首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Niche segregation between similar species will result from an avoidance of competition but also from environmental variability, including nowadays anthropogenic activities. Gulls are among the seabirds with greater behavioural plasticity, being highly opportunistic and feeding on a wide range of prey, mostly from anthropogenic origin. Here, we analysed blood and feather stable isotopes combined with pellet analysis to investigate niche partitioning between Audouin's gull Larus audouinii and yellow‐legged gull Larus michahellis breeding in sympatry at Deserta Island, southern Portugal, during 2014 and 2015. During the breeding season there was considerable overlap in the adults’ diet, as their stable isotope values of blood and primary feather (P1) did not differ, and their pellets were comprised mainly by marine fish species. However, Audouin's gulls presented higher occurrences of pelagic fish, while yellow‐legged gulls fed more on demersal fish, insects, and refuse. SIAR mixing models also estimated a higher proportion of demersal fish in the diet of yellow‐legged gulls. We also found differences between the two gull species in chicks’ feathers, suggesting that Audouin's gull adults selected prey with lower carbon isotope values to feed their young. Secondary feather (S8) of Audouin's gull presented higher isotope values compared to yellow‐legged gulls, indicating different foraging areas (δ13C) and/ or trophic levels (δ15N) between the two species in the non‐breeding season. During both the all‐year and non‐breeding periods the yellow‐legged gull showed a broader isotopic niche width than Audouin's gull in 2013, and in 2014 the two gull species exhibited different isotopic niche spaces. Our study suggests that both gull species foraged in association with fisheries during the breeding season. In this sense, a discard ban implemented under the new European Union Common Fisheries Policy may lead to a food shortage, therefore future research should closely monitor the population dynamics of Audouin's and yellow‐legged gulls.  相似文献   

2.
Herring gulls (Larus argentatus) are opportunistic predators that prefer to forage in the intertidal zone, but an increasing degree of terrestrial foraging has recently been observed. We therefore aimed to analyze the factors influencing foraging behavior and diet composition in the German Wadden Sea. Gulls from three breeding colonies on islands at different distances from the mainland were equipped with GPS data loggers during the incubation seasons in 2012–2015. Logger data were analyzed for 37 individuals, including 1,115 foraging trips. Herring gulls breeding on the island furthest from the mainland had shorter trips (mean total distance = 12.3 km; mean maximum distance = 4.2 km) and preferred to feed on the tidal flats close to the colony, mainly feeding on common cockles (Cerastoderma edule) and shore crabs (Carcinus maenas). In contrast, herring gulls breeding close to the mainland carried out trips with a mean total distance of 26.7 km (mean maximum distance = 9.2 km). These gulls fed on the neobiotic razor clams (Ensis leei) in the intertidal zone, and a larger proportion of time was spent in distant terrestrial habitats on the mainland, feeding on earthworms. δ13C and δ15N values were higher at the colony furthest from the mainland and confirmed a geographical gradient in foraging strategy. Analyses of logger data, pellets, and stable isotopes revealed that herring gulls preferred to forage in intertidal habitats close to the breeding colony, but shifted to terrestrial habitats on the mainland as the tide rose and during the daytime. Reduced prey availability in the vicinity of the breeding colony might force herring gulls to switch to feed on razor clams in the intertidal zone or to use distant terrestrial habitats. Herring gulls may thus act as an indicator for the state of the intertidal system close to their breeding colony.  相似文献   

3.
Mercury (Hg) is an environmental contaminant which, at high concentrations, can negatively influence avian physiology and demography. Albatrosses (Diomedeidae) have higher Hg burdens than all other avian families. Here, we measure total Hg (THg) concentrations of body feathers from adult grey-headed albatrosses (Thalassarche chrysostoma) at South Georgia. Specifically, we (i) analyse temporal trends at South Georgia (1989–2013) and make comparisons with other breeding populations; (ii) identify factors driving variation in THg concentrations and (iii) examine relationships with breeding success. Mean ± s.d. feather THg concentrations were 13.0 ± 8.0 µg g−1 dw, which represents a threefold increase over the past 25 years at South Georgia and is the highest recorded in the Thalassarche genus. Foraging habitat, inferred from stable isotope ratios of carbon (δ13C), significantly influenced THg concentrations—feathers moulted in Antarctic waters had far lower THg concentrations than those moulted in subantarctic or subtropical waters. THg concentrations also increased with trophic level (δ15N), reflecting the biomagnification process. There was limited support for the influence of sex, age and previous breeding outcome on feather THg concentrations. However, in males, Hg exposure was correlated with breeding outcome—failed birds had significantly higher feather THg concentrations than successful birds. These results provide key insights into the drivers and consequences of Hg exposure in this globally important albatross population.  相似文献   

