首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and fatty acid levels on pancreatic beta-cell function and survival. Significant progress has been made in recent years towards a better understanding of the cellular and molecular basis of glucolipotoxicity in the beta cell. The permissive effect of elevated glucose on the detrimental actions of fatty acids stems from the influence of glucose on intracellular fatty acid metabolism, promoting the synthesis of cellular lipids. The combination of excessive levels of fatty acids and glucose therefore leads to decreased insulin secretion, impaired insulin gene expression, and beta-cell death by apoptosis, all of which probably have distinct underlying mechanisms. Recent studies from our laboratory have identified several pathways implicated in fatty acid inhibition of insulin gene expression, including the extracellular-regulated kinase (ERK1/2) pathway, the metabolic sensor Per-Arnt-Sim kinase (PASK), and the ATF6 branch of the unfolded protein response. We have also confirmed in vivo in rats that the decrease in insulin gene expression is an early defect which precedes any detectable abnormality in insulin secretion. While the role of glucolipotoxicity in humans is still debated, the inhibitory effects of chronically elevated fatty acid levels has been clearly demonstrated in several studies, at least in individuals genetically predisposed to developing type 2 diabetes. It is therefore likely that glucolipotoxicity contributes to beta-cell failure in type 2 diabetes as well as to the decline in beta-cell function observed after the onset of the disease.  相似文献   

2.
Type 2 diabetes is characterized by two major defects: a dysregulation of pancreatic hormone secretion (quantitative and qualitative--early phase, pulsatility--decrease of insulin secretion, increase in glucagon secretion), and a decrease in insulin action on target tissues (insulin resistance). The defects in insulin action on target tissues are characterized by a decreased in muscle glucose uptake and by an increased hepatic glucose production. These abnomalities are linked to several defects in insulin signaling mechanisms and in several steps regulating glucose metabolism (transport, key enzymes of glycogen synthesis or of mitochondrial oxidation). These postreceptors defects are amplified by the presence of high circulating concentrations of free fatty acids. The mechanisms involved in the of long-chain fatty acids are reviewed in this paper. Indeed, elevated plasma free fatty acids contribute to decrease muscle glucose uptake (mainly by reducing insulin signaling) and to increase hepatic glucose production (stimulation of gluconeogenesis by providing cofactors such as acetyl-CoA, ATP and NADH). Chronic exposure to high levels of plasma free fatty acids induces accumulation of long-chain acyl-CoA into pancreatic beta-cells and to the death of 50 % of beta-cell by apoptosis (lipotoxicity).  相似文献   

3.
Metabolic factors affecting the reproductive axis in male sheep   总被引:4,自引:0,他引:4  
Changes in food intake affect the reproductive axis in both sexes, and the nutritional signals involved and the sites that receive those signals are now beginning to be unravelled. Our studies have focussed on the mature male sheep, a model in which high food intake stimulates GnRH-LH pulse frequency for only 10-20 days but continues to promote testicular growth over several months. Different signals and different target organs seem to be responsible for these short- and long-term responses. Short-term dietary treatments lead to changes in blood concentrations of glucose, fatty acids, insulin and leptin, and concentrations of glucose, insulin, leptin and some amino acids in cerebrospinal fluid. It seems unlikely that amino acids affect GnRH-LH secretion directly in sheep. Intracerebroventricular infusions of insulin specifically increase LH pulse frequency, but intravenous, intra-abomasal or intracerebroventricular infusions of glucose have no effect, despite their effects on cerebrospinal fluid insulin concentrations. The addition of fatty acids to the diet also increases LH pulse frequency, but does not affect the concentrations of insulin or leptin in the cerebrospinal fluid. It appears that acute responses to changes in nutrition involve a range of alternative pathways, possibly including interactions among insulin, leptin and energy substrates. Effects of long-term dietary treatments on testicular size are only partly dependent on the GnRH-LH system (that is, on brain control) and so must also depend on other, as yet unknown, pathways. Concepts of 'metabolic sensing and integration' are being developed from the basis of existing knowledge of the central control of appetite and reproduction.  相似文献   

