首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Effects of feeding on pre-exercise VO2 and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise were investigated in sedentary southern catfish, active herbivorous grass carp, omnivorous crucian carp, and sluggish omnivorous darkbarbel catfish to test whether feeding had different effects on EPOC and to compare EPOC in fishes with different ecological habits. For fasting fish, the pre-exercise and peak post-exercise VO2 were higher and recovery rates were faster in crucian carp and grass carp compared to those of darkbarbel catfish and southern catfish. EPOC magnitudes of grass carp and southern catfish were significantly larger than those of crucian carp and darkbarbel catfish. Feeding had no significant effect on peak post-exercise VO2, recovery rate, and EPOC magnitude in grass carp. Both the pre-exercise and peak post-exercise VO2 increased with meal size, while the EPOC magnitude and duration decreased significantly in the larger meal size groups of crucian carp and southern catfish. In darkbarbel catfish, both the pre-exercise and peak post-exercise VO2 increased with meal size, but the VO2 increment elicited by exercise was larger in feeding groups compared with the fasting group. These results suggest that (1) the characteristics of the post-exercise VO2 profile, such as peak post-exercise VO2 and recovery rate, were closely related to the activity of fishes, whereas the EPOC magnitude was not and (2) the effects of feeding on EPOC were more closely related to the postprandial increase in VO2.  相似文献   

2.
The effects of meal size on the postprandial metabolic response and of digestion on the post-exercise metabolic recovery process were investigated in juvenile black carp (Mylopharyngodon piceus) . Experimental fish were forcedly fed with compound feed (meal sizes: 0.5%, 1% and 2% body weight). Then, the postprandial oxygen consumption rate and excess post-exercise oxygen consumption (EPOC) of the experimental fish were measured. Both the duration and the peak of oxygen consumption rate (PMR) increased with increasing meal size. The peak post-exercise metabolic rate of digesting fish were significantly higher, whereas EPOC magnitude and its duration were significantly smaller or (shorter) than those in the fasting fish. It is suggested that (1) this fish fulfills the increased energy demand during the digestive process by increasing PMR and by prolonging SDA duration with increasing meal size and (2) digesting fish might decrease their anaerobic exhaustive activity but increase the post-exercise recovery capacity.  相似文献   

3.
We have investigated the magnitude and duration of excess post-exercise oxygen consumption (EPOC) in a lizard following a single bout of vigorous exercise of 5-60 s, common activity durations for many ectothermic vertebrates. Desert iguanas (Dipsosaurus dorsalis) were run for 5 s, 15 s, 30 s, or 60 s. Oxygen consumption (VO2) increased from 0.16 ml O2 g(-1) h(-1) at rest to 1.3-1.6 ml O2 g(-1) h(-1) during 5-60 s of running. EPOC duration increased with activity duration, ranging from 35-63 min. EPOC volume, the excess oxygen consumed post-exercise, doubled from 0.13 ml O2 g(-1) following 5 s of activity to 0.25 ml O2 g(-1) after 60 s. EPOC represented 91-98% of the total metabolic expense of the activity. EPOC durations were always shorter than the period required for lactate removal, illustrating that these two processes are not causally related. Alpha- and beta-adrenergic receptor blockade by phentolamine and propranolol had no effect on resting VO2 but depressed excess post-exercise oxygen consumption volumes 2540%. The extent of catechol stimulation post-exercise may be motivation or stimulus dependent. The data indicate that metabolic elevations post-exercise represent the majority of activity costs in lizards. The study suggests that EPOC of ectothermic vertebrates is sensitive to exercise duration and catecholamine release post-activity, even when activity periods are less than 60 s in duration.  相似文献   