4.
Aim Bringing new approaches to trace spatiotemporal variations in animals’ feeding ecology, which is fundamental for wildlife management and conservation since the accessibility of animals to trophic resources plays a key role in the dynamics of populations and metapopulations. Location Western Mediterranean coast. Methods The analysis of naturally occurring stable isotopes constitutes an exceptional approach to assess variations in the trophic ecology of species within the spatiotemporal dimensions. Here, we examined the spatiotemporal heterogeneity in resource exploitation of a nuisance and overpopulated gull species with a great feeding plasticity, the Yellow‐legged gull Larus michahellis, by measuring the stable isotope ratios of carbon (13C/12C, δ13C), nitrogen (15N/14N, δ15N) and sulphur (34S/33S, δ34S) in different wing feathers. Results Tracing isotopic changes among feathers in relation to moulting sequence, we showed that isotopic analyses on first primary feathers were good indicators of breeding trophic ecology, while others, such as eighth secondary feathers, reflected the feeding behaviour during the non‐breeding period. This knowledge was then used to report on estimations of seasonal feeding patterns throughout the year for seven gull populations along the Western Mediterranean coast. Main conclusions The high diversity in the exploitation patterns of the foraging habitats found in the study area both at spatial and at temporal scale indicated the opportunistic feeding behaviour of Yellow‐legged gulls. Proposed isotopic approach has revealed as a useful tool to evaluate spatiotemporal variations in the feeding ecology of populations which may become clue for dealing with the management of wild species, not only nuisance populations but also endangered species. We finally pointed out the relevance of the isotopic variability among individuals to infer diet diversity and food availability of a given population, thereby allowing demographic forecasts when trophic resources vary in abundance.  相似文献   

5.
The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long‐term human impacts. We used stable isotope (δ13C, δ15N) analysis of feathers from glaucous‐winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long‐term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ13C and δ15N declined since 1860 in both subadult and adult gulls (δ13C, ~ 2–6‰; δ15N, ~4–5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ13C and δ15N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage‐based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long‐term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores.  相似文献   

6.
Here I report on glaucous gulls (Larus hyperboreus), an opportunistic, generalist predator, stealing bivalves from a diving duck, the common eider (Somateria mollissima). The study took place in spring, the pre-breeding period of the common eider, in an Arctic fjord (Adventfjorden) at western Spitsbergen, Svalbard. Eiders were abundant, their presence predictable, and they fed on large prey requiring surface handling—all factors facilitating food theft. Only adult glaucous gulls attended the eider flocks. The glaucous gulls brought stolen prey ashore. Amongst these the bivalve Mya neoovata (Myidae) was common. The probability that an eider flock was attended by glaucous gulls declined as the season progressed and increased with the foraging activity of the eiders. Eider flock size and the degree of aggregation within flocks were poor predictors of gull presence. However, eider flocks attended by a single gull were smaller than flocks attended by more than one gull. Common eiders are capital breeders which build up large energy reserves prior to breeding. Kleptoparasitism, therefore, may have a negative impact on eider energy acquisition in early spring. For the glaucous gull, kleptoparasitism may be important as few other food sources are available this time of the season.  相似文献   

7.
Relating the effects of foraging niche variation to reproductive dynamics is critical to understand species response to environmental change. We examined foraging niche variations of the slender‐billed gull (Chroicocephalus genei), a nomadic colonial waterbird species during its range expansion along the French Mediterranean coast over a 16‐year period (1998–2013). We investigated whether range expansion was associated with a change in chick diet, breeding success, and chicks body condition. We also examined whether breeding success and chicks body condition were explained by diet and colonial characteristics (number of pairs, laying phenology, habitat, and locality). Diet was characterized using dual‐stable isotopic proxies (δ13C and δ15N) of feather keratin from 331 individuals subsampled from a total of 4,154 chicks ringed and measured at 18 different colonies. δ13C decreased and δ15N increased significantly during range expansion suggesting that chicks were fed from preys of increasing trophic level found in the less salty habitat colonized by the end of the study period. Niche shift occurred without significant change of niche width which did not vary among periods, habitats, or localities either. Breeding success and chick body condition showed no consistent trends over years. Breeding success tended to increase with decreasing δ13C at the colony level while there was no relationship between stable isotope signatures and chick body condition. Overall, our results suggest that even if range expansion is associated with foraging niche shift toward the colonization of less salty and more brackish habitats, the shift had marginal effect on the breeding parameters of the Slender‐billed gull. Niche width appears as an asset of this species, which likely explains its ability to rapidly colonize new locations.  相似文献   

