首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
The structure of the carpel has been studied in flowers of the Neodregeae ( Dipidax and Neodregea ). Except in D. triquetra , which is syncarpous, the carpels are united below and free above. A dorsal bundle, two or more lateral bundles, and two placental bundles supply each multiovulate carpel. The six placental bundles of the tricarpellate pistil are united by twos in the lower part of the pistil, forming three opposite compound placental bundles in most species of Dipidax and three alternate bundles in D. triquetra and Neodregea : In the latter, an additional septal bundle continues upward as a branch from the compound placental bundle. Sutural openings are usually short and restricted to the top of the locule. All the Neodregeae have monotegmic ovules.  相似文献   

2.
The two genera of Buxbaum's tribe Wurmbaeae, Anguillaria and Wurmbea , have multiovulate carpels. There are deep septal indentations between the carpels of Anguillaria , but the wings of adjoining carpels are fused to solid septa in most species of Wurmbea. In Anguillaria the carpels have open sutures or prominent commissural markings; in Wurmbea the carpels generally lack these characteristics, and some species have a vascularized, columella-like axis in the centre of the pistil. In both genera there are a dorsal bundle, lateral bundles, and two placental bundles in each carpel. At the inner edge of the septum there are one or two septal bundles in Anguillaria and one or none in Wurmbea. The ovules are monotegmic, the integument and funiculus being partly fused in Anguillaria and mostly fused in Wurmbea. An obturator is present in Anguillaria but absent from most species of Wurmbea.  相似文献   

3.
The pistil of Androcymbium closely resembles that of Colchicum : it is tricarpellate usually, syncarpous and multiovulate, and the carpels of most species have open sutures and bitegmic ovules. The only species with closed carpellary sutures, A. dregei has monotegmic ovules. There are always three dorsal bundles and three compound septal bundles, which latter may bifurcate into simple septal bundles. Six placental bundles (two per carpel) are differentiated, either separately from the compound septal bundles or as lateral branches of them. A statistical evaluation of 47 species (6 genera) of the hemisyncarpous Wurmbaeoideae shows a significant tendency for bitegmic ovules and two simple septal bundles per septum to be associated with open sutures and for monotegmic ovules and no septal bundles to be associated with closed sutures.  相似文献   

4.
Three genera of the Uvularieae (Kreysigia, Schelhammera, Uvularia) have tricarpellate, syncarpous pistils. Ventral bundles (presumably the united simple septal and placental bundles of a carpellary wing) may be present in Kreysigia and Schelhammera. In Kreysigia the two presumptive ventral bundles from adjoining carpels are fused basipetally in each septum. The septal bundles of the other two genera are either simple (Schelhammera) or in part compound (united) below and simple (separate) above (Uvularia) , hence fused acropetally. In Uvularia , the dorsal bundle of the carpel and the median bundle of the tepal are uniquely tripartite and probably homologous. No raphides were found in the carpels of these genera.  相似文献   

5.
The genera of the Veratreae, a tribe of the Melanthioideae, have many features in common: there are usually many ovules, except for Amianthium (with 2 4), arranged in 2 -4 longitudinal placental rows per carpel; all are bitegmic, basipetal, and campylotropous. Of 37 species examined, only 2 have open sutures at the lowermost level of ovular insertion, but 13 species have holes in the centre of the pistil. These holes may represent possible stages in the evolutionary closure of previously open sutures. Most flowers were epigynous, only 11 being hypogynous-perigynous. The tribe as a whole is marked by the presence of 3 composite (heterologous) vascular bundles, composed of joined staminal and tepallary bundles alone and 3 composite bundles, as above, fused to a dorsal bundle. The bundles were united below the locular base in all genera except Schoenocaulon and Toxicoscordion. Two major kinds of central cylinder arrangement occurred at the level of the lowermost ovular insertion: either 6 inverted ventral bundles or 6 simple septal bundles, with normally arranged (or sometimes inverted) xylem and phloem centrifugally located and 6 simple placental bundles, with inverted xylem and phloem, at the centripetal end of the septum. Generally each septal bundle united with its nearest adjoining placental bundle about the mid-locular level.  相似文献   

