首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short-term assays have suggested that RNA interference (RNAi) may be a powerful new method for intracellular immunization against human immunodeficiency virus type 1 (HIV-1) infection. However, RNAi has not yet been shown to protect cells against HIV-1 in long-term virus replication assays. We stably introduced vectors expressing small interfering RNAs (siRNAs) directed against the HIV-1 genome into human T cells by retroviral transduction. We report here that an siRNA directed against the viral Nef gene (siRNA-Nef) confers resistance to HIV-1 replication. This block in replication is not absolute, and HIV-1 escape variants that were no longer inhibited by siRNA-Nef appeared after several weeks of culture. These RNAi-resistant viruses contained nucleotide substitutions or deletions in the Nef gene that modified or deleted the siRNA-Nef target sequence. These results demonstrate that efficient inhibition of HIV-1 replication through RNAi is possible in stably transduced cells. Therefore, RNAi could become a realistic gene therapy approach with which to overcome the devastating effect of HIV-1 on the immune system. However, as is known for antiviral drug therapy against HIV-1, antiviral approaches involving RNAi should be used in a combined fashion to prevent the emergence of resistant viruses.  相似文献   

2.
Synthetic small interfering RNAs (siRNAs) have been shown to induce the degradation of specific mRNA targets in human cells by inducing RNA interference (RNAi). Here, we demonstrate that siRNA duplexes targeted against the essential Tat and Rev regulatory proteins encoded by human immunodeficiency virus type 1 (HIV-1) can specifically block Tat and Rev expression and function. More importantly, we show that these same siRNAs can effectively inhibit HIV-1 gene expression and replication in cell cultures, including those of human T-cell lines and primary lymphocytes. These observations demonstrate that RNAi can effectively block virus replication in human cells and raise the possibility that RNAi could provide an important innate protective response, particularly against viruses that express double-stranded RNAs as part of their replication cycle.  相似文献   

3.
In the early events of human immunodeficiency virus type 1 (HIV-1) infection, immature dendritic cells (DCs) expressing the DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) receptor capture small amounts of HIV-1 on mucosal surfaces and spread viral infection to CD4(+) T cells in lymph nodes (22, 34, 45). RNA interference has emerged as a powerful tool to gain insight into gene function. For this purpose, lentiviral vectors that express short hairpin RNA (shRNA) for the delivery of small interfering RNA (siRNA) into mammalian cells represent a powerful tool to achieve stable gene silencing. In order to interfere with DC-SIGN function, we developed shRNA-expressing lentiviral vectors capable of conditionally suppressing DC-SIGN expression. Selectivity of inhibition of human DC-SIGN and L-SIGN and chimpanzee and rhesus macaque DC-SIGN was obtained by using distinct siRNAs. Suppression of DC-SIGN expression inhibited the attachment of the gp120 envelope glycoprotein of HIV-1 to DC-SIGN transfectants, as well as transfer of HIV-1 to target cells in trans. Furthermore, shRNA-expressing lentiviral vectors were capable of efficiently suppressing DC-SIGN expression in primary human DCs. DC-SIGN-negative DCs were unable to enhance transfer of HIV-1 infectivity to T cells in trans, demonstrating an essential role for the DC-SIGN receptor in transferring infectious viral particles from DCs to T cells. The present system should have broad applications for studying the function of DC-SIGN in the pathogenesis of HIV as well as other pathogens also recognized by this receptor.  相似文献   

4.
5.
Short interfering RNAs (siRNAs) that target viral genes can efficiently inhibit human immunodeficiency virus type 1 (HIV-1) replication. Nevertheless, there is the potential for viral escape, particularly with a highly mutable target such as HIV-1. We present a novel strategy for anticipating and preventing viral escape using second-generation siRNAs. The evolutionary capacity of HIV-1 was tested by exerting strong selective pressure on a highly conserved sequence in the HIV-1 genome. We assayed the antiviral efficacy of five overlapping siRNAs directed against an essential region of the HIV-1 protease. Serial viral transfers in U87-CD4-CXCR4 cells were performed using four of the siRNAs. This procedure was repeated until virus breakthrough was detected. After several serial culture passages, resistant virus with a single point mutation in the targeted region was detected in the culture supernatants. The emergence of resistant virus was confirmed by molecular cloning and DNA sequencing of viral RNA. The most common escape route was the D30N mutation. Importantly, the addition of a second-generation siRNA that matched the D30N mutation restored viral inhibition and delayed development of escape variants. Passages performed with both siRNAs prevented the emergence of the D30N escape mutant and forced the virus to develop new escape routes. Thus, second-generation siRNAs can be used to block escape from RNA interference (RNAi) and to search for new RNAi escape routes. The protocol described here may be useful for exploring the sequence space available for HIV-1 evolution and for producing attenuated or deleterious viruses.  相似文献   