4.
The responses of serum myocellular proteins and hormones to exercise were studied in ten well-trained middle-distance runners [maximal oxygen consumption (VO(2max)) = 69.4 (5.1) ml x kg(-1) x min(-1)] during 3 recovery days and compared to various measures of physical performance. The purpose was to establish the duration of recovery from typical intermittent middle-distance running exercises. The subjects performed, in random, order two 28-min treadmill running exercises at a velocity associated with VO(2max): 14 bouts of 60-s runs with 60 s of rest between each run (IR(60)) and 7 bouts of 120-s runs with 120 s of rest between each run (IR(120)). Before the exercises (pre- exercise), 2 h after, and 1, 2 and 3 days after the exercises, the same series of measurements were performed, including those for serum levels of the myocellular proteins creatine kinase, myoglobin and carbonic anhydrase III (S-CK, S-Mb and S-CA III, respectively), serum hormones testosterone, Luteinizing hormone, follicle-stimulating hormone and cortisol (S-testosterone, S-LH, S-FSH and S-cortisol, respectively) and various performance parameters: maximal vertical jump height (CMJ) and stride length, heart rate and ratings of perceived exertion during an 8-min run at 15 km x h(-1) (SL(15 km x h(-1)), HR(15 km x h(-1)) and RPE(15 km x h(-1)), respectively). Two hours after the end of both exercise bouts the concentration of each measured serum protein had increased significantly (P < 0.001) compared to the pre-exercise level, but there were no changes in SL(15 km x h(-1)) or CMJ. During the recovery days only S-CK was significantly raised (P < 0.01), concomitant with a decrease in CMJ (P < 0.01) and an increase in RPE(15 km x h(-1)) (P < 0.01). Hormone levels remained unchanged compared to the pre-exercise levels during the recovery days and there were no significant differences between the two exercise bouts in any of the observed post-exercise day-to-day responses. With the exception of S-CK, after IR(120) the post-exercise responses returned to their pre-exercise levels within the 3 days of recovery. The present findings suggest that a single 28-min intermittent middle-distance running exercise does not induce changes in serum hormones of well-trained runners during recovery over 3 days, while changes in S-CK, CMJ and RPE(15 km x h(-1)) indicate that 2-3 days of light training may be needed before the recovery at muscle level is complete.  相似文献   

5.
为了探讨有氧运动训练和摄食对中华倒刺鲃(Spinibarbus sinensis)幼鱼力竭运动后代谢特征的影响,在(25±0.5)℃条件下,将120尾实验鱼[体重(21.35±0.05)g,体长(10.21±0.03)cm]随机分成4组,即:对照组、1、2和4 BL/s(体长/秒,body length/s)训练组,分别放置于不同流速下处理8周。随后测定各实验组心脏和鳃指数以及禁食或摄食(轻度麻醉灌喂体重1.5%的饵料)状态下的力竭运动后过量耗氧。结果发现:4 BL/s训练组的心脏和鳃指数都显著高于其他实验组(P < 0.05);无论摄食与否,3个训练组运动前代谢率都显著高于对照组(P=0.001),而各实验组过量耗氧均没有显著差异;在禁食状态下,仅4 BL/s训练组的运动代谢峰值和代谢率增量显著高于对照组,而在摄食状态下,3个训练组的运动代谢峰值和代谢率增量均显著高于对照组(P < 0.005)。与禁食组相比,摄食导致各处理组的运动前代谢率显著上升(P < 0.001),但对运动代谢峰值没有显著影响;另外,摄食对照组代谢率增量和力竭运动后过量耗氧显著低于禁食对照组(P < 0.05)。研究表明:(1)有氧运动训练显著提高了中华倒刺鲃幼鱼的有氧代谢能力,这可能与其呼吸和循环系统功能的改善有关;(2)力竭运动能够诱导出中华倒刺鲃幼鱼的最大有氧代谢率;(3)摄食削弱了中华倒刺鲃幼鱼无氧代谢能力。  相似文献   

6.
The relationship between fat-free mass (FFM) and excess post-exercise oxygen consumption (EPOC) has not been well researched because of the relatively small number of subjects studied. This study investigated the effects of FFM on EPOC and EPOC/maximum oxygen consumption. 250 Japanese male athletes between 16 and 21 years old from Nagasaki prefecture had their EPOC measured up to 40 minutes after short-duration exhaustive exercise. The value was named as EPOC40 min. The proportions of EPOC up to 1, 3, 6, 10, and 25 minutes to EPOC40 min were calculated and named as P1, P3, P6, P10, and P25, respectively. Body size and composition, VO2max and resting metabolic rate (RMR) were also measured. Mean EPOC40 min was 9.04 L or 158 ml/kg FFM. EPOC40 min was related to FFM (r=0.55, p<0.001) and VO2max (r=0.37, p<0.001). The ratio of EPOC40 min to VO2max was related to FFM (r=0.28, p<0.001). P1, P3, P6, P10, and P25 were negatively related to EPOC40 min/FFM, EPOC40 min/VO2max, and FFM. Athletes who had larger FFM had larger EPOC40 40 min and EPOC40 40 min/VO2max, and smaller P1, P3, P10, and P25.  相似文献   

