urban watercourses as essential natural resources for human well being. Macroinvertebrates have been used as bioindicators to complement physico-chemical evaluation of water quality after environmental perturbations. The city of Manaus is closely associated with the Amazonian rain forest and with its dense hydrographic network. Any perturbation, such as deforestation and/or water pollution in the city’s streams, therefore causes changes in the local ecosystem as the population increases. In this study, 65 streams were sampled in October and November 2003. Samples were taken from stream-bed sediment in the center of the channel and litter/sediment at the edge of the stream. Deforestation, total Nitrogen (TN), total Phosphorus (TP), depth, width, electrical conductivity, temperature and dissolved Oxygen (DO) were measured. A total of 115,549 specimens were collected, distributed among 152 taxa. Oligochaeta, Chironomus, Psychodidae and Ceratopogonidae were the taxa with the greatest frequencies of occurrence and the highest total abundances. Higher deforestation, TN and TP were correlated with lower DO and greater electrical conductivity, pH and water temperature. Deforestation, TN and TP were not associated with water velocity and stream width. Depth was the only variable correlated (negatively) with deforestation and not correlated with TN and TP. Greater deforestation, TN and TP were correlated with lower richness of taxa; but these variables did not affect abundance. Canonical Correspondence Analysis ordenated the streams into two groups; the majority of the streams were in the group with high levels of deforestation and with high values of TP, TN, pH, electrical conductivity and temperature, where the macroinvertebrates were reduced to a few taxa. The other group was composed of streams that were well oxygenated and deep, where richness of taxa was higher. These results indicate changes in community composition in response to changes in environmental conditions. The highest taxa correlation was with streams that were well oxygenated and had the greatest depth and water velocity. Species Indicator Analysis identified 29 taxa as indicators of nonimpacted streams, 16 as indicators of deforested streams and three as indicators of streams impacted by deforestation and domestic sewage. Of the total sampled streams, 80% were impacted by deforestation and water pollution and had fauna tolerant of these perturbations. Water pollution, represented by TN and TP, affected the macroinvertebrate fauna in a way similar to deforestation, i.e., causing reduction in taxa richness, simplifying the insect community composition without changing abundance. Use of the taxa suggested in this study as environmental indicators could improve the evaluation of water quality in the streams in Central Amazonia. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. Handling editor: D. Dudgeon  相似文献   

3.
1. Macroinvertebrate assemblages of five non‐glacial intermittent high altitude headwater streams (above 1400 m – Serra da Estrela, Portugal), with dry periods of different lengths (0–3 months), were investigated in nearly undisturbed conditions to (i) examine spatial differences and identify environmental variables responsible for the observed invertebrate patterns, (ii) assess the association of dry period length with invertebrate community structure and (iii) determine the influence of using different taxonomic identification levels (order, family and genus) to assess invertebrate community patterns. 2. More than 100 macroinvertebrate genera were identified. Insects clearly dominated these communities with more than 95% of total captures and around 95% of the total richness. Diptera were the most rich and abundant group with chironomid occurrences comprising over 70% of macroinvertebrate captures. 3. The highest taxon richness, diversity, EPT (Ephemeroptera + Plecoptera + Trichoptera) and OCH (Odonata + Coleoptera + Heteroptera) genus richness, the greatest number of exclusive and characteristic taxa identified by the Indicator Value (IndVal), and a distinct community structure shown by Canonical Correspondence Analyses (CCA), were found in the only stream that was never totally dry, with pools lasting over summer. Environmental gradients that spatially structured the macroinvertebrate communities were always related to flow variations. 4. Over time, the highest abundances found in these systems were also related to flow variations and maximum genus richness occurred in the connected pools or in isolated pools. Streams with longer dry periods presented a distinct recolonization phase, with higher abundance of the stonefly larvae Nemoura sp. and the presence of the chironomid larvae Krenosmittia sp., possibly arriving from the hyporheos. 5. Taxonomic level of invertebrate identification was vital for recognizing the characteristic taxa (IndVal) of streams yet was not critical for identifying streams with the highest macroinvertebrate richness/diversity or structuring environmental gradients. 6. Overall, this study emphasizes the variability of high altitude intermittent streams macroinvertebrate communities, despite spatial proximity. This variability was probably related to flow intermittency and hydrologic permanence, different vegetation covers and riverbed substrata. Consequently, the establishment of reference conditions should involve long‐term data collections and more detailed physical characterization. Also, these findings have significant implications for accurately predicting the ecological consequences of future climate change in high altitude scenarios.  相似文献   

