首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
MigClim: Predicting plant distribution and dispersal in a changing climate   总被引:1,自引:0,他引:1  
Aim Many studies have forecasted the possible impact of climate change on plant distributions using models based on ecological niche theory, but most of them have ignored dispersal‐limitations, assuming dispersal to be either unlimited or null. Depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under‐ or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of ‘potentially suitable’ and ‘potentially colonizable’ habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed Mig Clim, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. Mig Clim implements various parameters, such as dispersal distance, increase in reproductive potential over time, landscape fragmentation or long‐distance dispersal. Location Western Swiss Alps. Methods Using our Mig Clim model, several simulations were run for two virtual species by varying dispersal distance and other parameters. Each simulation covered the 100‐year period 2001–2100 and three different IPCC‐based temperature warming scenarios were considered. Results of dispersal‐limited projections were compared with unlimited and no‐dispersal projections. Results Our simulations indicate that: (1) using realistic parameter values, the future potential distributions generated using Mig Clim can differ significantly (up to more than 95% difference in colonized surface) from those that ignore dispersal; (2) this divergence increases under more extreme climate warming scenarios and over longer time periods; and (3) the uncertainty associated with the warming scenario can be as large as the one related to dispersal parameters. Main conclusions Accounting for dispersal, even roughly, can importantly reduce uncertainty in projections of species distribution under climate change scenarios.  相似文献   

2.
To study the potential effects of climate change on species, one of the most popular approaches are species distribution models (SDMs). However, they usually fail to consider important species‐specific biological traits, such as species’ physiological capacities or dispersal ability. Furthermore, there is consensus that climate change does not influence species distributions in isolation, but together with other anthropogenic impacts such as land‐use change, even though studies investigating the relative impacts of different threats on species and their geographic ranges are still rare. Here we propose a novel integrative approach which produces refined future range projections by combining SDMs based on distribution, climate, and physiological tolerance data with empirical data on dispersal ability as well as current and future land‐use. Range projections based on different combinations of these factors show strong variation in projected range size for our study species Emberiza hortulana. Using climate and physiological data alone, strong range gains are projected. However, when we account for land‐use change and dispersal ability, future range‐gain may even turn into a future range loss. Our study highlights the importance of accounting for biological traits and processes in species distribution models and of considering the additive effects of climate and land‐use change to achieve more reliable range projections. Furthermore, with our approach we present a new tool to assess species’ vulnerability to climate change which can be easily applied to multiple species.  相似文献   

3.
The ability of species to shift their distributions in response to climate change may be impeded by lack of suitable climate or habitat between species’ current and future ranges. We examined the potential for climate and forest cover to limit the movement of bird species among sites of biodiversity importance in the Albertine Rift, East Africa, a biodiversity hotspot. We forecasted future distributions of suitable climate for 12 Albertine Rift endemic bird species using species distribution models based on current climate data and projections of future climate. We used these forecasts alongside contemporary forest cover and natal dispersal estimates to project potential movement of species over time. We identified potentially important pathways for the bird species to move among 30 important bird and biodiversity areas (IBAs) that are both currently forested and projected to provide suitable climate over intervening time periods. We examined the relative constraints imposed by availability of suitable climate and forest cover on future movements. The analyses highlighted important pathways of potential dispersal lying along a north‐south axis through high elevation areas of the Albertine Rift. Both forest availability and climate suitability were projected to influence bird movement through these landscapes as they are affected by future climate change. Importantly, forest cover and areas projected to contain suitable climate in future were often dissociated in space, which could limit species’ responses to climate change. A lack of climatically suitable areas was a far greater impediment to projected movement among IBAs than insufficient forest cover. Although current forest cover appears sufficient to facilitate movement of bird species in this region, protecting the remaining forests in areas also projected to be climatically suitable for species to move through in the future should be a priority for adaptation management.  相似文献   

4.
Montane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north‐eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations.  相似文献   

5.
Many studies have investigated the possible impact of climate change on the distributions of plant species. In the present study, we test whether the concept of potential distribution is able to effectively predict the impact of climate warming on plant species.Using spatial simulation models, we related the actual (current species distribution), potential (modelled distribution assuming unlimited dispersal) and predicted (modelled distribution accounting for wind-limited seed dispersal) distributions of two plant species under several warming scenarios in the Sagarmatha National Park (Nepal). We found that the two predicted distributions were, respectively, seven and nine times smaller than the potential ones. Under a +3 °C scenario, both species would likely lose their actual and predicted distributions, while their potential distributions would remain partially safe. Our results emphasize that the predicted distributions of plant species may diverge to a great extent from their potential distributions, particularly in mountain areas, and predictions of species preservation in the face of climate warming based on the potential distributions of plant species are at risk of producing overoptimistic projections.We conclude that the concept of potential distribution is likely to lead to limited or inefficacious conservation of plant species due to its excessively optimistic projections of species preservation. More robust strategies should utilize concepts such as “optimal reintroduction”, which maximizes the benefit–cost ratio of conservation activities by limiting reintroduction efforts to suitable areas that could not otherwise be reached by a species; moreover, such strategies maximize the probability of species establishment by excluding areas that will be endangered under future climate scenarios.  相似文献   