7.
为了考察力竭追赶训练对中华倒刺鲃(Spinibarbus sinensis)和岩原鲤(Procypris rabaudi)幼鱼呼吸循环系统和力竭运动后代谢特征的影响, 在(25±0.5)℃条件下, 将2种实验鱼各60尾 [体重分别为(28.36±0.08) g和(19.53±0.13) g]随机等分成对照组和训练组, 训练组进行1次/d共21d的力竭追赶训练。随后测定各组实验鱼的心脏和鳃指数、血液指标以及力竭运动后过量耗氧(Excess post-exercise oxygen consumption, EPOC)。结果发现: 2种鱼心脏指数、鳃指数、血红蛋白含量和红细胞数目在各自对照组和训练组之间都没有显著性差异; 岩原鲤对照组的鳃指数显著低于中华倒刺鲃对照组(P<0.05), 但心脏指数、血红蛋白含量和红细胞数目与中华倒刺鲃对照组无显著性差异。中华倒刺鲃训练组的运动前代谢率、运动代谢峰值、峰值比率、代谢恢复速率与其对照组没有显著差异, 但运动后恢复时间和过量耗氧显著大于对照组(P<0.05); 岩原鲤训练组的运动前代谢率显著低于其对照组(P<0.05), 但运动代谢峰值、峰值比率、运动后恢复时间、过量耗氧、代谢恢复速率与其对照组没有显著性差异。岩原鲤对照组的运动前代谢率、运动代谢峰值、过量耗氧和代谢恢复速率分别显著低于中华倒刺鲃对照组(P<0.05), 但峰值比率和运动后恢复时间与中华倒刺鲃对照组无显著性差异。研究表明: (1)力竭追赶训练对中华倒刺鲃和岩原鲤幼鱼的呼吸和循环系统参数没有产生显著性影响; (2)力竭追赶训练显著提高了中华倒刺鲃幼鱼的无氧代谢能力; (3)中华倒刺鲃幼鱼力竭运动前后代谢率显著高于岩原鲤幼鱼, 这可能与其较为活跃的习性有关。  相似文献   

8.
Nine males with mean maximal oxygen consumption (VO2max) = 63.0 ml.kg-1.min-1, SD 5.7 and mean body fat = 10.6%, SD 3.1 each completed nine counterbalanced treatments comprising 20, 50 and 80 min of treadmill exercise at 30, 50 and 70% VO2max. The O2 deficit, 8 h excess post-exercise oxygen consumption (EPOC) and EPOC:O2 deficit ratio were calculated for all subjects relative to mean values obtained from 2 control days each lasting 9.3 h. The O2 deficit, which was essentially independent of exercise duration, increased significantly (P less than 0.05) with intensity such that the overall mean values for the three 30%, 50% and 70% VO2max workloads were 0.83, 1.89 and 3.09 l, respectively. While there were no significant differences (P greater than 0.05) between the three EPOCs after walking at 30% VO2max for 20 (1.01 l), 50 (1.43 l) and 80 min (1.04 l), respectively, the EPOC thereafter increased (P less than 0.05) with both intensity and duration such that the increments were much greater for the three 70% VO2max workloads (EPOC: 20 min = 5.68 l; 50 min = 10.04 l; 80 min = 14.59 l) than for the three 50% VO2max workloads (EPOC: 20 min = 3.14 l; 50 min = 5.19 l; 80 min = 6.10 l). An analysis of variance indicated that exercise intensity was the major determinant of the EPOC since it explained five times more of the EPOC variance than either exercise duration or the intensity times duration interaction. The mean EPOC:O2 deficit ratio ranged from 0.8 to 4.5 and generally increased with both exercise intensity and duration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Study aimed to determine whether short-term graded exercise affects single-breath lung diffusion capacity for nitric oxide (DLNO) and carbon monoxide (DLCO) similarly, and whether the DLNO/DLCO ratios during rest are altered post-exercise compared to pre-exercise. Eleven healthy subjects (age=29+/-6 years; weight=76.6+/-13.2 kg; height=177.9+/-13.2 cm; and maximal oxygen uptake or V(.-)(O(2max) = 52.7 +/- 9.3 ml kg(-1) min(-1))performed simultaneous single-breath DLNO and DLCO measurements at rest (inspired NO concentration=43.2+/-4.1 ppm, inspired CO concentration=0.30%) 15 min before and 2h after a graded exercise test to exhaustion (exercise duration=593+/-135 s). Resting DLNO and DLCO was similarly reduced 2h post-exercise (DLNO=-7.8+/-3.5%, DLCO=-10.3+/-6.9%, and P<0.05) due to reductions in pulmonary capillary blood volume (-11.3+/-9.0%, P<0.05) and membrane diffusing capacity for CO (-7.8+/-3.5%; P<0.05). The change in DLCO was reflected by the change in DLNO post-exercise such that 68% of the variance in the change in DLCO was accounted for by the variance in the change in DLNO (P<0.05). The DLNO/DLCO ratio was not altered post-exercise (5.87+/-0.37) compared to pre-exercise (5.70+/-0.34). We conclude that the decrease in single-breath DLNO and DLCO from pre- to post-exercise is similar, the magnitude of the change in DLCO closely reflects that of the change in DLNO, and single-breath DLNO/DLCO ratios are independent of the timing of measurement suggesting that using NO and CO transfer gases are valid in looking at short-term changes in lung diffusional conductance.  相似文献   

