首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Trees outside woodlands facilitate dispersal of woodland invertebrates and may buffer against fragmentation impacts. European ash (Fraxinus excelsior) is common outside woodlands but is threatened by the fungal disease ash dieback (Hymenoscyphus fraxineus). Loss of ash trees to disease or pre-emptive felling could represent a substantial loss in connectivity. We assess the impact of tree disease and the pre-emptive felling of non-woodland ash trees on dispersal and gene flow of woodland invertebrates. We use a stochastic individual-based modelling platform, RangeShifter, to explore impacts of tree loss on the spatial dynamics of ‘virtual’ ash-reliant insects, species which depend on ash to complete their life cycle, with varying dispersal abilities and population densities. We simulate the loss of individual trees in and out of woodlands using current tree cover data from 24 real-world landscapes and estimate functional and genetic connectivity in relation to species-specific habitat-dependent movement costs and the likelihood to move in a straight line. Removal of 10% of ash trees resulted in an increase in dispersal mortality of up to 14.6%, and an increase in isolated woodlands (receiving no immigrants) of up to 2.9%. In some landscapes this resulted in increased isolation by distance (IBD - correlation between genetic and geographic distance). Carrying capacity impacted the proportion of isolated patches and IBD. Species experiencing high dispersal cost were less successful at dispersing under high tree loss, and this decreased geneflow. The consequences of tree loss for woodland connectivity are influenced by the species dispersal traits, but the consequences for gene flow depends on the arrangement of trees within the landscape. Therefore, the focal landscape must be represented explicitly when predicting the impacts of tree diseases on connectivity for a given species.  相似文献   

2.
The role of terrestrial mammals as seed dispersers of fleshy-fruited plants has only rarely been investigated in temperate regions although recent studies underline the importance of these animals for long-distance seed dispersal. Here we examine the potential role of mammals as seed dispersers of wild cherry (Prunus avium L.) along a gradient of human land-use intensity. We placed camera traps at 21 wild cherry trees to identify the mammal species that visited the trees. We conducted feeding trials to test if the recorded species were legitimate seed dispersers or seed predators and to assess gut passage times. We tested the influence of human land-use intensity by quantifying habitat and landscape structure around the study trees at different spatial scales and analyzing its influence on visitation rates of tree visitors. Red fox (Vulpes vulpes), roe deer (Capreolus capreolus), wild boar (Sus scrofa), marten (Martes spp.) and badger (Meles meles) were identified as seed dispersers of wild cherry, of which wild boar was largely a seed predator. Habitat and landscape structure at local spatial scales (70 m, 500 m radius) had no effect on the total visitation rates of mammals. At larger spatial scales (1.0–10.0 km radius) total visitation rates increased with increasing proportion of extensively used farmland and seminatural habitat in the area. The proportion of forest had no influence on visitation rates. The results suggest that high proportions of extensively used farmland and seminatural habitat increase the visitation and seed dispersal rates of large mammals. Comparing gut passage times with home range sizes and daily travel distances suggests that these mammals have the potential to disperse seeds over long distances and can provide gene flow in fragmented agricultural landscapes.  相似文献   

3.
Reliable estimates of past land cover are critical for assessing potential effects of anthropogenic land-cover changes on past earth surface-climate feedbacks and landscape complexity. Fossil pollen records from lakes and bogs have provided important information on past natural and human-induced vegetation cover. However, those records provide only point estimates of past land cover, and not the spatially continuous maps at regional and sub-continental scales needed for climate modelling.We propose a set of statistical models that create spatially continuous maps of past land cover by combining two data sets: 1) pollen-based point estimates of past land cover (from the REVEALS model) and 2) spatially continuous estimates of past land cover, obtained by combining simulated potential vegetation (from LPJ-GUESS) with an anthropogenic land-cover change scenario (KK10). The proposed models rely on statistical methodology for compositional data and use Gaussian Markov Random Fields to model spatial dependencies in the data.Land-cover reconstructions are presented for three time windows in Europe: 0.05, 0.2, and 6 ka years before present (BP). The models are evaluated through cross-validation, deviance information criteria and by comparing the reconstruction of the 0.05 ka time window to the present-day land-cover data compiled by the European Forest Institute (EFI). For 0.05 ka, the proposed models provide reconstructions that are closer to the EFI data than either the REVEALS- or LPJ-GUESS/KK10-based estimates; thus the statistical combination of the two estimates improves the reconstruction. The reconstruction by the proposed models for 0.2 ka is also good. For 6 ka, however, the large differences between the REVEALS- and LPJ-GUESS/KK10-based estimates reduce the reliability of the proposed models. Possible reasons for the increased differences between REVEALS and LPJ-GUESS/KK10 for older time periods and further improvement of the proposed models are discussed.  相似文献   