6.
The pistils of the Glorioseae (Gloriosa, Littonia, Sandersonia) are generally tricarpellate and alike. Virtually all have closed sutures at flowering; they have many ovules, some of which are barely bitegmic, with inner integuments often nearly fused with nucellar remnants; and there is usually but one compound septal bundle in the inner edge of a septum. In two species of Littonia , the compound septal bundle divided to form two simple septal bundles; but in many other plants it remained undivided, and in some it died out, still undivided, below the locular apex. Most of the placental and septal bundles are vascularized in large part by three alternate (compound septal) bundles at the base of the locules and sometimes by branches from the lateral bundles. Three large (compound) placental bundles are formed just below the lowermost ovular insertion, and each then divides in two to furnish ovular branches along their ascent. Occasional auxiliary placental bundles lie between the septal bundle and the placental bundles in the septum (Gloriosa, Sandersonia).  相似文献   

7.
The pistil in the flowers of the Iphigenieae (Camptorrhiza, Iphigenia, Omithoglossum) is usually tricarpellate. The carpels are coherent generally, with closed sutures and seemingly bitegmic ovules. Camptorrhiza differs from the others in having a single compound style. The pistils of most species of these genera have a common vascular structure: three dorsal bundles which run into the style(s), a number of lateral bundles, six placental bundles, and up to three compound septal bundles. The latter nine bundles usually differentiate from a central vascular plexus above the base of the locules. There may be fewer than three septal bundles in some specieS. When present, the septal bundles usually die out in the ovuliferous region, but in some cases they persist to the apex of the locules.  相似文献   

8.
Most Helonieae have only slight septal indentations between the three carpels: in Xerophyllum deep septal clefts extend centripetally and completely enclosed, narrow septal pockets occur in Metanarthecium . Other unique generic features are found: tepallary-staminal nectarial glands in Heloniopsis , zygomorphy in Chionographis , and dioecism in Chamaelirium . The carpels are biovulate in Chionographis; there are two to several ovules per carpel in Xerophyllum; 8–12 ovules occur in the carpel of Chamaelirium; and numerous bitegmic ovules are borne in many longitudinal rows on enlarged placentae in Helonias, Heloniopsis, Metanarthecium , and Ypsilandra . Except for Metanarthecium , this last-named group of genera displays a near ring composed of 'accessory' placental bundles and a compound septal bundle (with normally oriented xylem and phloem) in cross-section at the inner edge of each septum. Ventral bundles occur in the other four genera.  相似文献   

9.
The pistil of Colchicum is syncarpous, the carpels having open sutures or well-marked commissures and many bitegmic ovules of variable orientation. Although the vascularization of the carpel is also variable, there are usually three dorsal bundles and three alternate, septal bundles at the base of the pistil, with occasionally some placental bundles at that level. More often the placental bundles, differentiating basipetally, appear to establish connections with the septal bundles higher up, at the lowermost ovular insertion level. The septal bundles divide in two more frequently in pistils in which the carpellary suture is open than in those in which it is closed.  相似文献   

10.
The floral vascular systems are compared among all six taxa of Saururaceae, including the two species of Gymnotheca which have not been studied previously. All are zygomorphic (dorsiventrally symmetrical), not radial as sometimes reported, in conformity with dorsiventral symmetry during organogenesis. Apocarpy in the two species of Saururus (with four carpels and six free stamens) is accompanied by a vascular system of four sympodia, each of which supplies a dorsal carpellary bundle, two ventral carpellary bundles, and one or two stamen traces. The level at which the ventral bundles diverge is the major difference in vasculature between the two species. The other four taxa are all syncarpous, and share some degree of stamen adnation and/or connation. The vascular systems also show varying degrees of fusion. The two species of Gymnotheca (with four carpels and six stamens) are very similar to each other; in both, the ventral traces of adjacent carpels fuse to form a placental bundle, which supplies the ovules and then splits into a pair of ventral strands. The flowers of Houttuynia cordata (with only three carpels and three adnate stamens) are sessile. Each flower is vascularized by three sympodia; the median adaxial sympodium is longer than the other two sympodia before it diverges to supply the adaxial organs. Three placental bundles also are formed in Houttuynia, but the three bundles differ in their origin. The median abaxial placental bundle diverges at the same level as the three sympodial bundles of the flower, while the other two lateral placental bundles diverge at a higher level from the median adaxial sympodium. Anemopsis californica, with an inferior ovary of three carpels, sunken in the inflorescence axis, and six stamens adnate to the carpels, has a vascular system very similar to that of Houttuynia cordata. The modular theory of floral evolution is criticized, on the bases of the known behavior of apical meristems and properties of vascular systems. The hypothesis is supported that saururaceous plants may represent a line of angiosperms which diverged very early.  相似文献   