4.
Studies on experimental animals with knockout of the insulin receptor gene (Insr) in the whole body or in certain tissues and/or related genes encoding proteins involved in realization of insulin signal transduction in target cells, have made an important contribution to the elucidation of insulin regulation of metabolism, particularly fat metabolism. Since the whole insulin secreted by β-cells, together with the products of gastrointestinal tract digestion of proteins, fats, and carbohydrates reaches in the liver, the latter is the first organ on which this hormone acts. The liver employs released amino acids for synthesis of proteins, including apo-proteins for various lipoproteins. Glucose is used for synthesis of glycogen, fatty acids, and triglycerides, which enter all the organs in very low density lipoproteins (VLDL). The LIRKO mice with knockout of the insr gene in the liver demonstrated inhibition of synthesis of macromolecular compounds from amino acids, glucose, and fatty acids. Low molecular weight substances demonstrated increased entry to circulation, and together with other disorders induced hyperglycemia. In LIRKO mice blood glucose levels and glucose tolerance demonstrated time-dependent normalization and at later stages the increase in glucose levels was replaced by hypoglycemia. These changes can be well explained if we take into consideration that one of the main functions of insulin consists in stimulation of energy accumulation by means of activation of triglyceride deposition in adipose tissue. FIRKO mice with selective knockout of adipose tissue Insr were characterized by decreased uptake of glucose in adipocytes, and its transformation into lipids. However, the level of body fat in animals remained normal, possibly due to preserved insulin receptor in the liver and insulin-induced activation of triglyceride production which maintained normal levels of body fat stores, the effective functioning of adipose tissue and secretion of leptin by adipocytes during inhibition of glucose transformation into triglyceride in adipose tissue. Knockout of the Insr gene in muscles blocked glucose uptake by myocytes, but it did not induce hyperglycemia, probably due to the increase in glucose uptake by other organs, which retained the insulin receptor, and induced some increase in fat resources in adipose tissue. Similar results were obtained in mice with knockout the glucose transporter 4 GLUT4 in muscle and/or adipose tissue. Insulin microinjections in the brain, in the cerebral ventricle 4 (CVI) and mediobasal hypothalamus (MBH) did not affect the insulin levels in the general circulation, but effectively activate lipogenesis and inhibited lipolysis in adipose tissue. They induced obesity, similar to conventional obesity when the insulin levels increased. These results may serve as an additional confirmation of the importance of the adipogenic insulin function in mechanisms of regulation of general metabolism.  相似文献   

5.
Recently, diabetes mellitus (DM) has shown rapid global increases with about five million deaths annually. Animal models are imperative to understand disease mechanisms and develop diagnostic, preventive, and therapeutic interventions in translational research. Rodent and mini-pig models have been established and widely used for DM research. However, domestic pig models are limited in spite of advantages such as pharmacokinetic and physiopathological availability. This study examines the potential use of domestic pigs expressing recombinant human erythropoietin (rhEPO) as disease and therapeutic response models for DM. We previously generated transgenic pigs (n?=?16, EPO Tg) in which rhEPO was expressed and circulated in all organs. Thirty-two pigs, including 16 controls, were fed high fat (HF) diets for 42 weeks. Subsequently, blood samples for chemical and metabolic analysis were collected after fasting for 24?h and glucose loading for oral glucose tolerance tests (OGTTs). We found increased activation of the PI3?K/Akt signaling pathway under hypoxic conditions after rhEPO treatment, and HF diet-inducible-obesity in the EPO Tg and control pigs. OGTTs showed lower fasting glucose levels in the EPO Tg pigs than in controls before and after the HF diet, suggesting that rhEPO may affect glucose concentrations. Insulin and C-peptide concentrations responded slowly to glucose administration and returned to initial levels after 2?h. The blood test results suggest that EPO might affect metabolic and chemical components such as glucose, high-density lipoprotein, glucagon, triglyceride, and free fatty acid. Our findings support the use of rhEPO transgenic domestic pigs as model animals for translational DM research.  相似文献   

6.
Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.  相似文献   

7.
The present study was designed to investigate the effect of dexamethasone treatment for 2 weeks (2.5 mg/kg/week, subcutaneously) on the level of unesterified fatty acids, particularly arachidonic acid, in the renal medulla of rats, and to relate the observed effect to changes in the tissue concentration and the fatty acid composition of renal medulla phospholipids and triglycerides. Dexamethasone treatment caused an increase in the renal inner medulla level of unesterified fatty acids, including arachidonic acid, that was associated with a reduction of triglycerides and of arachidonic acid esterified into triglycerides, and with an increase in the rate of fatty acids esterification into triglycerides. In contrast, dexamethasone treatment did not affect the renal medulla concentration of phospholipids, the arachidonic acid content of renal medulla phospholipids, or the rate of esterification of fatty acids into renal medulla phospholipids. In the face of increased fatty acid esterification into triglycerides, the finding of reduced triglyceride levels in the renal medulla of dexamethasone-treated rats suggests excessive triglyceride breakdown. If so, fatty acids including arachidonic acid liberated from triglycerides may contribute to elevation of unesterified fatty acid levels in the renal medulla during dexamethasone treatment. The increased level of free arachidonic acid in the renal medulla of dexamethasone-treated rats may explain in part the reported effect of this steroid in increasing urinary prostaglandins.  相似文献   