10.
Whether the use of pre-exercise hyperhydration could improve the performance of athletes who do not hydrate sufficiently during prolonged exercise is still unknown. We therefore compared the effects of pre-exercise hyperhydration and pre-exercise euhydration on endurance capacity, peak power output and selected components of the cardiovascular and thermoregulatory systems during prolonged cycling. Using a randomized, crossover experimental design, 6 endurance-trained subjects underwent a pre-exercise hyperhydration (26 ml of water x kg body mass(-1) with 1.2 g glycerol x kg body mass(-1)) or pre-exercise euhydration period of 80 min, followed by 2 h of cycling at 65% maximal oxygen consumption (VO(.)2max) (26-27 degrees C) that were interspersed by 5, 2-min intervals performed at 80% V(.)O2max. Following the 2 h cycling exercise, subjects underwent an incremental cycling test to exhaustion. Pre-exercise hyperhydration increased body water by 16.1+/-2.2 ml.kg body mass(-1). During exercise, subjects received 12.5 ml of sports drink x kg body mass(-1). With pre-exercise hyperhydration and pre-exercise euhydration, respectively, fluid ingestion during exercise replaced 31.0+/-2.9% and 37.1+/-6.8% of sweat losses (p>0.05). Body mass loss at the end of exercise reached 1.7+/-0.3% with pre-exercise hyperhydration and 3.3+/-0.4% with pre-exercise euhydration (p<0.05). During the 2 h of cycling, pre-exercise hyperhydration significantly decreased heart rate and perceived thirst, but rectal temperature, sweat rate, perceived exertion and perceived heat-stress did not differ between conditions. Pre-exercise hyperhydration significantly increased time to exhaustion and peak power output, compared with pre-exercise euhydration. We conclude that pre-exercise hyperhydration improves endurance capacity and peak power output and decreases heart rate and thirst sensation, but does not reduce rectal temperature during 2 h of moderate to intense cycling in a moderate environment when fluid consumption is 33% of sweat losses.  相似文献   

11.
This study was undertaken to determine the effect of fasting on the magnitude and time course of the excess postexercise O2 consumption (EPOC). Six lean untrained subjects were studied in the fasted state for 7 h after a previous strenuous exercise bout (80 min at 75% of maximal O2 uptake) and in a control experiment. The results were compared with identical control and exercise experiments where the subjects were fed a 4.5-MJ test meal after 2 h of rest. EPOC was calculated as the difference in O2 uptake between the corresponding control and exercise experiments. The total EPOC (0-7 h postexercise) was 20.9 +/- 4.5 (fasting) and 21.1 +/- 3.6 liters (food, NS). A significant prolonged EPOC component was observed in the fasted and in the fed state. The thermic effect of food (TEF) was calculated from O2 consumption and respiratory exchange ratio as the difference in energy expenditure between the corresponding food and fasting experiments. The total TEF (0-5 h postprandial) was 321 +/- 32.0 (control) and 280 +/- 37.7 kJ/5 h (exercise, NS). It is concluded that the prolonged component of EPOC is present in the fasting state. Furthermore, no major interaction effects between food intake and exercise on the postexercise O2 consumption could be detected.  相似文献   