11.
The pomoid genera, Eriobotrya, Photinia, Pourthiaea, Raphiolepis, Stranvaesia, and Heteromeles, have compound inflorescences and biovulate carpels which become papery at maturity. The carpels of all of these except Heteromeles are fused with one another. There are open sutures in the carpels of Heteromeles, Photinia, Pourthiaea, and Raphiolepis, and in these four genera the extent of fusion of the ovular bundle with the wing bundle is related directly to the state of tegumentary fusion and to the extent of fusion of the carpel with the floral cup. In those species of Eriobotrya and Stranvaesia with closed sutures the integuments tend to be fused, as do the ovular and wing bundles, and the carpels are adnate with the floral cup for a considerable distance; in species with open sutures the integuments tend to be free, the ovular and wing bundles tend to be separate, and the extent of fusion of carpel with floral cup tends to be shorter. In genera with connate carpels the wing bundles of adjoining carpels may also be fused. The greatest extent of fusion occurs in Eriobotrya and Raphiolepis, in which there may also be attenuation and disappearance of the wing bundles above the region of ovular insertion and even reduction and disappearance of the carpellary margin.  相似文献   

12.
The young pistils in the melanthioid tribes, Hewardieae, Petrosavieae and Tricyrteae, are uniformly tricarpellate and syncarpous. They lack raphide idioblasts. All are multiovulate, with bitegmic ovules. The Petrosavieae are marked by the presence of septal glands and incomplete syncarpy. Tepals and stamens adhere to the ovary in the Hewardieae and the Petrosavieae but not in the Tricyrteae. Two vascular bundles occur in the stamens of the Hewartlieae and Tricyrtis latifolia. Ventral bundles in the upper part of the ovary of the Hewardieae are continuous with compound septal bundles and placental bundles in the lower part. Putative ventral bundles occur in the alternate position in the Tricyrteae and putative placental bundles in the opposite. position in the Petrosavieae. The dichtomously branched stigma in each carpel of the Tricyrteae is supplied by a bifurcated dorsal bundle.  相似文献   

13.
The flower of Hydrocleis nymphoides consists of three sepals which arise in spiral succession, three simultaneously arising petals, numerous stamens and staminodia which arise in centrifugal order, and six carpels. A residual apex remains at maturity. The first-formed members of the androecium are stamens and the later-formed members are staminodia which develop below the stamens and which become outwardly displaced during expansion of the receptacle. The androecium is supplied by branching vascular trunk bundles. The carpels are completely open but the ventral margins are slightly conduplicately appressed basally. A single dorsal bundle provides the stigmatic area with vascular tissue, and a network of small placental bundles supplies the numerous laminar ovules. There are no clearly defined ventral bundles. It is suggested that Hydrocleis nymphoides is neither the most primitive nor the most advanced member of the family. A pattern of phylogenetic reduction in the androecium and receptacle is suggested for the entire family.  相似文献   

14.
The floral anatomy and morphology of 26 species from the Saxifragoideae and three from the Iteoideae are described and compared. The flowers of the Saxifragoideae are predominantly actinomorphic, partially epigynous and/or perigynous, and pentamerous, with two carpels which bear numerous ovules. There is usually some degree of independence between carpels, and the normally separate styles possess both a canal and transmitting tissue. Generally, staminodia are absent and nectariferous tissue, which is not vascularized, is present. The subfamily is characterized by large multicellular trichomes with globular, often glandular, heads. Placentation may be parietal, axile, or transitional between the two; parietal appears to be a derived condition in the subfamily. The vascular cylinder in the pedicel generally consists of several to many discrete bundles from which diverge ten compound traces at the base of the receptacle, leaving an inner cylinder of vascular strands that coalesce at a higher level into either as many ventral bundles as carpels or twice that number. In the former case, each ventral bundle consists of one-half of the vascular supply to each adjacent carpel and separates into individual ventral strands in the distal half of the ovary. The ventral bundles provide vascular traces to the ovules and, along with the dorsals, extend up the style to the stigma. Each trace diverging in a sepal plane typically supplies one or more carpel-wall bundles, a median sepal bundle, and a stamen bundle. Each petal-plane trace usually provides one or more carpel-wall bundles, a lateral trace to each adjacent sepal, a petal bundle and, in flowers with ten stamens, a stamen bundle. Dorsal carpel bundles are usually recognizable and may originate from traces in either perianth plane. While the position of Ribes remains problematical, its floral structure does not easily exclude it from the Saxifragoideae. Floral structure in the Iteoideae is remarkably similar to that in the Saxifragoideae, the main differences being a lesser degree of independence between carpels, generally narrower placentae with somewhat fewer ovules, and the presence of only unicellular, acutely pointed epidermal hairs as opposed to the relatively complex, multicellular trichomes prevalent in the Saxifragoideae.  相似文献   