8.
The modulation of insulin sensitivity in visceral fat tissue could be important in the treatment of Type 2 diabetes mellitus. Selected fatty acids may impact on insulin-stimulated and basal glucose uptake in adipocytes, thus isolated rat epididymal adipocytes were exposed to 100 μM oleic, arachidonic, eicosapentaenoic, docosahexaenoic or stearic acids and insulin (15 nM) or vehicle for 30 min. Glucose uptake was quantified by measuring uptake of 3H-deoxyglucose/mg adipocyte protein/min. Where appropriate, inhibitors were included to elucidate the mechanisms involved.In this model, insulin stimulated glucose uptake with 62±7%. All fatty acids tested, except for stearic acid, depressed insulin-stimulated glucose uptake by an average of 33±4.2%. On the other hand, all fatty acids tested except stearic and arachidonic acids, stimulated basal glucose uptake with an average of 34±8.1%. Inhibitor studies showed the involvement of prostaglandins, lipoxins, protein kinase C and tyrosine kinase in these processes.  相似文献   

9.
The possible involvement of central noradrenergic and/or adrenergic circuits in central mechanisms controlling free fatty acids and glucose levels was investigated in conscious pigeons. The effects of intracerebroventricular injections of noradrenaline (80 nmol) or adrenaline (80 nmol) on plasma free fatty acids and glucose concentrations were examined. The possible role of the autonomic nervous system, of sympathetic terminals and of pituitary hormone release in the metabolic responses induced by intracerebroventricular injections of adrenaline and noradrenaline was investigated by systemic pretreatment with a ganglionic blocker (hexamethonium, 1 mg/100 g), guanethidine (5 mg/100 g), and somatostatin (15 μg/100 g), respectively, 15 min before intracerebroventricular administration of adrenaline, noradrenaline or vehicle. Intracerebroventricular noradrenaline injections strongly increased plasma free fatty acid concentration but evoked no change in blood glucose levels, while adrenaline treatment increased glycemia without affecting free fatty acid levels. Hexamethonium did not block the increase in plasma free fatty acids induced by noradrenaline, while somatostatin pretreatment abolished noradrenaline-induced lipolysis during the experimental period. Adrenaline-induced hyperglycemia was blocked by systemic injections of somatostatin, hexamethonium and guanethidine. The present results suggest that: (1) adrenergic and noradrenergic mechanisms may participate in central control of blood glucose and free fatty acids, respectively, as observed in mammals, (2) noradrenaline-induced lipolysis may be mediated by pituitary mechanisms, and (3) postganglionic sympathetic fibers, possibly innervating the endocrine pancreas, may be involved in adrenaline-induced hyperglycemia. Accepted: 14 April 2000  相似文献   

10.
11.
In this study, the mechanism of ischaemia-induced increased sarcolemmal permeability, as manifested by release of intracellular enzymes, was investigated. The role of changes in the sarcolemmal phospholipid bilayer in this process was evaluated by experimental modulation of the phospholipid fatty acid composition. The isolated perfused rat heart subjected to low-flow hypoxia, was used as a model of global ischaemia. Glucose as well as saturated (palmitate) and unsaturated (linoleate) long-chain fatty acids were used as substrates. Hearts perfused with palmitate or linoleate (1.5 mM, fatty acid/albumin ratio, 3.4) showed a significantly higher rate of lactate dehydrogenase release in both control and ischaemic conditions than hearts perfused with glucose (10 mM). Lactate dehydrogenase release in the fatty acid-perfused hearts was associated with a significant increase in the percentage unsaturation of the sarcolemmal phospholipid fatty acids. Glucose-perfused hearts, on the other hand, showed only minor changes in the sarcolemmal phospholipid fatty acid composition. Attempts to correlate enzyme release directly with an increase in the percentage unsaturation of phospholipid fatty acids failed, since enzyme release was also stimulated in control fatty-acid-perfused hearts which (when compared with glucose) contained a higher percentage saturated phospholipid fatty acids. The results suggest that myocardial ischaemia, apart from changes in the sarcolemmal phospholipid fatty acid composition, also induces several other changes in sarcolemmal composition (e.g., cholesterol loss) which may affect is permeability for macromolecules.  相似文献   