8.
Food web structure regulates the pathways and flow rates of energy, nutrients, and contaminants to top predators. Ecologically and physiologically meaningful biochemical tracers provide a means to characterize and quantify these transfers within food webs. In this study, changes in the ratios of stable N isotopes (e.g., δ15N), fatty acids (FA), and persistent contaminants were used to trace food web pathways utilized by herring gulls (Larus argentatus) breeding along the shores of the St Lawrence River, Canada. Egg δ15N values varied significantly among years and were used as an indicator of gull trophic position. Temporal trends in egg δ15N values were related to egg FA profiles. In years when egg δ15N values were greater, egg FA patterns reflected the consumption of more aquatic prey. Egg δ15N values were also correlated with annual estimates of prey fish abundance. These results indicated that temporal changes in aquatic prey availability were reflected in the gull diet (as inferred from ecological tracer profiles in gull eggs). Analysis of individual eggs within years confirmed that birds consuming more aquatic prey occupied higher trophic positions. Furthermore, increases in trophic position were associated with increased concentrations of most persistent organic contaminants in eggs. However, levels of highly brominated polybrominated diphenyl ether congeners, e.g, 2,2′,3,3′,4,4′,5,5′,6,6′-decabromoDE (BDE-209), showed a negative relationship with trophic position. These contrasting findings reflected differences among contaminant groups/homologs in terms of their predominant routes of transfer, i.e., aquatic versus terrestrial food webs. High trophic level omnivores, e.g., herring gulls, are common in food webs. By characterizing ecological tracer profiles in such species we can better understand spatial, temporal, and individual differences in pathways of contaminant, energy, and nutrient flow.  相似文献   

9.
Sulfur has been proposed as a useful element to employ in addition to carbon and nitrogen in stable isotope studies of marine food webs, but variability in δ34S of primary producers may prevent food web resolution. δ34S values in green leaves of the seagrass, Zostera capricorni, showed considerable variability (12.7-17.6‰) in a survey in Moreton Bay, Australia. We demonstrated that δ34S values were correlated with sediment organic matter (OM) content and height of seagrass on the tidal gradient, but these relationships were opposite to those expected from work elsewhere. In our survey, δ34S values were relatively depleted at sites higher on the shore and with lower OM content. We did find the expected relationship of depleted δ34S values where sediment porewater sulfide concentrations were higher. Any influence of OM content on δ34S values would have been confounded in the survey by the relationship between height on shore and OM content itself. We separated the effects of height and OM content by creating the following treatments at one height on the shore: (1) OM added, (2) procedural control, and (3) untouched control. δ34S values of seagrass in OM added plots were significantly depleted (5.6‰) relative to procedural (10.1‰) and untouched (11.0‰) controls 8 weeks after the manipulation. This demonstrated that OM content on its own does have the expected effect on δ34S values of seagrass, so in the initial survey another factor, probably related to height on shore, must have overridden the influence of OM content. Seagrass roots are able to exude excess oxygen produced during photosynthesis, reoxidising sulfides in surrounding porewater. We demonstrated that the above and below-ground biomass of seagrass was higher low on the shore, and contend that higher seagrass productivity low on the shore results in greater reoxidation of sulfides and leads to more enriched δ34S values of seagrass.  相似文献   

10.
Although the breeding ecology of Audouin’s gull has been widely studied, its spatial distribution patterns have received little attention. We assessed the foraging movements of 36 GPS-tracked adult Audouin’s gulls breeding at the Ebro Delta (NW Mediterranean), coinciding with the incubation period (May 2011). This also coincided with a trawling moratorium northwards from the colony. We modelled the distribution of the gulls by combining these tracking data with environmental variables (including fishing activities from Vessel Monitoring System, VMS), using Maxent. The modelling range included both marine and terrestrial areas. Models were produced separately for every 2h time interval across the day, and for 2 fishing activity scenarios (workdays vs. weekends), allowing to assess the spatio-temporal distribution patterns of the gulls and the degree of association with fisheries. During workdays, gull distribution at sea fully matched with fishing activities, both trawling (daylight) and purse-seining (nightime). Gulls tended to avoid the area under trawling moratorium, confirming the high influence of fisheries on the distribution patterns of this species. On weekends, gulls made lesser use of the sea and tended to increase the use of rice fields. Overall, Audouin’s gull activity was more intense during dailight hours, although birds also showed nocturnal activity, on both workdays and weekends. Nocturnal patterns at sea were more disperse during the latter, probably because these gulls are able to capture small pelagic fish at night in natural conditions, but tend to congregate around purse-seiners (which would enhance their foraging efficiency) in workdays. These results provide important insight for the management of this species. This is of particular relevance under the current scenario of European fisheries policies, since new regulations are aimed at eliminating discards, and this would likely influence Audouin’s gull populations.  相似文献   