6.
A generalized decline of amphibian populations is occurring worldwide. The causes for such a decline are not completely understood; however, climate change has been identified as a possible cause for amphibian extinction, among others. Ecological niche modeling has proven to be a useful tool to predict potential distribution of species in the context of climatic changes. In this paper, we used the Genetic Algorithm for Rule‐set Prediction (GARP) to model the potential distributions of two species of plethodontid salamanders: Pseudoeurycea cephalica and P. leprosa. We projected their potential distributions under climatic scenarios expected in 50 yr based on a conservative scenario of global climate change and assuming a moderate dispersal ability for both species. Our analyses suggest that climate change effects may pose an additional long‐term risk to both species of plethodontid salamanders, with a more dramatic scenario in the case of P. leprosa. By the year 2050, this species may lose almost 75 percent of its distributional area, and this projection is even worse when deforestation (in the way it is occurring at present) is considered within the predicted model. Our results concur with those obtained for species with limited dispersal capability because they do not track changing climates, but rather face a loss of distributional area. The survival of these species is not secure, even though their potential distributional area falls within a considerable number of natural protected areas.  相似文献   

7.
Analyzing the relationships between the distribution of animal species and climatic variables is not only important for understanding which factors govern species distribution but also for improving our ability to predict future ecological responses to climate change. In the context of global climate change, amphibians are of particular interest because of their extreme sensitivity to the variation of temperature and precipitation regimes. We analyzed species–climate relationships for 17 amphibian species occurring in Italy using species distribution data at the 10 × 10 km resolution. A machine learning method, Random Forests, was used to model the distribution of amphibians in relation to a set of 18 climatic variables. The results showed that the variables which had the highest importance were those related to precipitation, indicating that precipitation is an important factor in determining amphibian distribution. Future projections showed a complex response of species distributions, emphasizing the potential severity of climate change on the distributions of amphibians in Italy. The species that will decrease the most are those occurring in mountainous and Mediterranean areas. Our results provide some preliminary information that could be useful for amphibian conservation, indicating if future conservation priorities for some species should be enhanced.  相似文献   

8.
Human‐induced climate change is projected to increase ocean temperature and modify circulation patterns, with potential widespread implications for the transport and survival of planktonic larvae of marine organisms. Circulation affects the dispersal of larvae, whereas temperature impacts larval development and survival. However, the combined effect of changes in circulation and temperature on larval dispersal and survival has rarely been studied in a future climate scenario. Such understanding is crucial to predict future species distributions, anticipate ecosystem shifts and design effective management strategies. We simulate contemporary (1990s) and future (2060s) dispersal of lobster larvae using an eddy‐resolving ocean model in south‐eastern Australia, a region of rapid ocean warming. Here we show that the effects of changes in circulation and temperature can counter each other: ocean warming favours the survival of lobster larvae, whereas a strengthened western boundary current diminishes the supply of larvae to the coast by restricting cross‐current larval dispersal. Furthermore, we find that changes in circulation have a stronger effect on connectivity patterns of lobster larvae along south‐eastern Australia than ocean warming in the future climate so that the supply of larvae to the coast reduces by ~4% and the settlement peak shifts poleward by ~270 km in the model simulation. Thus, ocean circulation may be one of the dominant factors contributing to climate‐induced changes of species ranges.  相似文献   

9.
A long‐standing macroecological hypothesis posits that species range limits are primarily determined by abiotic factors (e.g. climate) at poleward boundaries and biotic factors (e.g. competition) at equatorward boundaries. Using correlative environmental niche models we test this hypothesis for 214 amphibian and reptile species endemic to the United States (U.S.). As predicted, we find a closer association between climate and northern (poleward) range limits than at southern (equatorward) boundaries. However when we separately analyze amphibians and reptiles, only reptiles show the predicted pattern; amphibians show the opposite pattern. We also find more unoccupied, but climatically habitable, area beyond species’ southern range limits for reptiles but not amphibians. This suggests that factors other than climate limit distributions at southern boundaries for reptiles and at northern boundaries for amphibians. These contrasting results suggest that even in the same biogeographic regions, this macroecological hypothesis does not hold. Further studies should investigate, preferably via experimental approaches, the proximate and ultimate mechanisms responsible for range limits.  相似文献   

10.
Many studies have investigated the potential impacts of climate change on the distribution of plant species, but few have attempted to constrain projections through plant dispersal limitations. Instead, most studies published so far have simplified dispersal as either unlimited or null. However, depending on the dispersal capacity of a species, landscape fragmentation, and the rate of climatic change, these assumptions can lead to serious over- or underestimation of the future distribution of plant species.
To quantify the discrepancies between simulations accounting for dispersal or not, we carried out projections of future distribution over the 21st century for 287 mountain plant species in a study area of the western Swiss Alps. For each species, simulations were run for four dispersal scenarios (unlimited dispersal, no dispersal, realistic dispersal, and realistic dispersal with long-distance dispersal events) and under four climate change scenarios.
Although simulations accounting for realistic dispersal limitations did significantly differ from those considering dispersal as unlimited or null in terms of projected future distribution, the unlimited dispersal simplification did nevertheless provide good approximations for species extinctions under more moderate climate change scenarios. Overall, simulations accounting for dispersal limitations produced, for our mountainous study area, results that were significantly closer to unlimited dispersal than to no dispersal. Finally, analysis of the temporal pattern of species extinctions over the entire 21st century revealed that important species extinctions for our study area might not occur before the 2080–2100 period, due to the possibility of a large number of species shifting their distribution to higher elevation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号