首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
During the G1 phase of the cell cycle, replication origins are prepared to fire, a process that is referred to as origin licensing. It was often pondered what a cell’s fate would be if not all of its replication origins were licensed and subsequently activated during S phase. One obvious prediction was that S phase would simply be prolonged. As it turns out, however, the consequences are much more complex. A short G1 phase enforced by premature entry into S phase, or other events that negatively affect origin licensing, will ultimately compromise the cell’s ability to complete DNA replication before entering mitosis. As a result, the cell becomes genomically unstable when it attempts to repair unreplicated DNA during anaphase. Thus, the density of active replication origins in the chromosomes of eukaryotic cells determines S phase dynamics and chromosome stability during mitosis.  相似文献   

2.
Eukaryotic DNA replication initiates at multiple origins. In early fly and frog embryos, chromosomal replication is very rapid and initiates without sequence specificity. Despite this apparent randomness, the spacing of these numerous initiation sites must be sufficiently regular for the genome to be completely replicated on time. Studies in various eukaryotes have revealed that there is a strict temporal separation of origin "licensing" prior to S phase and origin activation during S phase. This may suggest that replicon size must be already established at the licensing stage. However, recent experiments suggest that a large excess of potential origins are assembled along chromatin during licensing. Thus, a regular replicon size may result from the selection of origins during S phase. We review single molecule analyses of origin activation and other experiments addressing this issue and their general significance for eukaryotic DNA replication.  相似文献   

3.
During the G1 phase of the cell cycle, replication origins are prepared to fire, a process that is referred to as origin licensing. It was often pondered what a cell's fate would be if not all of its replication origins were licensed and subsequently activated during S phase. One obvious prediction was that S phase would simply be prolonged. As it turns out, however, the consequences are much more complex. A short G1 phase enforced by premature entry into S phase, or other events that negatively affect origin licensing, will ultimately compromise the cell's ability to complete DNA replication before entering mitosis. As a result, the cell becomes genomically unstable when it attempts to repair unreplicated DNA during anaphase. Thus, the density of active replication origins in the chromosomes of eukaryotic cells determines S phase dynamics and chromosome stability during mitosis.  相似文献   

4.
The ability of a eukaryotic cell to precisely and accurately replicate its DNA is crucial to maintain genome stability. Here we describe our current understanding of the process by which origins are licensed for DNA replication and review recent work suggesting that fork stalling has exerted a strong selective pressure on the positioning of licensed origins. In light of this, we discuss the complex and disparate phenotypes observed in mouse models and humans patients that arise due to defects in replication licensing proteins.  相似文献   

5.
Duplication of the eukaryotic genome initiates from multiple origins of DNA replication whose activity is coordinated with the cell cycle. We have been studying the origins of DNA replication that control amplification of eggshell (chorion) genes during Drosophila oogenesis. Mutation of genes required for amplification results in a thin eggshell phenotype, allowing a genetic dissection of origin regulation. Herein, we show that one mutation corresponds to a subunit of the minichromosome maintenance (MCM) complex of proteins, MCM6. The binding of the MCM complex to origins in G1 as part of a prereplicative complex is critical for the cell cycle regulation of origin licensing. We find that MCM6 associates with other MCM subunits during amplification. These results suggest that chorion origins are bound by an amplification complex that contains MCM proteins and therefore resembles the prereplicative complex. Lethal alleles of MCM6 reveal it is essential for mitotic cycles and endocycles, and suggest that its function is mediated by ATP. We discuss the implications of these findings for the role of MCMs in the coordination of DNA replication during the cell cycle.  相似文献   

6.
Replication licensing--defining the proliferative state?   总被引:16,自引:0,他引:16  
The proliferation of eukaryotic cells is a highly regulated process that depends on the precise duplication of chromosomal DNA in each cell cycle. Regulation of the replication licensing system, which promotes the assembly of complexes of proteins termed Mcm2-7 onto replication origins, is responsible for preventing re-replication of DNA in a single cell cycle. Recent work has shown how the licensing system is directly controlled by cyclin-dependent kinases (CDKs). Repression of origin licensing is emerging as a ubiquitous route by which the proliferative capacity of cells is lowered, and Mcm2-Mcm7 proteins show promise as diagnostic markers of early cancer stages. These results have prompted us to propose a functional distinction between the proliferative state and the non-proliferative state (including G0) depending on whether origins are licensed.  相似文献   

7.
DNA replication origins fire stochastically in fission yeast   总被引:10,自引:0,他引:10       下载免费PDF全文
DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across the genome. We have addressed these questions by determining the location of firing origins on individual fission yeast DNA molecules using DNA combing. We show that the firing of replication origins is stochastic, leading to a random distribution of replication initiation. Furthermore, origin firing is independent between cell cycles; there is no epigenetic mechanism causing an origin that fires in one cell cycle to preferentially fire in the next. Thus, the fission yeast strategy for the initiation of replication is different from models of eukaryotic replication that propose coordinated origin firing.  相似文献   