12.
Seventeen women were divided into lean (19.5 +/- 0.5 years; 22.2 +/- 0.6 kg.m(-2)) and obese (20.4 +/- 0.5 years; 34.9 +/- 2.1 kg.m(-2)) groups. On completion of a submax cycle ergometer test and 10-repetition maximum (10RM) of 5 exercises on a Smith machine, subjects returned for 2 exercise sessions during menses. Session 1 consisted of performing 3 sets of 10 repetitions at 70% of the predetermined 10RM for the following exercises: squat, calf raises, bench press, upright row, and shoulder press. Session 2 consisted of cycling at 60-65% VO2max for a duration that would expend the same number of calories as the resistance session. Postexercise respiratory exchange ratio and EPOC magnitude/duration were similar for both groups. These findings indicate that women who are lean or obese will respond similarly to exercise at similar relative intensities and that aerobic and resistance exercise of equal caloric expenditure will elicit similar EPOC responses.  相似文献   

13.
This study was undertaken to determine the effect of exercise duration on the time course and magnitude of excess postexercise O2 consumption (EPOC). Six healthy male subjects exercised on separate days for 80, 40, and 20 min at 70% of maximal O2 consumption on a cycle ergometer. A control experiment without exercise was performed. O2 uptake, respiratory exchange ratio (R), and rectal temperature were monitored while the subjects rested in bed 24 h postexercise. An increase in O2 uptake lasting 12 h was observed for all exercise durations, but no increase was seen after 24 h. The magnitude of 12-h EPOC was proportional to exercise duration and equaled 14.4 +/- 1.2, 6.8 +/- 1.7, and 5.1 +/- 1.2% after 80, 40, and 20 min of exercise, respectively. On the average, 12-h EPOC equaled 15.2 +/- 2.0% of total exercise O2 consumption (EOC). There was no difference in EPOC:EOC for different exercise durations. A linear decrease with exercise duration was observed in R between 2 and 24 h postexercise. No change was observed in recovery rectal temperature. It is concluded that EPOC increases linearly with exercise duration at a work intensity of 70% of maximal O2 consumption.  相似文献   

14.
The purpose of this study was to compare nutritionally enriched JavaFit coffee (JF) to commercially available decaffeinated coffee (P) with regard to impact on endurance and anaerobic power performance in a physically active, college-aged population. Ten subjects (8 men, 2 women) performed two 30-second Wingate anaerobic power tests and 2 cycle ergometer tests (75% VO2 max) to exhaustion. Mean VO2 was measured during each endurance exercise protocol. Excess postexercise oxygen consumption (EPOC) and respiratory exchange ratio (RER) were recorded for 30 minutes following all exercise sessions. Area under the curve analysis was used to compare EPOC between JF and P for all exercise sessions. No differences were seen between JF and P in any of the power performance measures. However, time to exhaustion was significantly (p = 0.05) higher in JF (35.3 +/- 15.2 minutes) compared with P (27.3 +/- 10.7 minutes). No difference between JF and P were seen in EPOC in either the aerobic or anaerobic exercise sessions. A significant (p < 0.05) difference in average 30-minute postanaerobic power exercise RER was seen between JF (0.87 +/- 0.04) and P (0.83 +/- 0.03), but not following endurance exercise. A nutritionally-enriched coffee beverage appears to enhance time to exhaustion during aerobic exercise, but does not provide an ergogenic benefit during anaerobic exercise.  相似文献   