12.
All fatty acids are not equal: discrimination in plant membrane lipids   总被引:1,自引:0,他引:1  
Plant membrane lipids are primarily composed of 16-carbon and 18-carbon fatty acids containing up to three double bonds. By contrast, the seed oils of many plant species contain fatty acids with significantly different structures. These unusual fatty acids sometimes accumulate to >90% of the total fatty acid content in the seed triacylglycerols, but are generally excluded from the membrane lipids of the plant, including those of the seed. The reasons for their exclusion and the mechanisms by which this is achieved are not completely understood. Here we discuss recent research that has given new insights into how plants prevent the accumulation of unusual fatty acids in membrane lipids, and how strict this censorship of membrane composition is. We also describe a transgenic experiment that resulted in an excessive buildup of unusual fatty acids in cellular membranes, and clearly illustrated that the control of membrane lipid composition is essential for normal plant growth and development.  相似文献   

13.
14.
The usefulness of measuring neutral lipid fatty acids (NLFAs) and phospholipid fatty acids (PLFAs) separately in order to interpret perturbation effects on soil and compost microorganisms has been studied. Initially the NLFA/PLFA ratios were studied in different soils. Low ratios were found for fatty acids common in bacteria, especially for cyclopropane fatty acids. Higher ratios were found for fatty acids common in eukaryotic organisms such as fungi (18:1omega9 and 18:2omega6,9) or in saturated fatty acids, common to many types of organisms. Adding glucose to a forest soil increased the amounts of the fungal NLFAs 18:1omega9 and 18:2 omega6,9 up to 60 and 10 times, respectively, after 10 days, followed by a gradual decrease. After 3 months incubation, higher levels of these NLFAs were still found compared with the control samples. Adding glucose together with nitrogen (N) and phosphorus (P) resulted in no increase in NLFAs but a 10-fold increase in the PLFAs 18:1omega9 and 18:2omega6,9. Thus, the NLFA/PLFA ratios for these fatty acids were lower than in the no-addition control when glucose was added together with N and P, but higher when glucose was added alone, even 3 months after the addition. Adding N+P without glucose did not affect the NLFA/PLFA ratio for any fatty acid. Increasing NLFA/PLFA ratios for the fungal fatty acids were also found with time after the thermophilic phase in a compost, indicating increased availability of easily available carbon.  相似文献   

15.
Increased plasma levels of non-esterified fatty acids (NEFA) may lead to several physiological changes e.g. increased insulin secretion with a concomitant reduction of blood glucose, decreased glucose utilization in heart and skeletal musculature and increased blood acetone levels. High NEFA levels also cause fat infiltration in various organs especially the liver. Recently Akgün & Rudman (1969) showed that ACTH induced NEFA mobilization in rabbits was followed by hypocalcemia. Serum calcium decreased about 30 %, while the calcium content in adipose tissue increased up to 1000 %. This finding could also be verified in vitro. When adipose tissue was incubated in serum containing lipolytic hormones, lipolysis was stimulated and there was a shift of calcium from serum to tissue. A negative correlation between serum calcium and NEFA in hypocalcemic cows was reported earlier (Luthman & Jonson 1969). The purpose of the present investigation was to study the effect of increased NEFA levels on serum calcium in sheep. The animals used were ewes in late pregnancy. Lipolysis was stimulated by norepinephrine (Norexadrin, Astra). The animals were given a continuous intravenous infusion during 8 hrs. at a rate of 1 μg/kg/min. The methods of analysis were the same as described before (Luthman & Jonson).  相似文献   

16.
Acyl-CoA hydrolases cleave acyl-CoA thioesters to free fatty acids and coenzyme A. The potency of these enzymes may serve to modulate cellular levels of acyl-CoAs to affect various cellular functions, including lipid metabolism. In this study, we investigated the tissue distribution of this multigene family of enzymes, focusing on cytosolic (CTE-I) and mitochondrial acyl-CoA thioesterases (MTE-I) in adult rats, using an anti-CTE-I antibody which recognizes both the isoforms. Western blotting detected them mainly in organs closely related to fatty acid oxidation, of which kidney contained the highest levels of both enzymes. Immunohistochemistry localized the enzymes primarily in the proximal tubules, where a large energy demand is expected and fatty acids represent a major fuel, correlating well with the intrarenal distribution of peroxisomal beta-oxidation. In situ hybridization suggested colocalization of CTE-I and MTE-I in the kidney. The immunoreactivity was also found in various epithelial tissues in the body, including Harderian gland and sebaceous gland. These results demonstrated the distribution of CTE-I and MTE-I in a wide variety of rat tissues, primarily characterized by an epithelial localization, being consistent with their involvement in fatty acid metabolism.  相似文献   