11.
To discern the position of horseshoe crabs as a potentially important predator in estuarine food webs, we determined where they foraged and what they ate. We used N and C stable isotopes to link adult horseshoe crabs to their oraging locations and potential food sources in Pleasant Bay, Cape Cod. The δ15N in tissues of horseshoe crabs and their potential foods suggest crabs were loyal to local foraging sites and did not forage substantially in subestuaries receiving >110 kg N ha−1 year−1. Among locations where crabs foraged, δ13C values in potential foods showed that food webs in subestuaries subject to higher N loads were supported by algal producers, while food webs in subestuaries with lower N loads were also supported by Spartina. δ13C values in horseshoe crab tissue did not change with load, suggesting they ate a mixed diet, regardless of N load. N and C isotopes in horseshoe crab feces were similar to signatures of estimated diet, suggesting low assimilation efficiency, perhaps due to ingestion of low quality organic matter. Although horseshoe crabs were relatively opportunistic in foraging habits, conservation or culture of horseshoe crabs may require habitats with higher water quality, ample particulate organic matter, and supporting a variety of prey.  相似文献   

12.
We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.  相似文献   

13.
Using photo‐identification data, bottlenose dolphin (Tursiops truncatus) populations can be differentiated based on their use of particular estuaries or coastal habitats. Questions remain, however, about the validity of such fine‐scale population partitioning and whether the resulting assemblages utilize unique forage bases. To address the issue of forage base use, stable isotopes of carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) were analyzed from skin tissues (n= 74) of bottlenose dolphins sampled seasonally along the coast and in three estuaries near Charleston, South Carolina. Autumn values of δ34S, δ15N, and δ13C and summer values of δ34S indicated that dolphins sampled from these four assemblages utilized unique forage bases, despite limited sample sizes. Likewise, autumn and spring differences in δ15N and δ13C values were evident in the North Edisto River, and in δ34S from dolphins sampled from all three estuarine assemblages; no seasonal differences were identified in the coastal assemblage. Results demonstrate the importance of considering spatial and temporal variation in forage base when developing local management plans for bottlenose dolphin and highlight the discriminatory power of δ34S for estuarine and coastal marine mammals. These results also suggest that stable isotopes could be developed as a complementary tool for photo‐identification based partitioning of bottlenose dolphin populations.  相似文献   

14.
Seasonal fluctuations in marine prey availability around breeding colonies are one of the major factors affecting resident behaviour in seabirds. This is particularly applicable to large gulls (Larus spp.). The effect of refuse management on large gulls has been studied chiefly in relation to breeding dynamics, but it is less understood with regard to movement patterns. Our aim was to test whether the closure of one large dump and the use of falconry to deter gull access to two others, within the southeastern Bay of Biscay area, affected the foraging distance of local yellow-legged gulls (Larus michahellis). During a period of seven consecutive winters between 2005 and 2011, the proportion of gulls that moved less than 50 km from their natal site was 70 %. However, during the winter of 2010, when they were deterred from accessing refuse tips within the region, gulls were found to travel longer distances. This result was explained neither by a decreasing survey effort near colonies nor by a decrease in apparent availability of marine prey, thus supporting the hypothesis that refuse management within the region influenced the movement patterns of local gulls.  相似文献   