15.
Slivka D  Cuddy J  Hailes W  Harger S  Ruby B 《Amino acids》2008,35(2):439-444
The purpose of this study was to determine the effect of adding fenugreek extract (FG) to post-exercise carbohydrate feeding on glycogen resynthesis and subsequent exercise performance in normoglycemic male endurance athletes. A muscle biopsy sample was obtained from the vastus lateralis from subjects prior to exercise for 5 h at 50% of peak cycling power (52.1 +/- 3.3% of VO(2) peak). A second muscle biopsy sample was obtained immediately after exercise. Immediately after and 2 h after the second biopsy subjects ingested either an oral dose of dextrose (GLU) (1.8 g x kg BW(-1)) or GLU with FG containing 1.99 +/- 0.20 mg x kg(-1) 4-hydroxyisoleucine (GLU + FG) in a randomized, cross-over, double blind design. At 4 h post-exercise a third biopsy was taken and subjects received a standardised meal along with FG or a placebo capsule. At 15 h post-exercise subjects underwent their final muscle biopsy before completing a simulated 40 km cycling time trial. There was no difference in muscle glycogen at any time between GLU and GLU + FG. Additionally, 40 km time trial performance was similar for average power output (221 +/- 28 vs. 213 +/- 16 watts) and for time to completion (69.7 +/- 3.7 vs. 70.5 +/- 2.2 min) for the GLU and GLU + FG, respectively. Despite earlier data to the contrary, the present results do not support an effect of fenugreek supplementation on glycogen resynthesis, even though this may have been the result of differences in experimental protocol.  相似文献   

16.
This study tested the hypothesis that estrogen levels of women influences the development of a muscle-tissue damage (creatine kinase, CK) marker and delayed onset muscle soreness (DOMS) following eccentric exercise. Seventeen oral contraceptive (OC) users and ten eumenorrheic (EU) subjects completed a 30-min downhill running bout at approximately 60% VO2max. The OC completed the exercise during the mid-luteal phase (day 22.9 +/- 1.5; high estrogen) while the EU did their exercise in the mid-follicular phase (day 9.6 +/- 4.4; low estrogen) of the menstrual cycle, respectively. The CK activity and DOMS were assessed pre-exercise, immediately post-, 24, 48 and 72 h post-exercise. ANOVA results indicated that there was a significant increase in CK activity in response to the downhill run (p < 0.001), and the interaction of group x time was significantly different (p < 0.01). The OC group had lower CK at 72 h post-exercise than did the EU group. Pre-exercise estrogen levels correlated with the overall mean CK (r = -0.43, p < 0.05) and 72 h (r = -0.38, p < 0.05) responses, respectively. Exercise caused an increase in DOMS in both groups (p < 0.001); but, no significant interaction was observed. These findings suggest that elevated estrogen levels have a protective effect on muscle tissue following eccentric exercise. The mechanism of this protective effect is unclear but may be related to the anti-oxidant characteristics and membrane stability properties associated with estrogen and its derivatives.  相似文献   

17.
A physiological description of critical velocity   总被引:3,自引:0,他引:3  
Although critical velocity (CV) provides a valid index of aerobic function, the physiological significance of CV is not known. Twelve individuals performed exhaustive runs at 95% to 110% of the velocity at which VO2max was attained in an incremental test. VO2max was elicited in each run. Using the time to exhaustion at each velocity, CV was calculated for each participant. Using the time to achieve VO2max at each velocity, which was shorter at higher velocities, a parameter we have designated as CV' was calculated for each participant. During exercise at or below CV', VO2max cannot be elicited. CV (238+/-24 m x min(-1)) and CV' (239+/-25 m x min(-1)) were equal (t = 0.60, p = 0.56) and correlated (r = 0.97, p < 0.01). These results demonstrate that CV is the threshold intensity above which exercise of sufficient duration will lead to attainment of VO2max.  相似文献   