4.
Open woodlands are among the biologically richest habitats of the temperate zone. Although open woodlands were much more common in the past and covered large areas of Europe, their original cover and magnitude of their loss remain mostly unknown. Here, we quantify the loss of open woodlands and assess the potential for their restoration in an internationally protected biodiversity hot-spot, floodplain woodlands of lower Thaya and March rivers of Dolní Morava UNESCO Biosphere Reserve in Czech Republic. Aerial photographs from years 1938 and 2009 were used to analyse changes in forest canopy closure across an area of 146 km2 and separately for 270 ha of nature reserves found in the area. Forestry maps and aerial photographs were used to analyse changes in forest age structure. Between 1938 and 2009, expansion of closed-canopy forest reduced open woodlands cover from 41% to 5.7% of total wooded area, or 68.5% to 14.1% in the state reserves respectively. Logging has led to a decrease in mature forest cover from 45% to 26% between 1990 and 2009. State reserves prevented logging, but not open woodlands loss. The magnitude of open woodlands loss parallels that of tropical habitats, but has gone unabated by nature conservation. Opportunities to restore open woodlands and conserve associated biodiversity in the internationally protected (e.g. UNESCO, Natura 2000), mostly state-owned, woodlands are being compromised by rapid logging. Our results also point to the low efficiency of international conservation measures in post-communist members of European Union.  相似文献   

5.
Birds and mammals are important seed dispersers of fleshy-fruited plants. Although their behaviors are different, they frequently consume the same species. Thus to understand the dispersal of fleshy-fruited plants, the contribution of birds and mammals to seed dispersal has to be evaluated. Besides, within birds or mammals, some species may functionally different from others. In this study, we examined seed dispersal of the fleshy-fruited tree Swida controversa focusing on the difference between two frugivore groups (birds and mammals), and differences between species within groups. Collected seeds and S. controversa trees were identified using simple sequence repeat (SSR) genotyping, thus enabling to determine the distance between mother tree and dispersed seeds. The avian species were identified by DNA barcoding of feces, whereas the mammalian species were identified by the shape and smell of feces. Most seeds that fell near or under the maternal trees were dispersed by birds, resulting in short seed dispersal distances (average, 13 m). DNA barcoding detected five taxa of avian dispersers. No differences were detected in seed dispersal distance by different avian taxa (i.e., the distance between dispersed seeds and their maternal trees within the research plot); however the rate of seed immigration from outside the research plot by some avian taxa varied significantly. The seed dispersal distance by mammals was significantly further (127 m; min > 50 m) than that by birds. Additionally, immigrated seeds accounted for approximately two-thirds of mammal-dispersed seeds, indicating that these seeds were from outside the research plot, and that mammals significantly contributed to the long-distance seed dispersal of S. controversa. No differences in seed dispersal distance were detected between different mammalian taxa. Overall, this study revealed that birds and mammals show clearly different seed dispersal patterns, and thus, they play different roles in the regeneration of S. controversa.  相似文献   