15.
We examined factors and pathways involved in the transfer of mercury (Hg) to the food web in St. Lawrence River embayments near Cornwall, Ontario, where natural remediation of contaminated sediments (eventual burial by settling of cleaner sediments) has been adopted as a management strategy. Yellow perch (Perca flavescens) from one of the study zones (Zone 1) along the river by Cornwall contained significantly higher total mercury (THg) concentrations than perch from other equally contaminated zones. While THg concentrations in benthic invertebrates did not vary among contaminated zones, THg concentrations in yellow perch and invertebrate prey recovered from the perch stomachs were 1.5–2.5 times higher in Zone 1 than those from other zones, suggesting that prey selection affects THg accumulation more than habitat location. No significant differences were found in THg concentrations among different prey species within Zone 1, although there were significant differences in THg concentrations in the same prey species within Zone 1. In contrast, THg concentrations among different prey species increased significantly with trophic level in other contaminated and reference zones. The lack of correspondence between trophic position and THg accumulation in Zone 1 suggests two possibilities: (1) yellow perch in Zone 1 are highly mobile and are assimilating THg from a wide range of prey across Zone 1 with variable THg concentrations and (2) there may be an important non-dietary source of THg to the Zone 1 food web. Potential waterborne Hg sources to Zone 1 were investigated. Whereas THg and MeHg values in discharges from a disused canal were similar to Zone 1 surface water values (0.97 and 0.04 ng l?1, respectively), concentrations in storm sewer and combined sewer overflows discharging in the vicinity of Zone 1 were 19–45-fold (THg) and 2–4-fold (MeHg) higher than upstream river water. Contributions of Hg to the water column from sediment–water diffusion, estimated using a simple, well-mixed reactor model, ranged 0.05–0.1% of the surface water THg concentration and 1–2% of the MeHg concentration measured in summer months in Zone 1. Although not investigated in the other zones, a strong correlation (r 2 = 0.82) was found between MeHg in porewater and amphipod concentrations in Zone 1, indicating that the sediment porewater is bioavailable and likely an important pathway for transfer of sediment Hg to the foodweb. Large areas of Zone 1 contain bark deposits and produce high rates of gas ebullition, and may not provide favourable conditions for progressive burial with clean sediments and attenuation of Hg transfer to biota through natural remediation. Careful monitoring of surface sediment concentrations and biota is required in these areas. Failure to reduce concentrations of Hg in these media would indicate alternative or additional management measures are required.  相似文献   

16.
Volcanic crater lakes scattered throughout western Uganda are important local sources of water and fish. Two representative but contrasting crater lakes near the Kibale National Park were sampled in 2000; the hyper‐eutrophic Lake Saka, which is highly affected by agricultural practices, and the mesotrophic Lake Nkuruba that is still surrounded by intact forest. The food web structures in these two lakes were assessed using stable nitrogen (δ15N) and carbon (δ13C) isotope analyses, and the mercury (THg) transfer patterns were quantified. The δ15N results indicate that food webs in both lakes are abbreviated, with only one to two trophic levels from primary consumers. The Lake Saka biota had distinctively enriched δ13C values compared with those in Lake Nkuruba, which may be due to 12C‐limited phytoplankton blooms in this lake. In Lake Nkuruba, two introduced tilapiine species and the introduced guppy Poecilia reticulata fed predominantly upon invertebrates and decomposed terrestrial plant material. In Lake Saka, the introduced Nile perch Lates niloticus appeared to occupy the top trophic position, but stable isotope values of the endemic haplochromine cichlids exclude those as Nile perch prey items. THg was found to biomagnify through the food web, reaching highest concentrations in P. reticulata in Nkuruba, which tended to be higher than for L. niloticus in Saka, suggesting increased bioavailability of THg in Nkuruba. Maximum THg concentrations in fish never approached WHO recommended guidelines (200 ng g?1) designed to protect at‐risk groups.  相似文献   

17.
The effect of invasive opportunistic predators may include population changes in both native prey and native predators as well as alteration of predator–prey interactions. We analyzed the activity of native magpie Pica pica and changes in population, nest sites and nesting success probability of native waterbirds (namely: grebes, ducks, rails and native gulls) in response to the population growth of the invasive Caspian gull Larus cachinnans. The study was carried out at a reservoir in southern Poland and at a similar control reservoir where the Caspian gull was absent. Both the invasive gulls and the native magpie are opportunistic predators of nests of native waterbirds. The population increase of the invasive gull led to a decline in the population of native black-headed gulls Larus ridibundus only. However, the invasive gull displaced all the native species from the breeding islets located in the central part of the reservoir to islets located close to the shoreline. The latter were frequently visited by magpies, which depredated on nests along the shores, leading to an up to threefold decrease in nesting success as compared with nests located in the central area of the invaded reservoir. Predation by Caspian gulls was rarely observed. Thus, the invasion of Caspian gull caused complex direct and indirect effects on the waterbird community that included competition for breeding sites, changes in the spatial distribution of nests and alteration of predation rate by native predators. Moreover, the effects of invasion may not be reflected by changes in population size of native species.  相似文献   