8.
The separation of DNA replication origin licensing and activation in the cell cycle is essential for genome stability across generations in eukaryotic cells. Pre‐replicative complexes (pre‐RCs) license origins by loading Mcm2‐7 complexes in inactive form around DNA. During origin firing in S phase, replisomes assemble around the activated Mcm2‐7 DNA helicase. Budding yeast pre‐RCs have previously been reconstituted in vitro with purified proteins. Here, we show that reconstituted pre‐RCs support replication of plasmid DNA in yeast cell extracts in a reaction that exhibits hallmarks of cellular replication initiation. Plasmid replication in vitro results in the generation of covalently closed circular daughter molecules, indicating that the system recapitulates the initiation, elongation, and termination stages of DNA replication. Unexpectedly, yeast origin DNA is not strictly required for DNA replication in vitro, as heterologous DNA sequences could support replication of plasmid molecules. Our findings support the notion that epigenetic mechanisms are important for determining replication origin sites in budding yeast, highlighting mechanistic principles of replication origin specification that are common among eukaryotes.  相似文献   

9.
Eukaryotic DNA replication is initiated from multiple origins of replication, but little is known about the global regulation of origins throughout the genome or in different types of cell cycles. Here, we identify 401 strong origins and 503 putative weaker origins spaced in total every 14 kb throughout the genome of the fission yeast Schizosaccharomyces pombe. The same origins are used during premeiotic and mitotic S-phases. We found that few origins fire late in mitotic S-phase and that activating the Rad3 dependent S-phase checkpoint by inhibiting DNA replication had little effect on which origins were fired. A genome-wide analysis of eukaryotic origin efficiencies showed that efficiency was variable, with large chromosomal domains enriched for efficient or inefficient origins. Average efficiency is twice as high during mitosis compared with meiosis, which can account for their different S-phase lengths. We conclude that there is a continuum of origin efficiency and that there is differential origin activity in the mitotic and meiotic cell cycles.  相似文献   

10.
Within each cell cycle, a cell must ensure that the processes of selection of replication origins (licensing) and initiation of DNA replication are well coordinated to prevent re-initiation of DNA replication from the same DNA segment during the same cell cycle. This is achieved by restricting the licensing process to G1 phase when the prereplicative complexes (preRCs) are assembled onto the origin DNA, while DNA replication is initiated only during S phase when de novo preRC assembly is blocked. Cdt1 is an important member of the preRC complex and its tight regulation through ubiquitin-dependent proteolysis and binding to its inhibitor Geminin ensure that Cdt1 will only be present in G1 phase, preventing relicensing of replication origins. We have recently reported that Cdt1 associates with chromatin in a dynamic way and recruits its inhibitor Geminin onto chromatin in vivo. Here we discuss how these dynamic Cdt1-chromatin interactions and the local recruitment of Geminin onto origins of replication by Cdt1 may provide a tight control of the licensing process in time and in space.  相似文献   

11.
Completion of genome duplication during the S-phase of the cell cycle is crucial for the maintenance of genomic integrity. In eukaryotes, chromosomal DNA replication is accomplished by the activity of multiple origins of DNA replication scattered across the genome. Origin specification, selection and activity as well as the availability of replication factors and the regulation of DNA replication licensing, have unique and common features among eukaryotes. Although the initial studies on the semiconservative nature of chromosome duplication were carried out in the mid 1950s in Vicia faba, since then plant DNA replication studies have been scarce. However, they have received an unprecedented drive in the last decade after the completion of sequencing the Arabidopsis thaliana genome, and more recently of other plant genomes. In particular, the past year has witnessed major advances with the use of genomic approaches to study chromosomal replication timing, DNA replication origins and licensing control mechanisms. In this minireview article we discuss these recent discoveries in plants in the context of what is known at the genomic level in other eukaryotes. These studies constitute the basis for addressing in the future key questions about replication origin specification and function that will be of relevance not only for plants but also for the rest of multicellular organisms.  相似文献   

12.
Lau E  Zhu C  Abraham RT  Jiang W 《EMBO reports》2006,7(4):425-430
The Cdc6 protein is required for licensing of replication origins before the onset of DNA replication in eukaryotic cells. Here, we examined whether Cdc6 has other roles in mammalian cell-cycle progression from S to G2/M phase. Using RNA interference, we showed that depletion of Cdc6 in synchronous G1 cells blocks G1 to S transition, confirming the essential role of Cdc6 in the initiation of DNA replication. In contrast, depletion of Cdc6 in synchronous S-phase cells slowed DNA replication and led to mitotic lethality. The Cdc6-depleted S-phase cells showed fewer newly fired origins; however, established replication forks remained active, even during chromatin condensation. Despite such DNA replication abnormalities, loss of Cdc6 failed to activate Chk1 kinase. These results show that Cdc6 is not only required for G1 origin licensing, but is also crucial for proper S-phase DNA replication that is essential for DNA segregation during mitosis.  相似文献   