6.
The availability of forage resources during the dry season is often a critical factor in determining the distribution and movement of large herbivores. It has long been suspected that the Kamala tree (Mallotus philippinensis) can serve as an indicator of the distribution for Asian elephants during the dry season in northwestern India. However, there is little direct evidence in support of this speculation, especially at a large landscape scale. Here, we predicted the distribution of Kamala trees in the Shivalik landscape of northwestern India based on topographic and bioclimatic variables, as well as satellite-derived vegetation indices and forest canopy height data using a presence-only ecological niche model. We used the area under the receiver operating characteristic curve (AUC) and true skill statistic (TSS) to validate the model. We then examined the relationship between the occurrence probability of Kamala trees and the presence of Asian elephants with data collected during dry seasons between 2010 and 2014 using logistic regression models. Our results showed that the probability of occurrence of Kamala trees was predicted with good accuracy (AUC = 0.88 and TSS = 0.51). The logistic regression models showed that the presence of Asian elephants can be adequately predicted by the occurrence probability of Kamala trees. This result suggests that the distribution of Kamala trees is a good indicator of the presence of Asian elephants during the dry season in the Shivalik landscape. These findings may have major implications for the conservation of Asian elephants, especially in designing wildlife corridors and mitigating human-elephant conflicts.  相似文献   

7.
Zhao D  Li F  Wang R S 《农业工程》2012,32(3):144-149
Soil microbes are affected by various abiotic and biotic factors in urban ecosystem due to land use change. The effects of different land use patterns on soil microbial properties and soil quality are, however, largely unknown. This study compared soil nutrient status, microbial biomass nitrogen and enzyme activities under five different land use patterns—nature forest, park, farmland, street green, and roadside tree sites at various soil depths in Beijing, China. The results showed that soil properties were significantly affected by urban land use patterns and soil depths in the urban environment. Compared to forest sites, soil nutrients were markedly decreased in other land use patterns, except the highest soil organic matter content in roadside tree sites in 0–10 cm soil layer. Soil microbial biomass nitrogen showed the order as follows: nature forest > park > farmland > street green > roadside tree in 0–10 cm soil layer, and it decreased along with the soil depth gradient. Furthermore, urease activity was highest in nature forest and lowest in street green and roadside tree soils in each depth, while the activity of protease ranged between 0.84 and 3.94 mg g?1 with the peak appeared in roadside tree at 30–40 cm soil layers. Nitrate reductase activity was also extremely higher in street green than other land use patterns. Correlation analyses suggested that change of soil microbial biomass and enzyme activity in different land use patterns were mainly controlled by nutrient availability and soil fertility in urban soils.  相似文献   

8.
Spatially well-informed decisions are essential to sustain and regulate processes and ecosystem services (ES), and to maintain the capacity of ecosystems to supply services. However, spatially explicit ES information is often lacking in decision-making, or exists only as ES maps based on categorical land cover data. Remote sensing (RS) opens new pathways to map ES, in particular biophysical ES supply. We developed an observation-based concept for spatially explicit and continuous ES mapping at landscape scale following the biophysical part of the ES cascade. We used Earth observations in combination with in situ data to map ecosystem properties, functions, and biophysical ES supply. We applied this concept in a case study to map two ES: carbon dioxide regulation and food supply. Based on Earth observations and in situ data, we determined the ecosystem property Sun-Induced chlorophyll Fluorescence (SIF) to indicate ecosystem state and applied scaling models to estimate gross primary production (GPP) as indicator for ecosystem functioning and consequently carbon dioxide regulation and food supply as ES.Resulting ES maps showed heterogeneous patterns in ES supply within and among ecosystems, which were particularly evident within forests and grasslands. All investigated land cover classes were sources of CO2, with averages ranging from ‐66 to ‐748 g C m‐2 yr‐1, after considering the harvest of total above ground biomass of crops and the storage organ, except for forest being a sink of CO2 with an average of 105 g C m‐2 yr‐1. Estimated annual GPP was related to food supply with a maize grain yield average of 9.5 t ha‐1 yr‐1 and a sugar beet root yield of 110 t ha‐1 yr‐1. Validation with in situ measurements from flux towers and literature values revealed a good performance of our approach for food supply (relative RMSE of less than 23%), but also some over- and underestimations for carbon dioxide regulation. Our approach demonstrated how RS can contribute to spatially explicit and continuous ES cascade mapping and suggest that this information could be useful for environmental assessments and decision-making in spatial planning and conservation.  相似文献   

