首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
海洋放线菌生活的环境如养分、光照、氧气浓度、压力、盐度和温度等与陆地环境存在极大差异,因此海洋放线菌形成了独特的生物化学代谢和生理能力。近年来,海洋放线菌成为生物资源开发和研究的热点。海洋放线菌分布广泛,种类多样。海洋放线菌活性代谢产物具有极强的医药应用潜力,其代谢产物的功能研究及重要代谢产物的开发成为海洋放线菌研究的重要方向。此外,海洋放线菌在环境保护以及生产应用等方面展现出的潜能,引起研究人员极大的兴趣。本文结合近年来海洋放线菌的分离种类与生境、海洋放线菌的研究策略与手段以及代谢产物功能多样性进行了归纳总结,以期对海洋放线菌的认识更全面、系统。  相似文献   

2.
海洋放线菌Marinactinospora thermotolerans的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
海洋放线菌以产生多种活性天然产物而著称,其中部分结构新颖的活性化合物具有发展成为新药的巨大潜力,引起国内外相关领域研究人员的极大关注。同时,也促进了我国海洋放线菌研究工作的全面展开。本文系统综述了海洋放线菌新属种Marinactinospora thermotolerans的分类鉴定、新颖的次级代谢产物的发现及其生物合成机制以及该菌株的全基因组生物信息学分析等方面的最新研究进展,以期能为其他海洋放线菌新属种的分类鉴定、活性次级代谢产物的发现和生物合成机制研究提供借鉴作用。  相似文献   

3.
刘志恒   《微生物学通报》2004,31(1):140-143
天蓝色链霉菌全基因组序列的公布 ,对目前工业生产生物活性代谢产物菌株的遗传改造 ,构建生产高价值药物的超级菌 ,以及由微生物资源去寻找新的生物活性代谢产物将产生巨大影响。文中就基因组时代如何发展由基因组信息和化合物库预测次生代谢路径、研究功能基因组学时代的放线菌次生代谢调控、基因工程技术在放线菌抗生素生产中的应用以及体外分子定向进化与分子育种等生物技术问题进行文献综述。  相似文献   

4.
可培养海洋放线菌生物多样性的研究进展   总被引:2,自引:0,他引:2  
海洋放线菌是新药开发和天然活性产物的重要来源,海洋放线菌的生物多样性是代谢产物功能多样性的基础,因此研究可培养放线菌的生物多样性具有重要的意义。综述了近年来可培养的海洋放线菌生物多样性的研究进展,尤其是海绵共附生放线菌、深海放线菌和海洋固有放线菌的研究进展,对可培养的海洋放线菌的分离培养方法,包括样品处理、培养基的选择等进行了重点介绍,并对未培养海洋放线菌的分离培养进行了探讨,强调了建立区域性海洋放线菌菌种及基因资源库的重要性。  相似文献   

5.
【背景】放线菌具有丰富的遗传和功能多样性,其次级代谢产物活性广泛,在临床医疗、农业生产和污染防治等领域都发挥着重要的作用。海洋放线菌由于其特殊的代谢途径,能产生独特的活性天然产物而受到广泛关注。【目的】探究国内外海洋放线菌领域研究的热点和趋势,为后续研究提供参考。【方法】以“marine actinomycetes or marine actinobacteria”为关键词,在Web of Science中检索海洋放线菌领域的文章进行计量分析,使用VOSviewer软件对其关键词、国家、机构、作者、发表时间进行可视化分析。【结果】海洋放线菌领域的文章发表数量总体呈逐年上升趋势,主要集中在微生物学及药学领域,中美两国在论文数量和引用频次上远超其他国家,海洋放线菌领域的研究集中在菌株的分离鉴定、活性天然产物挖掘以及生物信息学等方面。【结论】海洋放线菌在全球范围内愈发受到重视,国内外机构应当加强合作,运用生物信息学技术进一步挖掘活性次级代谢产物,推动海洋放线菌领域进一步发展。  相似文献   