4.
Land use changes have resulted in large environmental impacts, and in agricultural landscapes sometimes only forest fragments remain. Riparian forest remnants can positively influence stream water quality, and serve as refuges for aquatic species. We evaluated whether the presence of a riparian forest remnant influenced the structure and composition of macroinvertebrate communities in a rural stream in southeastern Brazil. We sampled three reaches upstream (within abandoned sugarcane cultivation) and nine downstream the remnant edge, until 600 m inside the forested area, using leaf litter bags. The abundances of Elmidae, Chironomidae, and total macroinvertebrates increased along the forest remnant, whereas the abundance of Baetidae, proportion of Ephemeroptera, Plecoptera, and Trichoptera (EPT), rarefied taxonomic richness, and diversity decreased. Taxon richness and EPT abundance did not vary along the forest remnant. Increases in Chironomidae and total abundance within the forest remnant can be related to moderate increases in nutrient concentrations, or to the availability of high quality leaf litter patches. Forest remnants can influence macroinvertebrate communities, although variation both in temperate and tropical studies can be related to local agricultural practices and land use at the watershed scale. Forest remnants are important in maintaining stream water quality in rural landscapes, and deserve attention in watershed management projects.  相似文献   

5.
Inorganic sediments of terrestrial origin may impact stream macroinvertebrate communities. Although input of terrestrial sediments to streams may occur naturally, human-induced activities in the catchment amplify this input greatly. We used an in-stream experiment to investigate whether short-term additions of terrestrial sediments of two size classes affected stream macroinvertebrates. The experiment was designed in blocks to minimize the influence of flow velocity and other environmental variables. Four treatments were employed: (i) addition of fine sand (0–0.24 mm), (ii) coarse sand (0.25–0.8 mm), (iii) fine+coarse sand, and (iv) control (water only). Macroinvertebrates were sampled immediately after the addition of sediments (or water). The experiment consisted of 20 blocks. We analyzed the response of the macroinvertebrate fauna in terms of abundance and species richness. Since species richness is strongly dependent on number of individuals sampled, we also analyzed rarefied species richness. Community structure was evaluated using a distance-based Manova on presence/absence and abundance data. The addition of coarse and fine+coarse sand reduced the abundance and species richness of macroinvertebrates in relation to the control. The response in terms of rarefied species richness in the treatments did not differ from the control, indicating that reduction in species richness was a sampling artifact resulting from decreased sample abundance. The Manova analyses indicated that coarse-sand addition caused changes in both species composition and community structure. Addition of fine and fine+coarse sand affected only slightly species composition and community structure. We concluded that even short-term input of terrestrial sediments causes impacts on benthic macroinvertebrates, and recommend that land-use management of tropical catchments should employ practices that reduce input of terrestrial sediments to streams. Handling editor: K. Martens  相似文献   