9.
Both avian abundance and species richness decline in response to habitat loss and fragmentation. Studying variation in bird song structure across modified landscapes can provide insights into the effects of habitat alterations on coherence of social interactions within populations. Here, we tested whether fragmentation or change of habitat quality within box‐ironbark forest of central Victoria impacted cultural connectivity and song characteristics in fuscous honeyeater, a declining common Australian bird. First, we tested whether geographic distance and/or spatially‐explicit landscape connectivity models can explain patterns of song similarity across fragmented landscapes. We found no evidence that distance or habitat fragmentation impacts the nature and transmission of fuscous honeyeater song, and concluded that acoustic connectivity at the scale of our study is high. Second, we tested whether variation in habitat quality explains variation in song characteristics. In accordance with acoustic adaptation to habitat structure, birds sang longer songs in sites with more large trees and produced longer common song elements in sites with greater tree height. However, the acoustic adaptation hypothesis cannot explain the finding that in less‐disturbed landscapes with higher tree‐cover birds sang songs (and song elements) with higher maximum frequency and wider frequency bandwidth. We also found that birds sing longer and more variable songs of wider frequency bandwidth in less disturbed sites with a greater number of large mature trees, which may represent better feeding resources. Our study suggests that changes in song structure with habitat degradation could signal disturbed population processess, such as changes in the acoustic communication among resident birds.  相似文献   

10.
Landscape connectivity is a key issue of nature conservation and distance parameters are essential for the calculation of patch level metrics. For such calculations the so-called Euclidean and the least cost distance are the most widespread models. In the present work we tested both distance models for landscape connectivity, using connectivity metrics in the case of a grassland mosaic, and the ground beetle Pterostichus melas as a focal species. Our goal was to explore the dissimilarity between the two distance models and the consequent divergence from the calculated values of patch relevance in connectivity. We found that the two distance models calculated the distances similarly, but their estimations were more reliable over short distances (circa 500 m), than long distances (circa 3000 m). The variability in the importance of habitat patches (i.e. patch connectivity indices) was estimated by the difference between the two distance models (Euclidean vs. least cost) according to the patch size. The location of the habitat patches in the matrix seemed to be a more important factor than the habitat size in the estimation of connectivity. The uncertainty of three patch connectivity indices (Integral Index of Connectivity, Probability of Connectance and Flux) became high above a habitat size of 5 ha. Relevance of patches in maintaining connectivity varied even within small ranges depending on the estimator of distance, revealing the careful consideration of these methods in conservation planning.  相似文献   

11.
The spatial structure, functionality and dynamics of forest landscapes in peninsular Spain and the Balearic Islands were compared over the last five decades. Two particular features were studied in the sample sites: forest connectivity for wildlife and areas burnt by wildfires. 191 Squares, each 4 km × 4 km, were selected from the SISPARES (the monitoring framework designed to evaluate the trends in the structure of Spanish rural landscapes) environmental strata. Aerial photographs from 1956, 1984, 1998 and 2008 were interpreted and 11 land cover categories mapped and checked in the field, using a minimum mapping area of one hectare. The Equivalent Connected Area Index was used to assess forest connectivity over the sampling period. Social and economical factors were assessed using indicators of farm intensiveness. The Spanish forest connectivity has improved in the last five decades although two different trends can be identified: the first 40 years are characterized by positive rates of growth whereas the 10 last years are characterized by their stability. Nevertheless the area of burnt land was higher along the first 25 studied years and decreased significantly over the last decade.Our results show the climate is the main driver in the evolution of forest connectivity and burnt area in the forest landscapes, playing a direct role on forest biomass production and wildfire ignition and propagation, as well as an indirect role by keeping vertical and horizontal forest continuity through the landscape spatial pattern. Social and economic factors are very important drivers as well: Rural population density and farm size average have been tested as good indicators of landscape artificiality, highly correlated to wildfire hazard and forest connectivity.Finally, we have pointed out the evolutionary path followed by SISPARES framework as a tool for monitoring rural landscapes. It emphasises on the requirement of a 30 years time window for building-up reliable dynamic multifunctional model.  相似文献   