6.
一株放线菌次生代谢产物化学成分的研究   总被引:1,自引:0,他引:1  
目的:研究放线菌这类重要的可再生资源的次生代谢产物的化学成分。方法:通过对一株采集于云南西部土壤放线菌的发酵培养,发酵液经TLC分离纯化、高效液相分析检测、核磁共振和质谱测定。结果:从其次生代谢产物中分离获取了8个化合物,其中4个化合物的结构已经初步确定。结论:4个化合物中两个具有抗肿瘤活性,两个具有抑菌活性。  相似文献   

7.
海洋孕育着丰富的微生物资源,其中海洋放线菌能够产生各种次级代谢产物及生理活性物质,对海洋放线菌的研究具有重要的实际意义。实验对筛选自大连海域的30株放线菌进行了形态及生理生化鉴定、16S rDNA序列的分析及系统发育树构建,结果表明分离到的海洋放线菌中13株分属于放线菌目链霉菌不同种或亚种,说明大连海域的海洋放线菌具有一定的多样性。  相似文献   

8.
为探讨共培养对放线菌产生活性次生代谢产物的影响,结合抗菌活性测定及HPLC-PDA分析,研究了22株放线菌的单培养及其与枯草芽孢杆菌的共培养发酵代谢产物的差异,并选取抗菌活性较强的链霉菌FXJ2.014进一步研究其代谢产物。发现FXJ2.014、FXJ1.296、AS4.1252三株菌与枯草芽孢杆菌共培养时产生其在相同条件下单培养时没有的物质,其中链霉菌FXJ2.014单培养时主要产生醌霉素A,共培养时产物中增加了醌霉素结构类似物FXJ2.014-HB。进一步的抗菌、抗肿瘤活性测定结果表明,两者的生物活性有较显著的差异,且FXJ2.014-HB对多种肿瘤细胞系的抑制活性普遍弱于高毒性的醌霉素A,为有潜力的细胞毒性较小的抗生素。共培养是一条很有希望的发掘放线菌活性次生代谢产物的新途径。  相似文献   

9.
海洋真菌生物活性物质研究之管见   总被引:5,自引:0,他引:5  
朱伟明  王俊锋 《菌物学报》2011,30(2):218-228
海洋真菌是活性海洋天然产物的重要来源,到目前为止,已从海洋真菌的发酵产物中分离鉴定了1,117个新化合物.介绍了海洋真菌次生代谢产物的研究历史、现状、特点、研究方法、存在问题及其在新药研究中的应用前景.  相似文献   

10.
【目的】从南海柳珊瑚共附生放线菌的次生代谢产物中寻找具有抗菌和抗附着活性的先导化合物。【方法】应用化学与生物活性相结合的筛选方法,从柳珊瑚共附生微生物中筛选获得代谢产物丰富且具有生物活性的目标菌株并通过大发酵提取浸膏,利用硅胶柱色谱、凝胶柱色谱和高效液相色谱等方法对发酵产物进行分离、纯化,运用波谱解析鉴定化合物的结构。【结果】从采自海南三亚的柳珊瑚(Muricella flexuosa)样品中分离到一株放线菌SCSGAA0009,鉴定为链霉属Streptomycessp.,从其改良ISP2发酵液中分离到新化合物N-(2-(1H-indol-3-yl)ethyl)propionamide(1)和已知化合物phenazine-1-carboxylic acid(2),其中化合物2对大肠杆菌和海洋细菌假单胞菌(Pseudoaltermonas piscida)具有较好抗菌活性,且有强抗草苔虫(Bugulaneritina)幼虫附着活性。【结论】首次从柳珊瑚共附生放线菌的次生代谢产物中获得新的生物碱化合物1,首次报道化合物2的抗海洋细菌活性和抗附着活性;从南海柳珊瑚共附生微生物的次生代谢产物中可以得到新化合物和活性化合物,这一来源的微生物资源值得深入研究。  相似文献   