6.
  1. Mountain streams in southwestern European Alps are currently shifting from perennial to intermittent flow due to the combined effects of climate change and local anthropogenic pressures. Given that flow intermittency is a recently documented phenomenon in the Alps, only scattered studies have investigated functional and taxonomical diversity of benthic invertebrate communities in recently intermittent Alpine streams.
  2. We used a hierarchical sampling design to investigate patterns in taxonomic and functional diversity of benthic invertebrate communities in 13 recently intermittent Alpine streams in north-west Italy. in April 2017, we sampled benthic communities in two reaches of each stream with different hydrological conditions: a control reach, with permanent flow; and an intermittent reach, which recently experienced non-flow periods in summer.
  3. We tested for the response of taxonomic richness at multiple spatial scales by partitioning total diversity into the average richness of local communities and the richness due to variation among local communities both within and among reaches. By partitioning total diversity (γ) into its local (α) and turnover (β) components we showed a decrease in local and regional species richness both within and among reaches, whereas variation among communities was significantly lower in intermittent reaches at the reach scale only.
  4. The analysis of multidimensional trait space of macroinvertebrate communities in reaches with different hydrological conditions revealed a significant reduction of functional diversity, dispersion, and evenness in intermittent reaches. There was trait overdispersion in intermittent reaches, as these hosted both typical Alpine taxa and organisms adapted to flow intermittency. In particular, we observed the replacement of taxa with aquatic respiration and those preferring medium- to fast-flowing oligotrophic waters by taxa adapted to lentic habitats, air breathing and with larval dormancy phases.
  5. These results indicate that recent flow intermittency has caused drastic changes in benthic invertebrate communities in Alpine streams. Our work highlights the importance of integrating taxonomic and functional diversity to thoroughly assess the impacts of flow intermittency.
  相似文献   

7.
城镇化对钱塘江中游支流水质和底栖动物群落结构的影响   总被引:1,自引:0,他引:1  
于2010年4月调查了浙江省钱塘江中游流域受不同城镇化强度影响的59条1~3级支流的水体理化、底栖动物群落及所在流域的土地利用,分析作为流域城镇化强度指标的不渗水地表面积比(PIA)与溪流水质和生物群落的关系.Spearman秩相关分析表明,TN、NH4+-N、PO43--P、TP、CODMn、电导率、水面宽、水深、细沙淤泥比(%)与PIA呈显著正相关,与林地(%)呈显著负相关.底栖动物指标与PIA的拟合曲线表明它们之间存在显著的非线性关系.其中总分类单元数、Shannon多样性指数、丰富度指数、EPT(%)及捕食者(%)、撕食者(%)、滤食者(%)、刮食者(%)与PIA呈显著负相关,与林地(%)呈显著正相关,但BI指数、集食者(%)、耐污类群(%)、寡毛纲(%)与PIA呈显著正相关.表明研究区域内随着城镇化强度的提高,城镇溪流表现出高氮、磷营养盐水平、物理生境退化、敏感底栖动物物种消失、耐污物种个体数量急剧上升等城镇溪流退化的共性现象.  相似文献   

8.
1. Benthic stream animals, in particular macroinvertebrates, are good indicators of water quality, but sampling can be laborious to obtain accurate indices of biotic integrity. Thus, tools for bioassessment that include measurements other than macroinvertebrates would be valuable additions to volunteer monitoring protocols. 2. We evaluated the usefulness of a stream‐dependent songbird, the Louisiana waterthrush (waterthrush, Seiurus motacilla) and the Environmental Protection Agency Visual Habitat Assessment (EPA VHA) as indicators of the macrobenthos community in headwater streams of the Georgia Piedmont, U.S.A. We sampled macrobenthos, surveyed waterthrushes and measured habitat characteristics along 39 headwater reaches across 17 catchments ranging from forested to heavily urbanised or grazed by cattle. 3. Of the indicators considered, waterthrush occupancy was best for predicting relative abundances of macrobenthic taxa, while the EPA VHA was best for predicting Ephemeroptera–Plecoptera–Trichoptera (EPT) richness. Individual components of EPA VHA scores were much less useful as indicators of EPT richness and % EPT when compared with the total score. Waterthrushes were found along streams with higher % EPT, a lower Family Biotic Index (FBI) values and greater macrobenthos biomass. 4. While macroinvertebrates remain one of the most direct indicators of stream water quality, stream bird surveys and reach‐scale habitat assessments can serve as cost‐effective indicators of benthic macroinvertebrate communities. Using stream‐dependent birds as an early warning signal for degradation of stream biotic integrity could improve the efficacy of catchment monitoring programmes in detecting and identifying perturbations within the catchment.  相似文献   