12.
Changes in geology, sea-level and climate are hypothesised to have been major driving processes of evolutionary diversification (speciation and extinction) in the Australo-Papuan region. Here we use complete species-level sampling and multilocus (one mitochondrial gene, five nuclear loci) coalescent analyses to estimate evolutionary relationships and test hypotheses about the role of changes in climate and landscape in the diversification of the Australo-Papuan butcherbirds and allies (Cracticinae: Cracticus, Strepera, Peltops). Multilocus species trees supported the current classification of the morphologically, ecologically and behaviourally divergent Australian Magpie (Cracticus tibicen (previously Gymnorhina tibicen)) as a member of an expanded genus Cracticus, which includes seven other species with ‘butcherbird’ morphology and behaviour. Non-monophyly of currently recognised species within Peltops and the white-throated butcherbird species-group (C. argenteus, C. mentalis, C. torquatus) at both mtDNA and nuclear loci suggest that a comprehensive taxonomic revision is warranted for both of these groups. The time-calibrated multilocus species tree revealed an early divergence between the New Guinean rainforest-restricted Peltops lineage and the largely open-habitat inhabiting Cracticus (butcherbirds and magpies) plus Strepera (currawongs) lineage around 17–28 Ma, as well as a relatively recent radiation of lineages within Cracticus over the past 8 Ma. Overall, patterns and timings of speciation were consistent with the hypothesis that both the expansion of open sclerophyllous woodlands 25–30 Ma and the formation of extensive grassland-dominated woodlands 6–8 Ma allowed the radiation of lineages adapted to open woodland habitats.  相似文献   

13.
Indicators of landscape condition should be selected based on their sensitivity to environmental changes and their capacity to provide early warning detection of those changes. We assessed the performance of a suite of spatial-pattern metrics selected to quantify the condition of the ridge-slough landscape in the Everglades (South Florida, USA). Spatial pattern metrics (n = 14) that describe landscape composition, geometry and hydrologic connectivity were enumerated from vegetation maps of twenty-five 2 × 2 km primary sampling units (PSUs) that span a gradient of hydrologic and ecological condition across the greater Everglades ecosystem. Metrics were assessed in comparison with field measurements from each PSU of landscape condition obtained from regional surveys of soil elevation, which have previously been shown to capture dramatic differences between conserved and degraded locations. Elevation-based measures of landscape condition included soil elevation bi-modality (BISE), a binary measure of landscape condition, and also the standard deviation of soil elevation (SDSE), a continuous measure of condition. Metric performance was assessed based on the strength (sensitivity) and shape (leading vs. lagging) of the relationship between spatial pattern metrics and these elevation-based measures. We observed significant logistic regression slopes with BISE for only 4 metrics (slough width, ridge density, directional connectivity index – DCI, and least flow cost – LFC). More significant relationships (n = 8 metrics) were observed with SDSE, with the strongest associations for slough density, mean ridge width, and the average length of straight flow, as well as for a suite of hydrologic connectivity metrics (DCI, LFC and landscape discharge competence – LDC). Leading vs. lagging performance, inferred from the curvature of the association obtained from the exponent of fitted power functions, suggest that only DCI was a leading metric of the loss of soil elevation variation; most metrics were indeterminate, though some were clearly lagging. Our findings support the contention that soil elevation changes from altered peat accretion dynamics precede changes in landscape pattern, and offer insights that will enable efficient monitoring of the ridge-slough landscape as part of the ongoing Everglades restoration effort.  相似文献   

14.
Afrotropical ant-following birds are vulnerable to forest loss and disturbance, but critical habitat thresholds regarding their abundance and species richness in human-dominated landscapes, including industrial oil palm plantations, have never been assessed. We measured forest cover through Landsat imagery and recorded species richness and relative abundance of 20 ant-following birds in 48 plots of 1-km2, covering three landscapes of Southwest Cameroon: Korup National Park, smallholder agroforestry areas (with farms embedded in forest), and an industrial oil palm plantation. We evaluated differences in encounter frequency and species richness among landscapes, and the presence of critical thresholds through enhanced adaptive regression through hinges. All species were detected in Korup National Park and the agroforestry landscape, which had similar forest cover (>85%). Only nine species were found in the oil palm plantation (forest cover = 10.3 ± 3.3%). At the 1-km2 scale, the number of species and bird encounters were comparable in agroforests and the protected area: mean species richness ranged from 12.2 ± 0.6 in the park and 12.2 ± 0.6 in the agroforestry matrix to 1.0 ± 0.4 in the industrial oil palm plantation; whereas encounters decreased from 34.4 ± 3.2 to 26.1 ± 2.9 and 1.3 ± 0.4, respectively. Bird encounters decreased linearly with decreasing forest cover, down to an extinction threshold identified at 24% forest cover. Species richness declined linearly by ca. one species per 7.4% forest cover lost. We identified an extinction threshold at 52% forest cover for the most sensitive species (Criniger chloronotus, Dicrurus atripennis, and Neocossyphus poensis). Our results show that substantial proportions of forests are required to sustain complete ant-following bird assemblages in Afrotropical landscapes and confirm the high sensitivity of this bird guild to deforestation after industrial oil palm development. Securing both forest biodiversity and food production in an Afrotropical production landscape may be best attained through a combination of protected areas and wildlife-friendly agroforestry.  相似文献   