6.
HIV-1 utilizes cellular factors for efficient replication. The viral RNA is different from cellular mRNAs in many aspects, and is prone to attacks by cellular RNA quality control systems. To establish effective infection, the virus has evolved multiple mechanisms to protect its RNA. Here, we show that expression of the Y-box binding protein 1 (YB-1) enhanced the production of HIV-1. Downregulation of endogenous YB-1 in producer cells decreased viral production. YB-1 increased viral protein expression by stabilizing HIV-1 RNAs. The stem loop 2 in the HIV-1 RNA packaging signal was mapped to be the YB-1-responsive element. Taken together, these results indicate that YB-1 stabilizes HIV-1 genomic RNA and thereby enhances HIV-1 gene expression and viral production.  相似文献   

7.
Development of multigene and regulated lentivirus vectors   总被引:4,自引:0,他引:4       下载免费PDF全文
Reiser J  Lai Z  Zhang XY  Brady RO 《Journal of virology》2000,74(22):10589-10599
  相似文献   

8.
siRNA-directed inhibition of HIV-1 infection   总被引:133,自引:0,他引:133  
RNA interference silences gene expression through short interfering 21 23-mer double-strand RNA segments that guide mRNA degradation in a sequence-specific fashion. Here we report that siRNAs inhibit virus production by targeting the mRNAs for either the HIV-1 cellular receptor CD4, the viral structural Gag protein or green fluorescence protein substituted for the Nef regulatory protein. siRNAs effectively inhibit pre- and/or post-integration infection events in the HIV-1 life cycle. Thus, siRNAs may have potential for therapeutic intervention in HIV-1 and other viral infections.  相似文献   

9.
RNA interference (RNAi) is now widely used for gene silencing in mammalian cells. The mechanism uses the RNA-induced silencing complex, in which Dicer, Ago2, and the human immunodeficiency virus type 1 (HIV-1) TAR RNA binding protein (TRBP) are the main components. TRBP is a protein that increases HIV-1 expression and replication by inhibition of the interferon-induced protein kinase PKR and by increasing translation of viral mRNA. After HIV infection, TRBP could restrict the viral RNA through its activity in RNAi or could contribute more to the enhancement of viral replication. To determine which function will be predominant in the virological context, we analyzed whether the inhibition of its expression could enhance or decrease HIV replication. We have generated small interfering RNAs (siRNAs) against TRBP and found that they decrease HIV-1 long terminal repeat (LTR) basal expression 2-fold, and the LTR Tat transactivated level up to 10-fold. In the context of HIV replication, siRNAs against TRBP decrease the expression of viral genes and inhibit viral production up to fivefold. The moderate increase in PKR expression and activation indicates that it contributes partially to viral gene inhibition. The moderate decrease in micro-RNA (miRNA) biogenesis by TRBP siRNAs suggests that in the context of HIV replication, TRBP functions other than RNAi are predominant. In addition, siRNAs against Dicer decrease viral production twofold and impede miRNA biogenesis. These results suggest that, in the context of HIV replication, TRBP contributes mainly to the enhancement of virus production and that Dicer does not mediate HIV restriction by RNAi.  相似文献   

10.
11.
12.
We performed the screening to find the novel host factors affecting human immunodeficiency virus type-1 (HIV-1) replication using the siRNA mini-library consisted with 257 siRNAs directed against cellular genes. J111 cells, a human acute monocytic leukemia cell line, were transfected with individual siRNA, followed by either infected or transfected with the HIV-1 molecular clone with luciferase reporter gene in 96-well plate format. The results showed that six siRNAs significantly enhanced the HIV-1 replication in J111 cells, indicating that the target cellular genes of those siRNAs may negatively regulate HIV-1 replication in normal cell culture condition. We also discuss the possible mechanisms by which those cellular proteins regulate viral replication.  相似文献   

13.
14.
Design of extended short hairpin RNAs for HIV-1 inhibition   总被引:6,自引:1,他引:5  
RNA interference (RNAi) targeted towards viral mRNAs is widely used to block virus replication in mammalian cells. The specific antiviral RNAi response can be induced via transfection of synthetic small interfering RNAs (siRNAs) or via intracellular expression of short hairpin RNAs (shRNAs). For HIV-1, both approaches resulted in profound inhibition of virus replication. However, the therapeutic use of a single siRNA/shRNA appears limited due to the rapid emergence of RNAi-resistant escape viruses. These variants contain deletions or point mutations within the target sequence that abolish the antiviral effect. To avoid escape from RNAi, the virus should be simultaneously targeted with multiple shRNAs. Alternatively, long hairpin RNAs can be used from which multiple effective siRNAs may be produced. In this study, we constructed extended shRNAs (e-shRNAs) that encode two effective siRNAs against conserved HIV-1 sequences. Activity assays and RNA processing analyses indicate that the positioning of the two siRNAs within the hairpin stem is critical for the generation of two functional siRNAs. E-shRNAs that are efficiently processed into two effective siRNAs showed better inhibition of virus production than the poorly processed e-shRNAs, without inducing the interferon response. These results provide building principles for the design of multi-siRNA hairpin constructs.  相似文献   