9.
10.
Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream.  相似文献   

11.
The increasing urbanization process is hypothesized to drastically alter (semi‐)natural environments with a concomitant major decline in species abundance and diversity. Yet, studies on this effect of urbanization, and the spatial scale at which it acts, are at present inconclusive due to the large heterogeneity in taxonomic groups and spatial scales at which this relationship has been investigated among studies. Comprehensive studies analysing this relationship across multiple animal groups and at multiple spatial scales are rare, hampering the assessment of how biodiversity generally responds to urbanization. We studied aquatic (cladocerans), limno‐terrestrial (bdelloid rotifers) and terrestrial (butterflies, ground beetles, ground‐ and web spiders, macro‐moths, orthopterans and snails) invertebrate groups using a hierarchical spatial design, wherein three local‐scale (200 m × 200 m) urbanization levels were repeatedly sampled across three landscape‐scale (3 km × 3 km) urbanization levels. We tested for local and landscape urbanization effects on abundance and species richness of each group, whereby total richness was partitioned into the average richness of local communities and the richness due to variation among local communities. Abundances of the terrestrial active dispersers declined in response to local urbanization, with reductions up to 85% for butterflies, while passive dispersers did not show any clear trend. Species richness also declined with increasing levels of urbanization, but responses were highly heterogeneous among the different groups with respect to the richness component and the spatial scale at which urbanization impacts richness. Depending on the group, species richness declined due to biotic homogenization and/or local species loss. This resulted in an overall decrease in total richness across groups in urban areas. These results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanization on biodiversity.  相似文献   

12.
Detecting the magnitude of human-induced disturbance events, such as forest harvest, on biological communities is often confounded by other environmental gradients and scales at which these effects are examined. In this study, benthic invertebrates were collected from 43 streams across four basins and two geographic regions to (1) determine whether invertebrate abundance and community structure are best explained by historic forest harvest, landscape variables or a combination of both, and (2) evaluate associations among harvest, landscape variables, in-stream physical habitat, and invertebrates. Nonmetric multidimensional scaling showed that invertebrate community structure was primarily explained by watershed area and elevation, and basin and region but not by measures of forest harvest. Model selection using an information-theoretic approach and Akaike’s information criterion indicated that watershed area was the most important variable explaining clinger and long-lived taxa richness, while basin was the most important variable explaining total abundance, and total, Ephemeroptera, Plecoptera, and Trichoptera taxa richness. Forest harvest ranked lower than landscape variables in relative importance in all models. These results suggest that landscape characteristics were relatively more important in predicting invertebrate community structure than forest harvest, and should therefore be considered when assessing the impacts of both reach and watershed scale forest harvest on benthic communities. Perhaps, the levels of forest harvest examined in this study had only marginal effects on benthic invertebrates because these ecosystems are naturally resilient as a result of frequent disturbance from forest fires.  相似文献   

13.
1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher, and invertebrate biomass and production were two times higher in the disturbed stream.
2. Comparison of invertebrate community abundance 1, 5 and 16 years after clear-cutting indicated that the proportion of scrapers had decreased, whereas shredders had increased. Functional group percentage similarity indicated that the invertebrate community in the disturbed stream 16 years after clear-cutting was more similar to the reference than to that found earlier in the disturbed stream.
3. The five indices calculated from data collected over the past 16 years, as well as the abundance, biomass and production data collected during this study, proved to be of differing value in assessing recovery of the disturbed stream from logging. Percent dominant taxon and EPT (Ephemeroptera, Plecoptera and Trichoptera) taxon richness failed to show any initial differences between reference and disturbed streams, indicating that these indices may not be useful for measuring recovery from logging. The percentage Baetis and shredder–scraper indices showed significant differences only during the 1977 study and suggest recovery (no difference between reference and disturbed) by 1982. The North Carolina Biotic Index showed continued differences during 1982 in the riffle and depositional habitats and recovery by 1993. Total macroinvertebrate abundance, biomass and production, as well as EPT abundance, indicated continued differences between the reference and disturbed streams in the 1993 study.  相似文献   