11.
Data on the chemical structures and biologic activities of metabolites of obligate and facultative marine actinobacteria published between 2000 and 2007 are reviewed. The structural features of five groups of metabolites related to macrolides and compounds containing lactone, quinone, and diketopiperazine residues; cyclic peptides; alkaloids; and compounds of combined nature are discussed. The review shows the large chemical diversity of metabolites of actinobacteria isolated from marine ecotopes. In addition to metabolites identical to those previously isolated from terrestrial actinobacteria, marine actinobacteria produce compounds not found in other natural sources, including microorganisms. Probably, the biosynthesis of new chemotypes of bioactive compounds by marine actinobacteria is related to the chemical adaptation of microorganisms to the marine environment. The review emphasizes the importance of chemical studies of metabolites produced by marine actinobacteria. These studies will provide new data on marine microbial producers of biologically active compounds and the chemical structures and biologic activities of new natural lowmolecular-weight bioregulators.  相似文献   

12.
This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.  相似文献   

13.
《Microbiological research》2014,169(4):262-278
Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.  相似文献   

14.
Marine actinobacteriology is one of the major emerging areas of research in tropics. Marine actinobacteria occur on the sediments and in water and also other biomass (mangrove) and substrates (animal). These organisms are gaining importance not only for their taxonomic and ecological perspectives, but also for their unique metabolites and enzymes. Many earlier studies on these organisms were confined only to the temperate regions. In tropical environment, investigations on them have gained importance only in the last two decades. So far, from the Indian peninsula, 41 species of actinobacteria belonging to 8 genera have been recorded. The genus, Streptomyces of marine origin has been more frequently recorded. Of 9 maritime states of India, only 4 have been extensively covered for the study of marine actinobacteria. Most of the studies conducted pertain to isolation, identification and maintenance of these organisms in different culture media. Further, attention has been focused on studying their antagonistic properties against different pathogens. Their biotechnological potentials are yet to be fully explored.  相似文献   

15.
Marine actinobacteria: perspectives,challenges, future directions   总被引:11,自引:0,他引:11  
In this paper we evaluate the current state of research on the biology and biotechnology of marine actinobacteria. The topics covered include the abundance, diversity, novelty and biogeographic distribution of marine actinobacteria, ecosystem function, bioprospecting, and a new approach to the exploration of actinobacterial taxonomic space. An agenda for future marine actinobacterial research is suggested based upon consideration of the above issues.  相似文献   

16.
In this paper we evaluate the current state of research on the biology biotechnology of marine actinobacteria. The topics covered include the abundance, diversity, novelty and biogeographic distribution of marine actinobacteria, ecosystem function, bioprospecting, and a new approach to the exploration of actinobacterial taxonomic space. An agenda for future marine actinobacterial research is suggested based upon consideration of the above issues.  相似文献   

17.
Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.  相似文献   

18.
Marine actinobacteria are the most economically as well as biotechnologically valuable prokaryotes. Representative genera of marine actinobacteria include Actinomadura, Aeromicrobium, Dietzia, Gordonia, Marinophilus, Micromonospora, Nonomuraea, Rhodococcus, Saccharomonospora, Saccharopolyspora, Salinispora, Streptomyces, Solwaraspora, Williamsia, Verrucosispora and several others. Among the genera of marine actinobacteria, the genus Streptomyces is represented in nature by the largest number of species and varieties, which differ greatly in their morphology, physiology, and biochemical activities. Marine Streptomyces occur in different biological sources such as fishes, molluscs, sponges, seaweeds and mangroves, besides seawater and sediments. In this review an evaluation is made on the present state of research on marine Streptomyces and its perspectives. The highlights include the production of metabolites such as antibiotics, anticancer compounds, enzymes, enzyme inhibitors and pigments by marine Streptomyces and their application as single cell protein and as probiotics in aquaculture. The marine environment contains a wide range of distinct Streptomyces that are not present in the terrestrial environment. With increasing advancement in science and technology, there would be greater demands in future for new bioactive compounds synthesised by Streptomyces from various marine sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号