15.
Small interfering RNAs (siRNAs) can induce potent gene silencing by degradation of cognate mRNA. However, in dividing cells, the silencing lasts only 3 to 7 days, presumably because of siRNA dilution with cell division. Here, we investigated if sustained siRNA-mediated silencing of human immunodeficiency virus type 1 (HIV-1) is possible in terminally differentiated macrophages, which constitute an important reservoir of HIV in vivo. CCR5, the major HIV-1 coreceptor in macrophages, and the viral structural gene for p24 were targeted either singly or in combination. When transfected 2 days prior to infection, both CCR5 and p24 siRNAs effectively reduced HIV-1 infection for the entire 15-day period of observation, and combined targeting of both genes abolished infection. To investigate whether exogenously introduced siRNA is maintained stably in macrophages, we tested the kinetics of siRNA-mediated viral inhibition by initiating infections at various times (2 to 15 days) after transfection with CCR5 and p24 siRNAs. HIV suppression mediated by viral p24 siRNA progressively decreased and was lost by day 7 posttransfection. In contrast, viral inhibition by cellular CCR5 knockdown was sustained even when transfection preceded infection by 15 days, suggesting that the continued presence of target RNA may be needed for persistence of siRNA. The longer sustenance of CCR5 relative to p24 siRNA in uninfected macrophages was also confirmed by detection of internalized siRNA by modified Northern blot analysis. We also tested the potential of p24 siRNA to stably silence HIV in the setting of an established infection where the viral target gene is actively transcribed. Under these circumstances, long-term suppression of HIV replication could be achieved with p24 siRNA. Thus, siRNAs can induce potent and long-lasting HIV inhibition in nondividing cells such as macrophages.  相似文献   

16.
17.
Acute human immunodeficiency virus type 1 (HIV-1) replication in astrocytes produces minimal new virus particles due, in part, to inefficient translation of viral structural proteins despite high levels of cytoplasmic viral mRNA. We found that a highly reactive double-stranded (ds) RNA-binding protein kinase (PKR) response in astrocytes underlies this inefficient translation of HIV-1 mRNA. The dsRNA elements made during acute replication of HIV-1 in astrocytes triggers PKR activation and the specific inhibition of HIV-1 protein translation. The heightened PKR response results from relatively low levels of the cellular antagonist of PKR, the TAR RNA binding protein (TRBP). Efficient HIV-1 production was restored in astrocytes by inhibiting the innate PKR response to HIV-1 dsRNA with dominant negative PKR mutants, or PKR knockdown by siRNA gene silencing. Increasing the expression of TRBP in astrocytes restored acute virus production to levels comparable to those observed in permissive cells. Therefore, the robust innate PKR antiviral response in astrocytes results from relatively low levels of TRBP expression and contributes to their restricted infection. Our findings highlight TRBP as a novel cellular target for therapeutic interventions to block productive HIV-1 replication in cells that are fully permissive for HIV-1 infection.  相似文献   

18.
Chikungunya has emerged as one of the most important arboviral infection of public health significance. Recently several parts of Indian Ocean islands and India witnessed explosive, unprecedented epidemic. So far, there is no effective antiviral or licensed vaccine available against Chikungunya infection. RNA interference mediated inhibition of viral replication has emerged as a promising antiviral strategy. In this study, we examined the effectiveness of small interfering RNAs (siRNAs) against the inhibition of Chikungunya virus replication in Vero cells. Two siRNAs against the conserved regions of nsP3 and E1 genes of Chikungunya virus were designed. The siRNA activity was assessed by detecting both the infectious virus and its genome. The results indicated a reduction of virus titer up to 99.6% in siRNA transfected cells compared to control. The viral inhibition was most significant at 24 h (99%), followed by 48 h (65%) post infection. These results were also supported by the quantitative RT-PCR assay revealing similar reduction in Chikungunya viral genomic RNA. The siRNAs used had no effect on the expression of house keeping gene indicating non-interference in cellular mechanism. The specific and marked reduction in viral replication against rapidly replicating Chikungunya virus achieved in this study offers a potential new therapeutic approach. This is the first report demonstrating the effectiveness of siRNA against in vitro replication of Chikungunya virus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号