15.
Urbanization often has negative impacts on wildlife, nevertheless many species can persist in heavily modified habitats. Understanding factors that promote species persistence in urbanizing landscapes is therefore important for maintaining biodiversity in changing landscapes and may inform more biodiversity-friendly development. We investigated effects of landscape-scale variables on habitat occupancy of Smooth-coated otter (Lutrogale perspicillata) in the Inner Gulf of Thailand. In this internationally important wetland complex, 86% of natural habitats have been altered and are now highly urbanized. We conducted track and sign surveys in 60, 25 km2 grid cells encompassing 1,474 km2. Within each cell, we quantified the landscape cover types including urban areas, natural habitat (predominately thin ribbons of mangrove along waterways), agriculture, aquaculture, and potential prey availability using a GIS and field surveys. We used occupancy models to identify habitat variables that affected probability of detection and occupancy. Estimated otter occupancy, based on the top model, was 0.33 ± 0.07 (95% CI 0.18–0.48) and detection probability was 0.50 ± 0.05 (95% CI 0.41–0.60). Otter occupancy was positively associated with the proportion of natural habitat and the cover of traditional aquaculture ponds, but negatively associated with agriculture and urban cover. The remaining natural patches appear to act as critical refuges for otter, allowing them to persist in an otherwise heavily transformed landscape. Because aquaculture ponds are likely important prey sources for otters, it may lead to conflict with aquaculture farmers. Further studies of feeding and movement patterns in cooperation with aquaculture farmers would be beneficial for developing detailed management plans for the species in this human dominated landscape.  相似文献   

16.
Land-use change is a major driver of the global biodiversity crisis, mainly via the fragmentation and loss of natural habitat. Although land-use changes will accelerate to meet humankind's growing demand for agricultural products, conservation planning rarely considers future land uses and how they may affect the connectivity of ecological networks. Here, we integrate land-use models with landscape fragmentation and connectivity analyses, to assess the effects of past and future land-use changes on the connectivity of protected area networks for a highly dynamic region in southeast Spain. Our results show a continued geographical polarisation of land use, with agricultural intensification and urban development in the coastal areas, and the abandonment of traditional land use in the mountains (e.g., 1100 km2 of natural vegetation are projected to be lost in coastal areas whereas 32 km2 of natural vegetation would recover in interior areas from 1991 to 2015). As a result, coastal protected areas will experience increasing isolation. The connectivity analyses reveal that the two protected area networks in place in the study area, the European “Natura 2000” and the Andalusian “RENPA” networks, include many landscape connectors. However, we identify two areas that currently lack protection but contain several important patches for maintaining the region's habitat connectivity: the northwestern and the southwestern slopes of the Sierra Cabrera and Bédar protected area. Our results highlight the importance of considering future land-use trajectories in conservation planning to maintain connectivity at the regional scale, and to improve the resilience of conservation networks.  相似文献   