15.
Structure of the gynoecium is described in two species of Bakeridesia, subgenus Bakeridesia (Malvaceae, tribe Malveae). The dorsal wall of each carpel bears a winglike projection with a marginal pair of pubescent, bluntly dentate wings. The projection arises as a single, solid ridge of tissue after the ovules are initiated and after the ventral carpellary margins are fused with the receptacle. Two multiseriate layers of fiber-sclereids line each locule and continue into the winglike projection where they are separated by parenchyma. Gynoecial vascularization is described in detail. The richly vascularized carpels are supplied by five traces: a median dorsal trace, which bifurcates into two dorsal bundles; two lateral traces; and two ventral traces. Adjacent ventral traces, lateral traces, and septal bundles are fused—i.e., they are held in common by neighboring carpels. The presence of lateral carpellary traces may be a primitive character in the tribe Malveae.  相似文献   

16.
The multi-ovulate pomoids, Chaenomeles, Cydonia, and Docynia, all have closed sutures and extensive fusion between carpel and floral cup and between ovular and wing bundles. Although the ovules in Docynia are generally apotropic and few in number (4–7), the ovules in the other two genera are pleurotropic and numerous (15–48). A statistical treatment of the whole tribe of Pomoideae shows that in carpels with open sutures ovular and wing bundles definitely tend to be separate while in those with closed sutures these bundles tend to be fused. To a lesser degree carpels with open sutures also tend to have bitegmic ovules, separate carpels, and a lesser extent of fusion between carpel and floral cup, while carpels with closed sutures tend to have monotegmic ovules, united carpels, and a greater extent of fusion between carpel and floral cup.  相似文献   

17.
A survey of species of the prunoid genera, Maddenia and Pygeum, and of the genus Osmaronia has been made. The ovules of all are pendent, campylotropous, and epitropic. In the prunoids, the ovular supply is intimately connected with a central vascular plexus in the base of the carpel; that plexus is absent from Osmaronia. The prunoid carpels are marked by an extensive degree of fusion among the ovular and wing bundles, by fusion of the sutural margins, by fusion of the 2 integuments of the ovule to a single massive one, and by the presence of 3 or 5 well-developed bundles in the base. The carpel of Osmaronia also has a strongly fused bipartite ovular supply, separate bundles of which, however, become very much attenuated before reaching the funiculus; it has independent ovular and wing bundles, completely separate carpellary margins, 2 clearly separate integuments in the ovule, and 6 distinctive bundles in the carpel base. At the funiculus, the wing bundle of Osmaronia is connected with the adjoining weak ovular bundle by a well-developed vascular branch. Various particularities in the morphology of Osmaronia lend support to its segregation into a unique tribe, the Osmaronieae of Rydberg.  相似文献   