18.
Seabirds are mostly thought to moult during the inter‐breeding period and the isotopic values of their feathers are often therefore assumed to relate to their assimilated diet during such periods. We observed Brown Skuas Stercorarius antarcticus lonnbergi and South Polar Skuas Stercorarius maccormicki moulting on a breeding site at King George Island, Antarctica. This raises concerns about the reliability of using stable isotopes in feathers to infer feeding localities of birds during the inter‐breeding period. We analysed the δ13C and δ15N values of growing and fully grown body feathers collected from the same individuals. For both species, δ13C values of growing feathers indicated feeding areas in the Antarctic zone (breeding grounds), whereas most fully grown feathers (100% for South Polar Skuas and 93.3% for Brown Skuas) could be assigned to northern latitudes (non‐breeding grounds). However, a few fully grown body feathers of Brown Skuas (6.7% of the feathers, belonging to two birds) showed isotopic values that indicated moult in the Antarctic zone. As the growth period of those feathers was unknown, they could not be used with confidence to depict the foraging behaviour of the birds during the non‐breeding period. Although precautions must be taken when inferring dietary information from feathers in seabirds where the moulting pattern is unknown, this study shows that if the development stage of a feather (growing/fully grown) is identified, then dietary information from both breeding and non‐breeding seasons can be obtained on the same individual birds.  相似文献   

19.
The slaty-backed gull population of Kronotskoe Lake has not been subjected to anthropogenic impact for many decades. The number and distribution of the breeding colonies of the slaty-backed gulls on the islands of this largest freshwater reservoir of the Kamchatka Peninsula are presented. Data on the breeding phenology, the seasonal dynamics of the food composition of breeding gulls, the foraging distance, and breeding success are considered. These data are compared to the results obtained earlier for Kuril’skoe Lake. Both gull populations are unique in that they are the only freshwater colonies within the distribution range of this marine species. The breeding success of the slaty-backed gulls on Kronotskoe Lake suffers from predation, both intra- and interspecific, in the latter case from brown bears and sea eagles. The hatching period and the fledging time of chicks in this population are both shifted to the end of summer, when gulls have the most abundant food available within the lake area, which increases successful survival of the fledglings. Despite considerable differences between the ecosystems of Kronotskoe Lake and Kuril’skoe Lake, there are several common features in the diets of the gull populations living on the lakes: (1) Despite the fact that gulls perform foraging flights to the sea coast, they only take fish and almost never collect marine invertebrates there. (2) Nearly half of all food items are taken within a 40-km distance from the colony. (3) During the growth period of chicks, gulls from both lakes rely on salmonids (anadromous in Kuril’skoe Lake, resident in Kronotskoe Lake) that they hunt in the lakes near their colonies.  相似文献   

20.
As top predators in the Pearl River Estuary (PRE) of China, Indo-Pacific humpback dolphins (Sousa chinensis) are bioindicators for examining regional trends of environmental contaminants in the PRE. We examined samples from stranded S. chinensis in the PRE, collected since 2004, to study the distribution and fate of total mercury (THg), methylmercury (MeHg) and selenium (Se) in the major tissues, in individuals at different ages and their prey fishes from the PRE. This study also investigated the potential protective effects of Se against the toxicities of accumulated THg. Dolphin livers contained the highest concentrations of THg (32.34±58.98 µg g−1 dw) and Se (15.16±3.66 µg g−1 dw), which were significantly different from those found in kidneys and muscles, whereas the highest residue of MeHg (1.02±1.11 µg g−1 dw) was found in dolphin muscles. Concentrations of both THg and MeHg in the liver, kidney and muscle of dolphins showed a significantly positive correlation with age. The biomagnification factors (BMFs) of inorganic mercury (Hginorg) in dolphin livers (350×) and MeHg in muscles (18.7×) through the prey fishes were the highest among all three dolphin tissues, whereas the BMFs of Se were much lower in all dolphin tissues. The lower proportion of MeHg in THg and higher Se/THg ratios in tissues were demonstrated. Our studies suggested that S. chinensis might have the potential to detoxify Hg via the demethylation of MeHg and the formation of tiemannite (HgSe) in the liver and kidney. The lower threshold of hepatic THg concentrations for the equimolar accumulation of Se and Hg in S. chinensis suggests that this species has a greater sensitivity to THg concentrations than is found in striped dolphins and Dall’s porpoises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号