14.
SUMMARY. 1. The results of a survey of thirty-four stream sites, differing in pH and invertebrate species richness, indicated that the pool of locally available, suitably adapted species was smaller in the acid streams. This plays a part in determining the general pattern of lower species richness at more acid sites.
2. Diversity of feeding categories increased with species richness, indicating that a greater range of food resources was available in the less acid, more species-rich communities.
3. The pattern of predation varied with pH and species richness. The numbers of large insect predators were lower in the less acid, more species-rich communities and this was correlated with the presence of fish.
4. A detailed study of the guild of detritivorous stoneflies in four streams differing in species richness provided evidence that density compensation occurs, niche width decreases and niche overlap declines as species richness increases.
5. We discuss the roles that competition and predation play in determining the structure and richness of stream invertebrate communities.  相似文献   

15.
In southwestern British Columbia (BC, Canada) and within a relatively small geographic area, lotic environments range from streams in coastal rainforests, to streams in arid continental grasslands, to very large rivers. Little is known about the invertebrate communities in large rivers in general, or in the streams of continental BC. The purpose of this study was to determine whether the benthic invertebrate community structure changes spatially between small coastal and small interior streams; between small streams versus large rivers; and whether changes in the benthic community are related to the environmental conditions. Kicknet samples and environmental data were collected from three coastal streams, three continental streams and two large rivers (discharge of 781 and 3620 m3/s, respectively). The large river sites had low invertebrate abundance, species richness and diversity, relative to the small streams. The coastal streams had the highest species richness and the continental streams had the highest invertebrate abundance. A number of taxa were specific to each class of stream. Invertebrate abundance decreased with river size, and increased with elevation, pH, conductivity, alkalinity, NO2NO3-N, total Kejldahl nitrogen and percent carbon in suspended solids.  相似文献   

16.
Invertebrate diversity patterns were examined in 10 streams that differed in substrate disturbance rates, in Taranaki, New Zealand, between April 1999 and January 2000. Two sites on each stream were sampled, one under native forest canopy where light was postulated to limit periphyton growth and a similar site 225–3800 m downstream in open grassland. Periphyton biomass was considerably higher at open stable sites than at closed or unstable sites. Associated with the higher algal biomass, species number and total abundance of animals were higher at open canopy sites. Species number exhibited a negative linear relationship with disturbance but only at open sites. In contrast, rarefied species richness exhibited a negative linear relationship with disturbance at both open and closed sites. This was a result of communities at the more disturbed sites being numerically dominated by only a few taxa compared to the more evenly distributed communities at stable sites. The observed patterns provide little support for contemporary diversity disturbance models but suggest diversity of invertebrates in streams is a function of time since the last disturbance, mediated through recovery of the food base in autotrophic streams.  相似文献   