13.
DNA replication must be tightly controlled during each cell cycle to prevent unscheduled replication and ensure proper genome maintenance. The currently known controls that prevent re-replication act redundantly to inhibit pre-replicative complex (pre-RC) assembly outside of the G1-phase of the cell cycle. The yeast Saccharomyces cerevisiae has been a useful model organism to study how eukaryotic cells prevent replication origins from reinitiating during a single cell cycle. Using a re-replication-sensitive strain and DNA microarrays, we map sites across the S. cerevisiae genome that are re-replicated as well as sites of pre-RC formation during re-replication. Only a fraction of the genome is re-replicated by a subset of origins, some of which are capable of multiple reinitiation events. Translocation experiments demonstrate that origin-proximal sequences are sufficient to predispose an origin to re-replication. Origins that reinitiate are largely limited to those that can recruit Mcm2-7 under re-replicating conditions; however, the formation of a pre-RC is not sufficient for reinitiation. Our findings allow us to categorize origins with respect to their propensity to reinitiate and demonstrate that pre-RC formation is not the only target for the mechanisms that prevent genomic re-replication.  相似文献   

14.
Faithful duplication of the genetic material requires that replication origins fire only once per cell cycle. Central to this control is the tightly regulated formation of prereplicative complexes (preRCs) at future origins of DNA replication. In all eukaryotes studied, this entails loading by Cdc6 of the Mcm2-7 helicase next to the origin recognition complex (ORC). More recently, another factor, named Cdt1, was shown to be essential for Mcm loading in fission yeast and Xenopus as well as for DNA replication in Drosophila and humans. Surprisingly, no Cdt1 homolog was found in budding yeast, despite the conserved nature of origin licensing. Here we identify Tah11/Sid2, previously isolated through interactions with topoisomerase and Cdk inhibitor mutants, as an ortholog of Cdt1. We show that sid2 mutants lose minichromosomes in an ARS number-dependent manner, consistent with ScCdt1/Sid2 being involved in origin licensing. Accordingly, cells partially depleted of Cdt1 replicate DNA from fewer origins, whereas fully depleted cells fail to load Mcm2 on chromatin and fail to initiate but not elongate DNA synthesis. We conclude that origin licensing depends in S. cerevisiae as in other eukaryotes on both Cdc6 and Cdt1.  相似文献   

15.
16.
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein–protein and protein–DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis‐acting sequences that serve as replication origins and the trans‐acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed. J. Cell. Biochem. 106: 512–520, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
DNA replication in eukaryotic cells is tightly controlled by a licensing mechanism, ensuring that each origin fires once and only once per cell cycle. We demonstrate that the ataxia telangiectasia and Rad3 related (ATR)–mediated S phase checkpoint acts as a surveillance mechanism to prevent rereplication. Thus, disruption of licensing control will not induce significant rereplication in mammalian cells when the ATR checkpoint is intact. We also demonstrate that single-stranded DNA (ssDNA) is the initial signal that activates the checkpoint when licensing control is compromised in mammalian cells. We demonstrate that uncontrolled DNA unwinding by minichromosome maintenance proteins upon Cdt1 overexpression is an important mechanism that leads to ssDNA accumulation and checkpoint activation. Furthermore, we show that replication protein A 2 and retinoblastoma protein are both downstream targets for ATR that are important for the inhibition of DNA rereplication. We reveal the molecular mechanisms by which the ATR-mediated S phase checkpoint pathway prevents DNA rereplication and thus significantly improve our understanding of how rereplication is prevented in mammalian cells.  相似文献   

18.
19.
Mcm2–7 is recruited to eukaryotic origins of DNA replication by origin recognition complex, Cdc6 and Cdt1 thereby licensing the origins. Cdc6 is essential for origin licensing during DNA replication and is readily destabilized from chromatin after Mcm2–7 loading. Here, we show that after origin licensing, deregulation of Cdc6 suppresses DNA replication in Xenopus egg extracts without the involvement of ATM/ATR-dependent checkpoint pathways. DNA replication is arrested specifically after chromatin binding of Cdc7, but before Cdk2-dependent pathways and deregulating Cdc6 after this step does not impair activation of origin firing or elongation. Detailed analyses revealed that Cdc6 deregulation leads to strong suppression of Cdc7-mediated hyperphosphorylation of Mcm4 and subsequent chromatin loading of Cdc45, Sld5 and DNA polymerase α. Mcm2 phosphorylation is also repressed although to a lesser extent. Remarkably, Cdc6 itself does not directly inhibit Cdc7 kinase activity towards Mcm2–4–6–7 in purified systems, rather modulates Mcm2–7 phosphorylation on chromatin context. Taken together, we propose that Cdc6 on chromatin acts as a modulator of Cdc7-mediated phosphorylation of Mcm2–7, and thus destabilization of Cdc6 from chromatin after licensing is a key event ensuring proper transition to the initiation of DNA replication.  相似文献   

20.
Studies in th Saccharomyces cerevisiae have provided a framework for understanding how eukaryotic cells replicate their chromosomal DNA to ensure faithful transmission of genetic information to their daughter cells. In particular, S. cerevisiae is the first eukaryote to have its origins of replication mapped on a genomic scale, by three independent groups using three different microarray-based approaches. Here we describe a new technique of origin mapping via detection of single-stranded DNA in yeast. This method not only identified the majority of previously discovered origins, but also detected new ones. We have also shown that this technique can identify origins in Schizosaccharomyces pombe, illustrating the utility of this method for origin mapping in other eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号