17.
Li H Q  Lian Z M  Chen C G 《农业工程》2009,29(6):335-340
The foraging habitat selections of brown-eared pheasant (Crossoptilon mantchuricum) and the common pheasant (Phasianus colchicus) were studied in Huanglongshan Nature Reserve Shaanxi, China. Foraging habitat characteristics were measured on the basis of expected differences between species at 183 sites from November to December 2006 and January 2007. The results showed that both species selected foraging habitats with altitude (<1200 m), conifer forest, half sunny and half shady slope, sunny slope, density of trees (<5 individuals/100 m2), cover of shrub (>50%), visibility class (<10%) and distance to water source (<300 m). However, the brown-eared pheasant selected habitats with cover of trees (30–50%), middle or lower slope location, distance to edge of woods (<300 m) and human disturbance (<500 m), and the selection on density of shrub was not observed, compared to the selections on cover of trees (<30%), lower slope location, distance to edge of woods (<500 m) and human disturbance (<300 m), and density of shrub (>500 individuals/100 m2) for common pheasant. We also found that the common pheasant avoid predators by concealment whereas brown-eared pheasant evade predations by running away strategy.  相似文献   

18.
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters ≥13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration.  相似文献   

19.
Land use and cover changes have been identified as a major factor contributing to shape landscape structure and biodiversity patterns, particulary in areas with a long history of human occupation and habitat fragmentation, such as the Mediterranean landscapes. However, the existing studies on landscape change indicators for Mediterranean areas have mostly focused in Europe, while for other Mediterranean zones, and especially for South America, there is a serious lack of knowledge concerning the impact of landscape dynamics on ecological processes. Further research on this topic is urgently needed, given the high biodiversity levels and the rapidly increasing rates of human modification in the Mediterranean landscapes of South America. For this purpose, we investigated the dynamics of a landscape in the semiarid region of the Mediterranean zone of Chile, and measured the effect of those dynamics on functional connectivity, during a period of about four decades (1975–2011). Landscape connectivity indicators were extracted from a series of Landsat images. The Equivalent Connnected Area index (ECA) was used as indicator of connectivity trends, and was evaluated for three representative distances of seed dispersal in the study area (150 m, 500 m and 1000 m). In addition, the patches that most contribute to maintain the present connectivity, and their roles as connectivity providers, were identified through a set of commensurable indicators: betweenness centrality and the fractions (intra, flux connector) of the Integral Index of Connectivity. We found that these indicators were useful to detect and summarize a number of previously unreported trends in these Mediterranean landscapes. First, population growth and economic development were compatible with an increase in functional connectivity for forest habitats, mainly because the abandonment of marginal agricultural lands and their subsequent conversion to espinals (Acacia caven) triggered vegetation succession towards secondary forests. Second, increased forest connectivity was not associated to a decrease in the characteristic heterogeneity of Mediterranean landscapes. Third, many patches of espinal, despite being commonly regarded as of poor conservation value, were crucial to promote connectivity by acting as stepping stones among other patches with higher habitat quality. The approach here presented provides a combined assessment of landscape structure, function and change that should be valuable and applicable to deliver operational indicators in dynamic landscapes in South America and other Mediterranean regions.  相似文献   

20.
Species distribution models are often used to study the biodiversity of ecosystems. The modelling process uses a number of parameters to predict others, such as the occurrence of determinate species, population size, habitat suitability or biodiversity. It is well known that the heterogeneity of landscapes can lead to changes in species’ abundance and biodiversity. However, landscape metrics depend on maps and spatial scales when it comes to undertaking a GIS analysis.We explored the goodness of fit of several models using the metrics of landscape heterogeneity and altitude as predictors of bird diversity in different landscapes and spatial scales. Two variables were used to describe biodiversity: bird richness and trophic level diversity, both of which were obtained from a breeding bird survey by means of point counts. The relationships between biodiversity and landscape metrics were compared using multiple linear regressions. All of the analyses were repeated for 14 different spatial scales and for cultivated, forest and grassland environments to determine the optimal spatial scale for each landscape typology.Our results revealed that the relationships between species’ richness and landscape heterogeneity using 1:10,000 land cover maps were strongest when working on a spatial scale up to a radius of 125–250 m around the sampled point (circa 4.9–19.6 ha). Furthermore, the correlation between measures of landscape heterogeneity and bird diversity was greater in grasslands than in cultivated or forested areas. The multi-spatial scale approach is useful for (a) assessing the accuracy of surrogates of bird diversity in different landscapes and (b) optimizing spatial model procedures for biodiversity mapping, mainly over extensive areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号