18.
Twenty-two genera representing sixty-two species of Cunoniaceae and Davidsonia were examined with respect to floral anatomy. Sepals are vascularized by three traces with the lateral traces of adjacent sepals united. Pancheria is unique for the family with species in which the sepals are vascularized by a single, undivided bundle. Petals, when present, and stamens, are uniformly one-trace structures. A general tendency exists within the family for the principal floral bundles to unite in various ways, with fusions evident between calyx, corolla, and androecial vascular supplies. Carpel number ranges from two to five and the gynoecium is generally surrounded by a prominent disc. Gynoecia of Ceratopetalum and Pullea are “half-inferior.” The number of ovules per carpel locule ranges from one to numerous. Ventral carpel sutures range from open to completely sealed at the level of placentation. Carpels of the apocarpous genus Spiraeanthemum (incl. Acsmithia) are vascularized by a dorsal bundle and either three or four bundles constituting the ovular and wing vasculation in the ventral position, a condition unlike other members of the family. Ovules are supplied by the median ventral bundle. More advanced bicarpellate gynoecia within the family are predominately vascularized by a dorsal and two ventral bundles although a variable number of additional lateral wall traces may be present. A major trend exists toward fusion of the ventral bundles of adjacent carpels in the ovary of both bicarpellate and multicarpellate plants. At the base of the styles the fused ventral strands separate and extend along with the dorsal carpellary bundles into styles of adjacent carpels. In Pullea the ventral bundles terminate within the ovules. The united ventral carpellary bundles in Aphanopetalum, Gillbeea, and Aistopetalum lie in the plane of the septa separating adjacent carpels. Ovules are vascularized by traces originating from the vascular cylinder at the base of the gynoecium or by traces branching from the ventral bundles. Ovular traces in each carpel are united, or remain as discrete bundles, prior to entering the placenta. Tannin and druses are common throughout all floral parts. Although floral anatomy generally supports the position of Cunoniaceae near Saxifragaceae and Davidsoniaceae, the evolutionary relationship of the Cunoniaceae to the Dilleniaceae is uncertain.  相似文献   

19.
The gynoecium is syncarpous in all Ochnaceae. In the Ochnoideae carpels are peltate with a conventional cross-zone bearing one ovule, or, in Lophira , a very broad cross-zone with an horizontal ovular row. In Ochna and Brackenridgea , the style is gynobasic, each carpel develops transmitting tissue on its morphologically dorsal surface, and this tissue lines a canal or originates a solid inner strand in each carpel at style level. The style is tubular, with an inner cuticle, and compound, each component with its own transmitting tissue. In Ouratea the style is solid with a single compound transmitting strand. In Lophira and Elvasia the transmitting tissue seems to be developed by the morphologically ventral carpellary surfaces. Ovules are unitegmic with a bivalent integument.
In the Sauvagesioideae carpels are peltate, but with ovules above the cross-zones, on margins of the symplicate zone. In Euthemis , there is one ovule on each side of, and close to, each cross-zone. The single stylar canal is bounded by the morphologically dorsal carpellary surfaces. In Sauvagesia ovules occur on both sides of the cross-zones but most of them are above on carpel margins, as are all ovules of Cespedesia. The stylar canal of Sauvagesia is bounded by the ventral carpel surfaces, three strips of the outer surface passing inside at the sutures and developing into transmitting tissue. The stylar canal of Cespedesia is bounded by the dorsal carpel surfaces. The gynoecium of Wallacea has two epeltate carpels with a laminar placentation, the carpel margins being displaced on to the topographically ventral carpel surfaces with a row of ovules along each margin. Ovules are bitegmic.
The Ochnoideae, which shows relationships with the Rutaceae, Meliaceae, Simaroubaceae and Hippocastanaceae, is more advanced than the Sauvagesioideae, which clearly belongs in the Violales. The Ochnaceae is to be placed in the Violales.  相似文献   

20.
Sterling, C. (U. California, Davis.) The affinities of Prinsepia (Rosaceae). Amer. Jour. Bot. 50(7): 693–699. Illus. 1963.—Anatomical study of the carpels of 4 species of Prinsepia has shown that at flowering the 2 ovules are erect and pleurotropic. The funiculus is on the dorsal and lower side of the ovule; the micropyle faces a large obturator on the ventral side. The carpellary margins are separated by a fissure below the funicular insertion, but above this level they are fused. The style is laterally inserted on the ventral face of the carpel; it is vascularized only by the wing bundles and the recurving dorsal bundle. At the base of the ovary, 2 ovular bundles depart from the vascular cylinder and run separately, each to its respective ovule. In carpel morphology, ovular position, ovule structure, and vascular anatomy, Prinsepia is not a prunoid type. Although its features on the whole resemble those of chrysobalanoid plants, there are notable differences. Consequently, Prinsepia is assigned to a new subfamilial group in the Rosaceae, the Prinsepioideae. Some phylogenetic considerations are discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号