17.
Benthic invertebrates, water quality variables, chlorophyll a and particulate organic matter (POM) were studied in 18 sites of mountain streams in Patagonia (Argentina) subjected to six different land uses: native forest, pine plantation, pasture, harvest forest, urban and reference urban. Three streams of each land use were studied in March 2006. Macroinvertebrates were sampled in three riffles and three pools (n = 108) and biomass of detrital fractions of POM were quantified. Overall benthic POM biomass was higher at native and harvest forest than pastures, whereas fine fraction (FPOM) was higher in harvest forest than in pastures. Regarding to autotrophic subsidies bryophytes were the only that changed consistently among uses. These differences in energy resources were correlated with changes in community attributes. Shredder richness was clearly higher at native and harvest forest than exotic pine plantations, collector gatherers density was consistently high at harvest sites, and total density was significantly higher at urban and harvest forest. Multidimensional scaling ordination based on macroinvertebrate density data showed a clear separation of forested (either native or exotic species) from riparian modified areas (pasture, urban and harvest sites). Environmental variables having explanation power on macroinvertebrate assemblages were mostly related with: detritus availability (wood and leaves biomass) and impairment (total phosphorous and % sand). These results confirm that macroinvertebrate assemblage structure in Patagonian low order streams can be altered by land use practices. Among guild structure measures, those indicators based on benthic community functional attributes, shredders richness and collectors density, resulted good candidates to assess land use impacts. On account of riparian corridor management may be critical to the distribution of benthic taxa, the maintenance of good conditions of vegetation adjacent to rivers will enhance water quality and the environment for highly endemic headwater communities of Patagonian streams.  相似文献   

18.
19.
20.
1. Floods and low flows are hydrological events that influence river ecosystems, but few studies have compared their relative importance in structuring invertebrate communities. Invertebrates were sampled in riffles and runs at eight sites along 40 km of a New Zealand gravel‐bed river every 1–3 months over 2.5 years, during which time a number of large flood and low flow events occurred. Flows were high in winter and spring, and low in summer and autumn. Four flow‐related variables were calculated from hydrological data: flow on the day of sampling (Qsample), maximum and minimum flow between successive samples (Qmax and Qmin, respectively), and the number of days since the last bed‐moving flood (Ndays). 2. The invertebrate community was summarised by relative densities of the 19 most abundant taxa and four biotic metrics [total abundance, taxon richness, the number of Ephemeroptera, Plecoptera and Trichoptera taxa (i.e. EPT richness), and per cent EPT]. Invertebrate density fluctuated greatly, and was high in summer and autumn, and low during winter and spring. Stepwise multiple regression (SMR) analysis was used to investigate relationships between the invertebrate community and season, flow, habitat and water temperature. 3. Seasonal variables were included in almost 50% of the SMR models, while flow‐related variables were included in >75% of models. Densities of many taxa were negatively correlated to Qmin and Qmax, and positively correlated to Ndays, suggesting that while high flows reduced invertebrate densities, densities recovered with increasing time following a flood. Although season and flow were confounded in this study, many of the taxa analysed display little seasonal variation in abundance, suggesting that flow‐related variables were more important in structuring communities than seasonal changes in density associated with life‐cycles. 4. Five discrete flood and low flow events were identified and changes to invertebrate communities before and after these events examined. Invertebrate densities decreased more commonly after floods than after low flows, and there was a significant positive relationship between the number of taxa showing reductions in density and flood magnitude. Densities of most invertebrates either remained unchanged, or increased after low flow events, except for four taxa whose densities declined after a very long period (up to 9 months) of low flow. This decline was attributed to autogenic sloughing of thick periphyton communities and subsequent loss of habitat for these taxa. 5. Invertebrate communities changed more after floods and the degree of change was proportional to flood magnitude. Community similarity increased with increasing time since the last disturbance, suggesting that the longer stable flows lasted, the less the community changed. These results suggest that invertebrate communities in the Waipara River were controlled by both floods and low flows, but that the relative effects of floods were greater than even extended periods of extreme low flow. 6. Hydraulic conditions in riffles and runs were measured throughout the study. Riffles had consistently faster velocities, but were shallower and narrower than runs at all measured flows. Invertebrate density in riffles was expressed as a percentage of total density and regressed against the flow‐related variables to see whether invertebrate locations changed according to flow. Significant negative relationships were observed between the per cent density of common taxa in riffles and Qsample, Qmax and Qmin. This result suggests either that these animals actively drifted into areas of faster velocity during low flows, or that their densities within riffles increased as the width of these habitats declined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号