17.
18.
The effect of electrical stimulation of various hypothalamic regions on levels of plasma free fatty acids, glucose, triglycerides, and cholesterol was studied in fasted cats. Appreciable changes were observed in plasma free fatty acids and glucose but not in plasma triglycerides or cholesterol. These changes appeared to be dependent upon small differences in the placement of electrodes and could not be related to a distinct hypothalamic locus. The results indicate that there is a dissociation between hypothalamic neurons that may affect plasma glucose concentration and those that may affect the plasma free fatty acids. It is suggested that the hypothalamus of the cat contains neurons that may influence autonomic discharge to adipose tissue and thus affect the plasma free fatty acid level and other neurons that may influence autonomic discharge to the liver and thus affect glucose output into the circulation. The distribution of both types of neurons is not limited to a distinct region of the hypothalamus in cats.  相似文献   

19.
Fertile chicken eggs were injected with various concentrations of either d-glucose or l-glucose during the first three days of embryonic development. The exogenous glucose concentrations ranged from 0 to 18.58 micromol/kg egg. At 18 days of development (theoretical stage 44), brains, livers, and blood from chorio-allantoic vessels were isolated from living embryos. Exogenous d-glucose and l-glucose caused increased plasma d-glucose levels, increased plasma alanine aminotransferase (ALT) activities, and decreased embryo viability. Embryo viability was monitored by a reduction in the percentage of living embryos at theoretical stage 44, reduced embryo masses, reduced brain masses, and reduced liver masses. When compared to controls, embryonic exposure to either exogenous d-glucose or l-glucose caused increased caspase-3 activities and increased lipid hydroperoxide (LPO) levels in both brain and liver tissues. Because lipid hydroperoxides are lipid peroxidation intermediates that result in the attack of any unsaturated neutral lipid or unsaturated phospholipid, the effect of exogenous glucose on hepatic membrane fatty acid composition was studied. Exogenous glucose (either d-glucose or l-glucose) promoted reduced levels of several unsaturated, long-chain fatty acids and increased levels of saturated, short-chain fatty acids within hepatic membranes. Exogenous-glucose induced decreases in the ratios of unsaturated/saturated fatty acids and long-chain/short-chain fatty acids within hepatic membranes which strongly correlated with glucose-induced increases in plasma ALT activities and moderately correlated to hepatic LPO levels. These observations are consistent with the hypothesis that embryonic hyperglycemia promotes hepatic membrane lipid peroxidation and hepatic cell death.  相似文献   

20.
Fatty acids are a major fuel source used to sustain contractile function in heart and oxidative skeletal muscle. To meet the energy demands of these muscles, the uptake and β-oxidation of fatty acids must be coordinately regulated in order to ensure an adequate, but not excessive, supply for mitochondrial β-oxidation. However, imbalance between fatty acid uptake and β-oxidation has the potential to contribute to muscle insulin resistance. The action of insulin is initiated by binding to its receptor and activation of the intrinsic protein tyrosine kinase activity of the receptor, resulting in the initiation of an intracellular signaling cascade that eventually leads to insulin-mediated alterations in a number of cellular processes, including an increase in glucose transport. Accumulation of fatty acids and lipid metabolites (such as long chain acyl CoA, diacylglycerol, triacylglycerol, and/or ceramide) can lead to alterations in this insulin signaling pathway. An imbalance between fatty acid uptake and oxidation is believed to be responsible for this lipid accumulation, and is thought to be a major cause of insulin resistance in obesity and diabetes, due to lipid accumulation and inhibition of one or more steps in the insulin-signaling cascade. As a result, decreasing muscle fatty acid uptake can improve insulin sensitivity. However, the potential role of increasing fatty acid β-oxidation in the heart or skeletal muscle in order to prevent cytoplasmic lipid accumulation and decrease insulin resistance is controversial. While increased fatty acid β-oxidation may lower cytoplasmic lipid accumulation, increasing fatty acid β-oxidation can decrease muscle glucose metabolism, and incomplete fatty acid oxidation has the potential to also contribute to insulin resistance. In this review, we discuss the proposed mechanisms by which alterations in fatty acid uptake and oxidation contribute to insulin resistance, and how targeting fatty acid uptake and oxidation is a potential therapeutic approach to treat insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号