18.
The object of this study was to determine whether leukocytosis would occur in response to eccentric exercise, to concentric exercise, and/or to possible increases in serum cortisol levels. Eight men performed 2 bouts of exercise at 46% VO2max for 40 min. Subjects initially walked up a 10% grade (UW); 2 weeks later they jogged down a 10% grade (DJ), a form of eccentric exercise known to induce delayed onset muscle soreness (DOMS). Venous blood samples were drawn before and after each exercise bout (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 5 h). Total and differential WBCc and serum cortisol levels were assessed. Results were analyzed using repeated measures ANOVA (2 x 11). Subjects experienced severe DOMS after DJ. There was a significant difference in TWBCc (p less than 0.0001) between UW and DJ. Post-hoc testing revealed no significant increase over baseline values for UW; after DJ there was a 46% increase over baseline values (p less than 0.05) initially seen at 1.0 h. These increases in TWBCc were predominantly a reflection of increases in neutrophils which were significant (p less than 0.0001) when compared to baseline values at 1.0, 1.5 and 2.0 h (approximately 60%). No significant neutrophil increases were seen after UW. Cortisol levels were similar for both groups pre-exercise (UW = 367.1 +/- 38.6, DJ = 320.2 +/- 44.16 nmol.L-1 means +/- SE) and decreased similarly for both groups after exercise, and thus were not related to the post-exercise neutrophilia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Two experiments were performed to examine salivary immunoglobulin A (s-IgA) responses to varying levels of exercise intensity and duration. For experiment 1, 9 college men (mean age, SD = 23.56, 1.64 years) completed treadmill runs of 15, 30, and 45 min at approximately 60% of maximum oxygen consumption (VO2max). For experiment 2, 9 other college men (mean age, SD = 23.67, 2.0 years) ran for 20 min at approximately 50, 65 and 80% of VO2max. Unstimulated salivary samples were collected before, and immediately, 1 and 2 h after the exercise. Samples were assayed for s-IgA using an enzyme-linked immunosorbent assay. Mean s-IgA levels did not change significantly (P greater than 0.05) at any of the post-exercise collection times when compared to pre-exercise levels. The results of this investigation indicated that running at intensities of 50-80% of VO2max and for durations of 15-45 min did not affect s-IgA levels.  相似文献   

20.
In this experiment we studied the effect of different pedalling rates during cycling at a constant power output (PO) 132+/-31 W (mean+/-S.D.), corresponding to 50% VO2 max, on the oxygen uptake and the magnitude of the slow component of VO2 kinetics in humans. The PO corresponded to 50% of VO2 max, established during incremental cycling at a pedalling rate of 70 rev.min(-1). Six healthy men aged 22.2+/-2.0 years with VO2 max 3.89+/-0.92 l.min(-1), performed on separate days constant PO cycling exercise lasting 6 min at pedalling rates 40, 60, 80, 100 and 120 rev.min(-1), in random order. Antecubital blood samples for plasma lactate [La]pl and blood acid-base balance variables were taken at 1 min intervals. Oxygen uptake was determined breath-by-breath. The total net oxygen consumed throughout the 6 min cycling period at pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1) amounted to 7.727+/-1.197, 7.705+/-1.548, 8.679+/-1.262, 9.945+/-1.435 and 13.720+/-1.862 l, respectively for each pedalling rate. The VO2 during the 6 min of cycling only rose slowly by increasing the pedalling rate in the range of 40-100 rev.min(-1). This increase, was 0.142 l per 20 rev.min(-1) on the average. Plasma lactate concentration during the sixth minute of cycling changed little within this range of pedalling rates: the values were 1.83+/-0.70, 1.80+/-0.48, 2.33+/-0.88 and 2.52+/-0.33 mmol.l(-1). The values of [La]pl reached in the 6th minute of cycling were not significantly different from the pre-exercise levels. Blood pH was also not affected by the increase of pedalling rate in the range of 40-100 rev.min(-1). However, an increase of pedalling rate from 100 to 120 rev.min(-1) caused a sudden increase in the VO2 amounting to 0.747 l per 20 rev.min(-1), accompanied by a significant increase in [La]pl from 1.21+/-0.26 mmol.l(-1) in pre-exercise conditions to 5.92+/-2.46 mmol.l(-1) reached in the 6th minute of cycling (P<0.01). This was also accompanied by a significant drop of blood pH, from 7.355+/-0.039 in the pre-exercise period to 7.296+/-0.060 in the 6th minute of cycling (P < 0.01). The mechanical efficiency calculated on the basis of the net VO2 reached between the 4th and the 6th minute of cycling amounted to 26.6+/-2.7, 26.4+/-2.0, 23.4+/-3.4, 20.3+/-2.6 and 14.7+/-2.2%, respectively for pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1). No significant increase in the VO2 from the 3rd to the 6th min (representing the magnitude of the slow component of VO2 kinetics) was observed at any of the pedalling rates (-0.022+/-0.056, -0.009+/-0.029, 0.012+/-0.073, 0.030+/-0.081 and 0.122+/-0.176 l.min(-1) for pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1), respectively). Thus a significant increase in [La]pl and a decrease in blood pH do not play a major role in the mechanism(s) responsible for the slow component of VO2 kinetics in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号